
Fundamental-mode laser-beam propagation in optically
inhomogeneous electrochemical media with
chemical species concentration gradients

Andreas Mandelis and Barrie S. H. Royce

Solutions to Maxwell's wave equation have been derived for the propagation of the fundamental (Gaussian)
mode of a laser beam in a fluid electrolyte which is in contact with an active electrode. An electrochemical
or photoelectrochemical reaction at the electrolyte-electrode interface is assumed to generate a concentra-
tion gradient of the product in the electrolyte, which results in an inhomogeneous refractive-index profile.
The analytic solutions for the propagation of the beam explicitly demonstrate the dependence of the dis-
placement of the intensity centroid and of the spot shape on the electrochemical parameters of the system.

1. Introduction

Reactions taking place at an electrode-electrolyte
interface in a electrochemical or photoelectrochemical
environment are of considerable fundamental and
technological interest. Such reactions are pertinent to
the problem of corrosion, the design of fuel cells and
photoelectrochemical cells for solar energy conversion,
electrochemical reactors for product synthesis, and
species specific electrodes for chemical analysis.
Semiconducting electrodes are an important subset of
those available for these applications, and the semi-
conductor band-structure plays an essential role in the
electrode stability, charge transfer to electrolyte species,
and the interaction with incident radiation. These
processes can be influenced by the chemical species
present on the electrode surface and thus may be used
to obtain insight into the basic charge transfer mecha-
nisms occurring at the semiconductor-electrolyte in-
terface with a case of particular interest being a semi-
conducting electrode undergoing competitive interfacial
charge transfer and photodecomposition reactions. A
fundamental understanding of such processes is es-
sential for the fabrication of stable photoelectrodes and
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electrocatalytic surfaces that are species specific as well
as for control of fuel cell behavior.

Mechanisms of interfacial charge transfer at semi-
conducting and oxidized metal interfaces have been
subject to a wide variety of studies and are discussed in
books by Bard and Faulkner,1 Bockris and Kahn,2 and
Morrison. 3 However, relatively little data are available
on the actual surface processes involved. Conventional
electrochemical and photoelectrochemical methods can
be employed to provide some mechanistic and ther-
modynamic information; however, it is highly desirable
to be able to combine these methods with species spe-
cific probes, such as spectroscopy, so that competitive
reactions involving multiple species may be deconvo-
luted. Utilization of a spectroscopic probe further al-
lows the monitoring of nonelectroactive species which
may play a role in the interfacial charge transfer pro-
cess.

Charge transfer processes to solution species and the
electrode dissolution processes that may occur in elec-
trochemical and photoelectrochemical systems generate
time-dependent species concentrations in the region of
the electrode-electrolyte interface. Recently, these
species gradients have been probed experimentally4-6
using the mirage effect [or photothermal deflection
spectroscopy (PDS)]. In these experimental studies
the displacement of the intensity centroid of a laser
beam propagating parallel to the electrode-electrolyte
interface is used to obtain spectroscopic or species
concentration information. A theoretical model ap-
propriate to the spectroscopic studies has been devel-
oped by Mandelis. 9

In addition to experiencing an intensity centroid
displacement due to the near-electrode refractive-index
gradient, the laser beam undergoes a shape change since
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light propagating close to the interface samples a higher
spatial gradient than that propagating farther away
from the interface.

This paper examines the problem of laser beam
propagation in electrochemical media with a refrac-
tive-index gradient due to inhomogeneous chemical
species concentration distributions. Analytical solu-
tions to the wave equation governing the electromag-
netic field of the propagating light beam have been
obtained for media having slow spatial variations of the
index of refraction. These solutions are rigorously valid
for laser beam propagation in a fluid electrolyte in
contact with an electrode surface. The laser beam in-
tensity centroid is assumed to be parallel and adjacent
to the electrode surface which is kept at a constant
concentration of an electrochemical species at all times
after initiation of the reaction, while electrolyte diffu-
sion processes generate a concentration gradient in the
fluid.

II. Diffusion Problem: Refractive-Index Profile

The system geometry is shown in Fig. 1. For an iso-
thermal electrochemical system which contains a
semi-infinite electrode in contact with a fluid electro-
lyte, the concentration profile of a chemical species
produced at the interface is given by'0

C(x,t) = Co erfc (i.-) (1)

for the geometry of Fig. 1, where C0 is the concentration
of the product chemical species on the electrode surface
and is assumed constant at all times, and D is the dif-
fusion coefficient (cm2 -sec-1) of the particular chemical
species in the electrolyte.

The concentration profile C(x,t) described in Eq. (1)
induces a refractive-index gradient in the electrolyte,
which, for small departures from uniformity, can be
expressed in terms of a Taylor series expansion around
the value of the refractive index no of the electrolyte
when C = 0:

n(xt) no + Co(T ( _ (2)

where only first-order terms were kept, since

rdC)C=Co

for many systems of practical interest [e.g., Co(an/
aC)c=co = 5.9 X 10-3 for an aqueous solution of CuSO 4
at 20'C with a surface concentration C0 = 0.2 moles/
liter1 1"12 ; for aqueous solutions of H2 SO4 at 200 C below
10 M, Co(On/OC)c=co < 8 X 10-3 for a surface concen-
tration Co = 1 M1 12].

