Frequency-modulated impulse response photothermal

detection through optical reflectance.

Andreas Mandelis and Joan F. Power

1: Theory

The 3-D theory of impulse response photothermal detection in opaque (i.e., photothermally saturated) solids
through the dependence of the surface temperature optical reflectance on the mathematical equivalent of an
optical impulse (the Green’s function) is presented. The theory is extended to include the effects of the finite
spatial extent of the photothermal laser source. Explicit expressions for the time-dependent temperature
field have been obtained in the experimentally important cases of semi-infinite solids and solids of finite
thickness in contact with thermally insulating or conducting backings.

l. Introduction

The optical generation of thermal wave phenomena
in materials has in recent years provided a powerful
method of microscopy for the nondestructive evalua-
tion of integrated circuits and other device materials.
The unique advantage posed by thermal wave micros-
copy is its ability to perform nondestructive thermal
depth profiling of extremely shallow surface layers in
materials. The short-range critically damped charac-
ter of thermal waves in solid media and the decrease in
thermal penetration depth with increased modulation
frequency are responsible for these high resolution
depth profiling capabilities. The use of focused lasers
to generate highly localized heating at the surface of a
material has enabled the resolution of micron sized
features.

Recently, a very powerful methodology, in which
thermal wave phenomena could be detected noninva-
sively via optically induced thermoelastic deforma-
tions':2 and optical reflectivity changes® at the sample

-surface, has emerged. Detection was achieved via a
pump-probe configuration in which a highly focused
heating beam was absorbed at the sample surface,
inducing a thermal bump due to the thermoelastic
effect, with simultaneous changes in sample reflec-

When this work was done both authors were with University of
Toronto, Department of Mechanical Engineering, Photoacoustic &
Photothermal Sciences Laboratory, Toronto, Ontario M5S 1A5,
Canada; Joan Power is now with McGill University, Chemistry
Department.

Received 1 December 1987.

0003-6935/88/163397-11$02.00/0.

© 1988 Optical Society of America.

tance due to variations of the surface temperature.
Detection of thermal waves was achieved both ther-
moelastically, in which the thermal surface deforma-
tions produced deflections of the probe beam, or by
changes in the sample’s surface reflectance with tem-
perature, which produced variations in the integrated
intensity of the probe beam. Because of the availabil-
ity of fast photodiodes and quad-cell detectors, the
very wide bandwidth of the technique is, therefore,
capable of resolving thermal images limited by optical
rather than thermal diffraction.

Previous work which has used this technique for
thermal imaging has been carried out exclusively in the
frequency domain, in which the modulation frequency
of the irradiation source was varied on a point-by-
point basis, and the reflectivity or thermoelastic re-
sponse signals were detected narrowband using a lock-
in amplifier. Recently, Eesley et al.*-® have
introduced pulsed laser picosecond transient thermo-
reflectance (TTR) as a fast sensitive technique capable
of measuring thin film thermal diffusivity and time-
resolved thermal transport processes in metal samples.
This technique is also based on the principle of optical
reflectivity changes at the sample surface as a result of
local laser heating. Time-domain pulsed-laser
schemes have further been used with other photother-
mal wave imaging systems such as the flash radiomet-
ric technique developed by Leung and Tam,” which is
based on the noncontact detection of transient infra-
red (blackbody) radiation from a sample heated by a
short optical pulse. These schemes, however success-
ful with materials tolerant to steep temperature excur-
sions, cannot be used with delicate materials, such as
semiconductor substrates and devices, without severe
restrictions in the exciting laser beam parameters, as
the high pump irradiances tend to alter (anneal or
otherwise damage) the surfaces and device structures
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Fig.1. Three-dimensional geometry for impulse response (Green’s

function) heat conduction generation due to an (effective) laser

pulse; R? = r2 + (z — 2¢)2, where the exciting source is assumed to be
at the sample surface (zo = 0).

with which the beam interacts.® Furthermore, it has
been shown that the greatest care must be exercised
when using photothermal radiometry with some cate-
gories of samples, because the heat source is often
difficult to define due to the weak IR emissivity of the
sample.?

As an alternative to pulsed laser excitation, we re-
cently introduced fast impulse-response photothermal
wave excitation and detection techniques, which, when
coupled with photothermal instrumentation of wide-
band frequency response, avoid the destructive short-
comings of pulsed laser excitation while retaining de-
sirable time-resolved advantages.l®ll Impulse
response measurements are effected by Fourier trans-
formation and spectral analysis of photothermal sig-
nals, which give the mathematical equivalent of a
pulsed pump laser beam, except that input irradiances
are orders of magnitude lower than those of pulsed
lasers, with a concomitant large increase in sample
optical damage threshold.

The main advantage of measurements of photother-
mal impulse responses, compared to single-frequency
beam intensity modulation methods, is the simplicity
of interpretation of such measurements which yield a
direct visualization of an impulse source of thermal
energy diffusing toward or away from the sample sur-
face in time. Signal components due to the arrival at
the surface of energy reflected off boundaries defined
by buried layers in the material