111. Optical Propagation Problem: Solution to
Maxwell's Equations in the Index Profile of Eq. (2)

The general solution to Maxwell's equations for the
electric and magnetic fields propagating along a laser
beam axis can be simplified considerably without loss
of generality by considering a polarized beam which has
no electric field component in the y direction or mag-

LASER BEAM
1 e INTENSITY PROFILE

DETECTOR PLANE

Fig. 1. Schematic diagram of laser beam propagation in electro-
chemical medium near the electrode-electrolyte interface in the
presence of a refractive-index gradient Vn due to an electrochemical
species concentration gradient: Co, species concentration at electrode
surface; D, species diffusion coefficient in the electrolyte; no, refractive
index of the electrolyte in the absence of a concentration gradient.

netic field component in the x direction with the coor-
dinates as specified in Fig. 1. The remaining field
components yield identical equations for ex and hy.
For ex in the fluid electrolyte medium13

(2
V2ex (xy,z;t) - AO (x ,t) - e.(xy,z;t)

at2

+ - =0(xt) , e (xyz;t) =, (3)

where the magnetic permeability ,u of the medium was
taken to be that of a vacuum, = to = 4r X 10-7 H/m,
and the dielectric constant e(F/m) is related to the in-
homogeneous refractive-index profile via

n 2 (xt) = yoe(x,t). (4)

If the rapid oscillatory temporal variation of ex for op-
tical frequencies is separated out in the form

e.(x,y,z;t) = Ex(x,y,z;t) exp(icot),

Eq. (3) can be written

V2E.(x,y,z;t) + xo (Xt) - at ] Ex(x,y,z;t) = 0-

(5)

(6)

Equation (6) can be further simplified, provided the
variation of e(x,t) with t is very small for times of the
order of w-1, i.e.,

(7)<<1.
e(t)

Condition (7) is easily met in the case of slowly changing
concentration gradients of an electrochemical system
so that Eq. (6) becomes

V2 Ex(x,y,z;t) + k2n 2(x,t)Ex(x,y,z;t) = 0, (8)

where n(x,t) is given by Eq. (2) and ko is the magnitude
of the wave vector for field propagation in a vacuum.
The refractive-index profile of Eq. (2) is real and indi-
cates that the propagating beam will suffer neither gain
nor loss in the region of the electrolyte. Use of the series
expansion for the complementary error function of Eq.
(2)14 and retention of the lowest-order term in
(x/2-/E) give the following expression for the refrac-
tive-index profile valid for times that are long compared
with the chemical species diffusion time Td:
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A2

m(t) - << 1.
rDt

n(x t)1 t>'1d : no |1 - Dt Dt) (9)i

where

Td=X 2/(4D), (10)

A- Co(an/aC)c=ca 1. (11)
no + Co(an/aC)c=co tno'aCc=c =11)

Inserting Eq. (9) into Eq. (8) and recognizing the
smallness of the constant A, we obtain

V
2
EX + k2n2 1 I 2A + A2 ) 2E Ot (12)

where only terms up to O(A2) were retained.
Equation (12) can be solved explicitly for a wave

propagating in the z direction, using the substitution

Ex(x,y,z;t) = G(xy,z;t) exp(-ikonoz) (13)

and assuming that the longitudinal variation of G is slow
enough,15 so that

a2
d G(x,y,z;t) _-0.
az2

Expressing G in the general form16

G(x,y,z;t) = expj-i[1/2Qx(zt)x 2 + /2QY(zt)y2 + S.(z,t)x
+ SY(zt)y + P(z,t)J),

(14)

(15)

substituting Eqs. (13)-(15) into Eq. (12), and equating
equal powers of x and y, it can be shown that the pa-
rameters Q, Qy, Sx, Sy, and P are governed by the
following set of equations16 :

Y d on z QY(Zt = 

X ) + kono d(z Qx(zt) + kknk2,(t) = 0; (16

Qy(zt)Sy(zst) + kno a Sy (z't) = ; M1

az
Qx(zQt)Sx(zt) + kn 0 -Sx(z,t) + 1/2konokl.(t) = 0; (1E

dza

-P(z,t) + [QX(zt) + QY(zt)]
az 2k0 no

+ 1 [S2(z,t) + S(z,t)] = 0. (E
2kono

In Eqs. (16) the following parameters were defined:

kjx(t)- ° , (17

k2(t)- koA * (17

In Eqs. (15) and (16) the functions Q(z,t) and Q(zt)
represent the complex laser beam parameters which
govern the size of the beam and the curvature of the
phase fronts. The functions S (z,t) and Sy (z,t) are the
complex displacement parameters which determine the
location of the beam. The function P(z,t) is the com-
plex phase parameter which governs the amplitude and
phase of the beam. It is also convenient to make the
following parameter definitions:

k kono;

6a)

The set of Eqs. (16) is equivalent to the original wave
equation [Eq. (12)]. The solutions are given in terms
of well-known measurable laser beam parameters at the
beam waist. Equations (16a) and (16b) are of the Ric-
cati type, and their solutions are17'1 8

(19)Qy(z) = k
z + qoy

Q. (z ,t) = k/;(sinha\/'z + r coshV/ z
cosh/)z + sinhv/'z

where
k

QY(z =0)

WQ. (Z 0) 1
kfW(ti) qo.x\1) (=

Equation (16c) has the solution

Sy(z) = Sy(O)0 (q o)-~+ qy)

To solve Eq. (16d), the transformation

S.(zt) = S'(zt) - - Q.(zt)

(20)

(21)

(22)

(23)

(24)

reduces Eq. (16d) to an equation for S'(z,t) which is
identical to Eq. (16c).16 Solving this equation and using
Eq. (24) give

S (t) =Sx(0) + kk[(1 - oshv\/Hz) - sinhV\7z]
cosh\'az + rsinhv'z (25)

6b) Finally, to solve Eq. (16e), the transformation

3c)

6d)

P(z't) = P'(zt)- SX(Zt)-11 QXk(Zt)- z
_\ fX 2m 2 (26)

can be used to obtain the equation

a + ~ z ] 1_
-P'(z,t) + [QX(zt) + Q -(Z)] + [(S')2 + S2](z t) - 0.
az 2k 2k (

(27)

)Uj Solving Eq. (27) and substituting the solution in Eq.
(26), along with the solutions for Sx (z,t) and Qx (z,t),
Eqs. (24) and (20), respectively, give the following

ra) equation for P(z,t), the complex phase parameter

P(z,t) = P(0) +-S(0) +
7b) 0;; 2mqox

-- [In(coshv'z + sinh\/' z) + ln (1 +

1 S2( ) \
2k 0 Y z+ qyJ

[S,(0) + k ]2 sinhv/'7z

2kV/; coshv_z + rsinhvMzI
1 S(0) + k[r(1-cosh-\7z) -_sinhv\/'z]1 _

- 1{ 0 +I coshVa7z + rsinh\/J z J

k (sinhv\7_z + cosh\/fz (28)

2Vii coshN'_iz + sinhVG . 2(18a)
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IV. Beam Parameter Evolution in Terms of the
Solutions of the Beam Equations

Recognizing that the functions Q, Qy, Sx, Sy, and P
can be complex, so as to give information about the ex-
perimentally measurable laser beam parameters, we can
use the following definitions16:

Q.(z) = Qxr(Z't) + iQ~i(zt); (29a)

with similar definitions for yp and Ya. In Eqs. (35),
Xp (yp) is the displacement in the x - (y -) direction of
the phase-front center, while xa (Ya) is the displacement
in the x - (y-) direction of the center of the amplitude
distribution. Inserting the definitions, Eqs. (33) in Eqs.
(19), (20), (23), (25), and (28), the following expressions
are obtained for the real and imaginary parts of the
beam parameters Qx, Qy, Sx, Sy, and P:

Qy(z) = Qyr(Z) + iQyi(z);

S.(z't) = Sx,(Zt) + i~i(zt);

Sy(z) = Syr(Z) + iyi(z);

P(zt) = Pr(Zt) + ii(zt).

(29b)

(29c)

(29d)

(29e)

Complex beam radii q can now be introduced in the
x and y coordinates independently:

1 - Qx(z t)- 1 .

q. (z,t) k Rx (z,t) 7rX t)

1 Qy(z) 1 . A

qy(z) k Ry(z) rWy(z)

(30a)

(30b)

where Wx (z,t) and Wy (z) are the spot sizes in the x and
y directions, respectively, with the coordinates shown
in Fig. 1, and RX (z,t) and Ry(z) are the radii of curvature
of the spherical phase fronts. Using Eqs. (19) and (20)
in (30a) and (30b), it can be shown that

Rx (zt) = MZ0 1cothVz + tanhaz (31a)
1 + mz~x IV;Wz0 

(31b)

Also

WX(z,t) = Wo2 [cosh2V4z + l- ) sinh 2vzJ (32a)WY2 (Z) = W02Y 1 + _ (32b)
In Eqs. (31) and (32) Wox, Woy are the spot sizes at

the beam waist (z = 0), and zox, zoy are the magnitudes
of the complex beam radii, qox and qoy, assumed to be
purely imaginary15 :

qox - izox = i (33a)

qoy M izoy = i E *(33b)
x

Inserting Eqs. (29a)-(29e) into Eq. (15) and sepa-
rating the real and imaginary parts yield

G(x,y,z;t) = exp(-i1'/2Qxr(zt)[x - XP(zft)12

+ 1/2Qyr(Z)(y Yp ) 12Qxr(zt)xp(zat) 12Qyr(Z)Yp
+ Pr(Z,t)) expf1/2 Qxj(zt)[x - Xa(Z,t)]2

+ 1/2Qyi(Z)(Y Ya)2

_ 1/2Qx(z ,t)4(z ,t) - 1/2Qyi(z)X2 + pi(Zt)j,

where'6

xp (Z't) =_- S x (Z I 

Sxr(Z t)Qxt(Z't)

X Zt Sxi(z,t)I
Qxi (Z't

(34)

- k
: ~~~Qx'(Z't) = ( t;

RW (z,t)

2
Qr(zt) = - ;___

Qyi(z) = - 2

Sx,( t) k IJ[sox +g(1 - coshv\_z)]g - coshV'Hzl
S\/r = (1 +g2)Rx(z,t) cosh+V'z J

where sox and g are defined by

L ~~~~~Sx (o) -iksox,

Also

Sxi(zt) = -k [ I 12 [(soX + g) coshv\/Hz - g],
W~XZ~T)J

Syr(z) = k SOZO
RY (z)

where soy is defined by

Sy (O) - ikso,.

Similarly,

s (z) = - sQYZoY

Finally,

Pr(Z,t) = Pr(O) - '/2 [nx(Zt) + ?ly(z)] + k (SoYzoY)2 kz
My (z) 2

+ Ok [2x+ 2g
2

+ 1 + 2g(sox + g)(cosh7z -1/)1
2m(1 + g2)Rx(z,t) cosh\/bz

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

Pi(z,t) = Pi(0) _ 1/4 {In(cosh2V/4Hz + g 2 sinh 2x/7z) + ln 1 + (LZ±)J+ (SOYZ)
2+ ( a)j/) [(S2X + )g sinh2 j/ z + 2(sox + g)

X (1 - cosh\/' z) coshv/'mz], (48)

where

7x(z,t) - tan-'(g tanhV/ z),

,qy(z) -- tan-l(z/zoy).

(49a)

(49b)

Equations (29)-(49) are explicit functional forms de-
scribing the evolution of the various laser beam pa-

(35a) rameters: In the x direction Qxr(zt), Eq. (30a), is a
measure of the radius of curvature R (z,t) of the
spherical phase fronts in the x-z plane. Q(z,t), Eq.
(30a), is a measure of the evolution of the le spot size

(35b) Wx (zt) along the x axis. Sxr(z,t), Eq. (40), shows the
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evolution of the displacement of the phase-front center
in the x direction, and Sxj(zt), Eq. (43), is a measure of
the beam centroid displacement. The function Pr(z,t),
Eq. (47), describes the evolution of the phase of the
beam in the direction of propagation, and the function
Pi (z,t), Eq. (48), gives the amplitude distribution along
the x axis for any position z > 0 at time t.

Similar interpretations in the y direction can be given
to the quantities QyrQyiSyrSyi

V. Beam Equations In the Limit m( t) << 1

The time dependence of the beam parameters enters
the beam equations only through the quantity m(t), Eq.
(18b). In view of the smallness of this parameter in
practical electrochemical systems, the beam equations
which were obtained in Sec. IV for a general m(t) can
be simplified considerably upon expanding the hyper-
bolic functions sinh and cosh according to

coshx =_1 +-; x1,
2

sinhx x; x << 1,

(50a)

(50b)

and retaining terms of 0[m(t)] and lower. Only the
x-coordinate dependent parameters are affected by this
simplification:
from Eq. (31a)

R~Z~ [ (1 + MZ2 -) + (x/z)21
1+ (2 + 1 2Z 2) ];

from Eq. (32a)

W 2 (z t) W2X[(1 + mz2 ) + (Z/ZoX)2];

from Eq. (40)

(51)

(52)

xp(zst) m-1/2 [(1 + coshVaz - 1 - \asoxzoxl
(1 + mzo2) coshVnz I

(56b)
In the limit of m << 1, Eqs. (56a) and (56b) become

Xa(Z,t) _-sOxzox(l + mz2/2) - Vz 2 /2, (57a)

-S0 xz0 , + -\- Zox 2
xp(zt) _ (57b)

1 + m(Zox +2)

The amplitude and phase of the electromagnetic field
can now be computed explicitly from Eqs. (13) and (34),
using the parameter functions in the limit m (t) << 1:

A. Amplitude of the Electric Field Vector

WWy11/2 2Y+S 2 2
IEx(x,yz;t) E 0 [ W IX )] exp |iW.,(Z' tW (z)]J I (Z)

+ X2 + Z2(S - ()SOXZOX /2 +Pi(°)]

X exp (- X )2 (Y Ya )2 (58)

Imposing the boundary conditions on the amplitude
distribution centroids,

xa(0,t) = XO,

Ya (t) = Yo,

(59a)

(59b)

the (so far arbitrary) constants sox, sy take the
values

sox = -x/zox soy = -yo/zoy,

and the equations for the beam intensity centroid can
be written

SxrezRt) k Iz | 2)1

from Eq. (43)

Sxi(zt) L-k [W ( t V M + 2
from Eq. (47)

(53)

(54)

Xa(Z,t) = xo + M2. )- \2 z 2,
2/ 2

Ya (Z) = YO,

x (z t) = xo + V/;(zZ2 + z2/2)

1 + m(zO2 + 2 /2)

Yp(z) = Yo.

Inserting Eqs. (60) in (58) and setting
bitrary) constant Pi (0) equal to

(60a)

(60b)

(60c)

(60d)

the (so far ar-

(z/zox) 1 + t n ~ / o~Pr(Zt) Pr(0) - /2 {tanl 1 + M(Z2/2)] + tan-,(Z/ZOy)l

+k(soyzoy) kz+ kJZ2j S )+2
+ k 2Ry(z) 2 2R (zt) +

+ \/ IsoxZoXz2 + (mzg~z/2)( + So2)1/

[1 + m(Z2x + Z2/2)11; (55)

and from Eq. (48)

Pi(z,t) = Pi(0) - 1/4 n{[(1 + mz2 ) + (z/zox)2 ][1 + (z/zoY)2 11

+ (soYZ)2 + Z2(S -Vsozox - mz2/2) (5

Insertion of Eqs. (36), (37), (40), and (43) in Eqs. (35a)
and (35b) gives for the displacement parameters

xa(z,t) = n-1/2 - (SOXZOx + m- 1/2 ) coshiv§z, (56a)

I X + 2

tw2x w2 Y 

the amplitude of the electric field vector of the propa-
gating laser beam is given by

IEx(xy,z;t)I = E0 [ WX (Y 1/2
[WX(z'0)Wy(1J1

X exp [X -X(Z,t)] 2 (y - y
W(z,t) Wy2(2) I (61)

where the various quantities are given by Eqs. (32a),
(32b), and (56a) or, in their m(t) << 1 limits, by Eqs. (52)
and (60a).

B. Phase of the Electric Field Vector

On writing Ex(x,y,z;t) = IEx(x,y,z;t)I exp
[-i0(x,y,z;t)], the phase of the electric field vector of
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the laser beam propagating in the fluid electrolyte can
be identified from Eqs. (13) and (34) as follows:

(x,y,z;t) = '/2Qxr(Zt)(X - Xp)2 + /2Qyr(Z)(Y - Yp)2

- '2 Qx(zt)X- /2 Qyr(Z)YP + P,(z,t) + kz. (62)

Inserting Eqs. (36), (38), (60c), (60d), and (55) in Eq.
(62) and setting the orbitrary constant Pr (0) = 0, it can
be shown that

0(x y kz;t) = ([X - xP(zt)] 2 + -- yo)2

+ z2 1(1 - \/-7xo)2[1 + (Zox/Z)2 ]

Rx(z,t) 1 + 2m(Z2 + Z2 /2) 11

+ /2 (kz - tan- [z/o) - tan(Z/Zoy/ 1
[1 + M(Z2/2)j

(63)

Finally, the laser beam intensity is given by'9

I(x,y,z;t) E Ex' (W/m 2 ), (64)

where 7q(Q) is the wave impedance of the fluid electro-
lyte medium. Equation (64) can be written in terms of
the incident beam intensity Io at z = 0:

I(xyz;t) = 0 W[Wx(Z t)Wy(Z)I

X exp (-2 {X Xa(Z ,t)] 2 + ( - yo) 2

Wx2(z,t) + W 2 )

refractive-index field n(x,t) which decreases with in-
creasing x.

Using Eqs. (17a) and (17b) in (67) and solving Eq.
(69') we find the beam displacement in the ray-optic
approximation:

X(Z,t) = m-1 /2 + [Xa(0,t) - m-1/ 2 ] coshV/z

+ m 1/2 xd ) sinhV,z.
\ az z=O/

The boundary conditions

x (O,t) = xo, for the initial displacement,

axa x = 0, for the initial beam deflection,
az z=o

(70)

along with m(t) << 1, simplify Eq. (70):

Xa(Zt) = Xo (1 + 2 - Y2 Z2,

which is identical to Eq. (60a) which was obtained using
a wave-optics model. The beam deflection can be ob-
tained from xa (z,t) upon differentiating

O(x't) =Xa(Z t)
az

= -(1 - vl/mxo) sinh/z + xocoshv'/z. (71)

Equation (71) can be simplified for the special case
(65) considered here to give

VI. Ray-Optic Limit

(1) The laser beam intensity field obtained in Sec.
V is consistent in the limit of Eq. (9), i.e., for x2 < 4Dt,
with a simpler treatment of the beam in the ray-optic
approximation. In that approximation, no information
about the spatial or temporal intensity distribution can
be obtained. However, the equation of motion of the
beam intensity centroid x (z,t) can be correctly de-
scribed by ray optics. Equations (16b) and (16d) and
the definition (35b) of xa yield

a2 [k2.() [kM()
a2Xa (Z't) + 1k] Xa(Zt) + /2 [k] = 0. (66)

Equation (66) can be written in terms of the compo-
nents of the refractive index:

n(xt) _ no 1 (n) x 2A ) (67)

where

nx(t) = khl(t)/ko, (68a)

n2. (t) = k 2x (t)/ko (68b)

Equations (66)-(68) result in the following equation for
Xa:

a2

no -x.(z~t) = -/ 2n,.,(t) - fl 2 1(t)Xa(Z,t) (69)

or

no- 2X,(Zt) = - n(xt)Jxxa(zt)
az

2
a9x Zt)

(69')

which is the paraxial ray equation of ray optics for a

O(zt) _ _ ( A _ z (72)

In the geometry of Fig. 1, O(z,t) < 0 indicates that for an
incident laser beam which is initially parallel to the
electrode plane, the subsequent deflection will be
toward the surface of the electrode, i.e., in the direction
of the refractive-index gradient Van. In the wave-optics
picture, Eq. (72) indicates the deflection of the beam
intensity centroid.

(2) General expressions for the beam centroid dis-
placement xa (z,t) and beam deflection O(zt), valid for
all experimentally useful times, can be obtained from
a ray-optic model using a perturbational method of
solution of the nonlinear paraxial ray equation, provided
that A << 1 [Eq. (11)]. The refractive-index profile of
Eq. (2), when inserted in the paraxial ray equation (69'),
yields the following nonlinear equation for the beam
centroid displacement:

d 2
Xa(Zt) A x"(zt)
d + xp 4 = 0.
dz 2

-\/ _7rP I 4Dt IJ
(73)

For time-domain studies of conventional electro-
chemical systems t 0.1 sec,2 0' 21 so that (A/ rDt) =

fm--(t) 6 < 1. xa can be expanded in terms of a power
series in 6:

X.(Zt) = bXk(zt)
k=O

subject to the boundary conditions

Xo(Ot) = XO,

Xi(0,t) = 0; j 0,

(74)

(75a)

(75b)
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-Xk(zt)IZ=o = ; k = 0,1,2, .... (75c)
dz

Insertion of Eq. (74) in (73) and retention of terms of
order 62 or less give the following coupled equations for
the first three terms Xo, Xi, and X2:

d 2 Xo(z,t) = ;
dz 2

dZX1(zt) exp [ 4Dt) 

(76a)

(76b)

-X 2 (Z,t) - ozt exp tI =0. (76c)
dz 2 2Dt [- 4DtI

Solution of Eqs. (76) subject to Eqs. (75) and use of Eq.
(74) give

Xa(Zt)=0 1+ exp I-x (77)2 2 4Dt I H Dt/
accurate to order 62. The beam deflection can now be
calculated:

O(z't)=-V -z 1 tI ep I 4 t)-
2Dt I Dt

(78)

Equations (77) and (78) can be seen to reduce to Eqs.
(60a) and (72) in the special case x2 < 4Dt.

VII. Discussion-Results

Figures 2 and 3 show numerical results for the beam
intensity centroid displacement, Eq. (77), and beam
deflection, Eq. (78), respectively. The advantage of the
mathematical perturbation method used for those cal-
culations is the ability to study quantitatively laser
beam dynamics at all times of interest in an electro-
chemical experiment. Figure 2 shows the expected
departure of the beam centroid toward the electrode
surface, i.e., toward the region of increased refractive
index, at early times. As the refractive-index gradient,
[a/(ax)]n(x,t), decreases for times t >> X2/(4D), the
concentration of the chemical species under consider-
ation becomes essentially uniform throughout the
electrolyte, C(x,t)- Co in Eq. (1). At the limit t =,
the electrolyte acquires a uniform refractive index:

n(x,c)= no +Co anfI no
ad c=c0

in Eq. (2). Therefore, any departure of the beam in-
tensity centroid toward the electrode tends to be neg-
ligible, as shown in Fig. 2. Similar features to those of
Fig. 2 can be seen in the behavior of the beam deflection
in Fig. 3. In both figures, the position of the beam de-
tector was assumed to be at z = z* = 3 cm. The minima
of the curves shown in Figs. 2 and 3 correspond to dif-
fusion times,

Tdo = XO/4D,

and they shift to later times for larger beam axis offset
values x0. Due to the 1-D inhomogeneity in the re-
fractive-index profile along only the x axis of Fig. 1, no
beam deflection occurs along the y axis in the present
model.

Preliminary experimental observations have indi-
cated an asymmetric spot shape with respect to the

Xa

0

-1

-2

-3

-4

lt. 8 = 0.0176cm

------- X = 0.0218 cm

X = 0.025 cm

X,=0.0298 cm

0 10 20 30 40 50 60
TIME (sec)

Fig. 2. Beam intensity centroid displacement according to pertur-
bation theoretical expression, Eq. (77). A = 5.9 X 10-4; D = 1.49 X
10-5 cm2/sec; z = 3.0 cm. to corresponds to the intensity profile of

Fig. 6.

0

-0.1

-0.3

0

- X. = 0.01 76 cm

------ X. = 0.0218 cm

= 0.025 cm

X0= 0,0298cm

TIME (sec)

Fig. 3. Beam deflection according to perturbation theoretical ex-
pression, Eq. (78). A = 5.9 X 10-4; D = 1.49 X 10-5 cm2 /sec; z = 3.0

cm.

beam centroid at early times, before the minima at t =
Tdo are reached. The experimental spot shape tends
to occupy a larger spatial extent along the x axis toward
the direction of the electrode surface than away from
it. This early time behavior can be qualitatively un-
derstood within the framework of the present theory as
follows: For times t << rdo the refractive-index gradient
along the x axis is given from Eq. (2):

n(x,t) = -(A/_7P) exp (- ijFJ

which shows that the gradient is very steep close to the
electrode surface, decreasing very rapidly with distance
into the electrolyte. The higher value of an/ax closer
to the surface would tend to enhance the mirage effect
in that region. This is expected to result in a more
pronounced bending of the part of the beam below the
intensity centroid (i.e., closer to the surface) than that
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Fig. 4. Fundamental mode He-Ne laser beam spot shapes, Eq. (79),
and beam centroid displacement for two positions of the intensity
profile detector. xo = yo = 0.0176 cm; D = 1.49 X I0-5 cm2 /sec; A =

5.9 X 1 0 -3; t = 5 sec. The dashed line circle in the lower spot shape
has been drawn to emphasize its elliptic character.

above the centroid (i.e., away from the surface), in
agreement with our preliminary experimental obser-
vations. For times t >> do, the approximation

exp ( - -_1

is valid. This results in an essentially spatially constant
refractive-index gradient,

an

ax

throughout the body of the electrolyte. In this limit,
all parts of the laser beam are expected to bend by the
same amount, and the intensity profile will be sym-
metric about the centroid. The wave-optic theory
presented in Secs. III and IV is strictly valid for times
t > Td in Eq. (10). Under this condition, the solution
to Maxwell's equations, Eq. (65), shows that the spot
shape of the laser beam emerging from the electrode-
electrolyte region is an elliptic Gaussian with time-
dependent major axis length. The greatest effect of the
inhomogeneous refractive-index profile on the spot
shape is expected to occur at relatively early times so
that the factor (mz2/2) within the parentheses in Eq.
(60a) will be comparable to unity. Figure 4 shows the
spot shape defined by the intensity boundaries corre-
sponding to /e2 of the incident light intensity, i.e., by
the ellipse

[X - X (Z*,t)]2 (y- yo)2_1+ = 1
W2(z*,t) W2(Z*)

with the beam waist centered at (xo,yo).

(79)

-2.0

-Z5 Ocm
----- Z= 2cm

-- Z =3cm

I I I I 
-0.8 -0.4 0 0.4 0.8

Y - Y0 (mm)

Fig. 5. Fundamental mode He-Ne laser beam spot shapes, Eq. (79),
for three positions of the intensity profile detector. All spot shapes
were drawn concentrically to emphasize the spatial development of
the ellipse. x = yo = 0.0176 cm; D = 1.49 X 10-5 cm 2/sec; A = 5.9

x 10-3; t = 5 sec.

At the entrance to the electrode-electrolyte system
(detector position z* = 0) was placed the beam waist.
Therefore, the spot shape remains circular Gaussian at
all times as shown by the upper curve of Fig. 4. At a
point z * = 1 cm the beam intensity profile has shifted
to a position centered -1.9 mm below that at the beam
waist in the direction of the electrode surface. The spot
shape exhibits a slight elliptic character with an in-
creased major axis along the x direction. This is shown
by the lower curve of Fig. 4. A concentric circle has also
been drawn to emphasize the extent of the elliptic
character of the spot shape at t = 5 sec.

Figure 5 shows development of the Gaussian ellipse
at different beam detector positions z * with cocentered
spot shapes to facilitate the comparison. The elliptic
character is seen to be a sensitive function of the de-
tector position at early times (t = 5 sec). The length of
the major axis W. contains electrochemical information
about the electrode-electrolyte system: For an instant
t = to, a plot of the W2(Z,to) vs z2 will give a straight line,
whose slope is, according to Eq. (52),

dW2(Zto) = ( A 2 +4-) -

d(z) lrDto zoX
(80)

Similarly, for a fixed detector position z , a plot of
WX(z*,t) vs t- 1 will give a straight line with slope:

dW2(z*,t) (Z*)2 W2 A 2 (81)

d(1/t) -rD

For a given laser wavelength and spot size at the beam
waist, Eqs. (80) and (81) in conjunction with Fig. 5 can
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Fig. 7. Qualitative illustration of the intensity spatial profile and
displacement of a fundamental Gaussian mode propagation in an

optically inhomogeneous electrolyte fluid.
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Fig. 6. Fundamental mode He-Ne laser beam spot shapes, Eq. (79),
and beam centroid displacements for three positions of the intensity
profile detector. xo = yo 0.0176 cm; D = 1.49 X 10-5 cm2 /sec; A =

5.9 X 10-4; t = 30 sec (see Fig. 2).

give quantitative information about the refractive-index
gradient Vcn via Eq. (11) and the chemical species dif-
fusion coefficient D, if both plots can be constructed
(i.e., W2 vs z2 and vs t-1).

Figure 6 is a sequence of spot shapes for different
beam detector positions at times very long compared
to d. For such times concentration and refractive-
index gradients are small. Figure 6 shows that the ef-
fects of the Vcn on the spot shape at the instant to = 30
sec are negligible. That instant corresponds to the time
to of Fig. 2. The intensity centroid position is, however,
a more sensitive function of Vcn than the spot shape,
as shown in Figs. 4 and 6. To first order in A, a plot of
Xa vs z2 at some instant to should give a straight line
according to Eq. (60a) with a slope

dxa (z,to) A 82
d(z2 ) 2/ (8)

and a plot of Xa vs t-112 for a fixed detector position z *
should give a straight line with a slope

dXa (Z*,t) = _AI2v'7rD. (83)
d(1/V7_)

Equations (81) and (83) constitute a simple system of
two equations with two unknown parameters, A and D,
which can be uniquely solved from spot shape and in-
tensity centroid position data in the experimentally
convenient configuration using a fixed beam position
detector (e.g., a United Detector Technology model
UDT SC/25)5 and a fixed intensity profile detector (e.g.,
a self-scanning Reticon RA-32x32A photodiode
array). 2 2

The intensity profile of Eq. (65) exhibits a pre-ex-
ponential factor which is time-dependent and increases
slightly with increasing t. A numerical evaluation of
[Wo, Wo,/W, (zt)WY (z)] as a function of t for the sys-
tem parameters of Fig. 6 has shown that the change in
intensity due to the pre-exponential factor is <0.1% for
30 sec t 400 sec.

Figure 7 is a qualitative illustrative plot of the beam
intensity profile in the direction of the inhomogeneous
refractive-index gradient as a function of propagation
distance within the electrolyte. The beam waist is lo-
cated at z = 0, and the position and intensity detectors
are located at z = z. The trajectory of the intensity
centroid is assumed parabolic, given for to > Tdo by Eq.
(60a), and corresponds to the time regime past the
minimum of Fig. 2.

The theory presented in this work demonstrates the
importance of transverse photothermal deflection
spectroscopy for the study of electrochemical processes,
such as electrode reaction kinetics, and for the mea-
surement of electrochemical and photoelectrochemical
parameters, such as D, A, and Van. Rossi et al. 20 have
used diffractive spectroelectrochemistry to study spatial
distribution profiles of electrogenerated chromophores
at a thin electrode-electrolyte interface. The intensity
distribution of a 5-mW He-Ne laser beam diffracted off
the platinum electrode adge was recorded in the
Fraunhofer region using a photomultiplier tube and was
further numerically Fourier transformed to give spatial
information about the beam intensity profile at the
electrode. Thus these authors were able to construct
numerical absorbance vs time profiles corresponding
to particular diffraction angles on the photomultiplier
aperture plane (screen). A constant refractive index
for the electrolyte fluid medium was assumed for the
theoretical analysis, and little or no effect of possible
spatial variations of the refractive index in their ex-
perimental system was claimed. Nevertheless, the
experimental data at small angles on the screen showed
appreciable deviation from the numerical results of the
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model. This was attributed largely to poor accuracy in
angle determination and optical alignment. The results
of the present theory, however, show the possibility of
an elliptic Gaussian beam propagation through the
electrolyte regions of highest electrogenerated chro-
mophore concentration due to the presence of a re-
fractive-index gradient. Rossi et al. assumed a circular
Gaussian beam for their system. The major axis of an
elliptical intensity profile, extending farther out from
the beam centroid than the radius of the circular profile
at the beam waist, Fig. 5, should be expected to con-
tribute more to smaller angles of its Fourier transform
on the screen because of the inverse relationship be-
tween the spatial Fourier components of the intensities
at the electrode and the photomultiplier planes. It is,
therefore, possible that a numerical Fourier transform
of an elliptic Gaussian intensity profile would weight
the small angle, low frequency Fourier components
more heavily than the theory by Rossi et al. and could
diminish, or even account for, the discrepancy among
numerical, theoretical, and experimental results at small
angles. This discrepancy appears most pronounced at
early observation times (<1.0 sec), at which a propa-
gating Gaussian mode is most likely to exhibit strong
elliptic character according to results of this work (Figs.
4-6).

Vill. Conclusions

In this work a general wave-optic formalism was de-
veloped for treating the propagation of a Gaussian laser
beam in an optically inhomogeneous fluid electrolyte
with a refractive-index gradient due to a chemical
species diffusion from the electrode-electrolyte inter-
face. The theory was shown to be rigorously applicable
for times that are long compared with the electro-
chemical species diffusion time. A ray-optic theory was
also developed using a mathematical perturbation
technique to describe the beam intensity centroid and
deflection at all times of experimental interest. The
wave-optic theoretical predictions of the spot shape are
consistent with a new interpretation of observed dis-
crepancies between experimental and theoretical dif-
fractive spectroelectrochemical data reported by Rossi
et al. 20
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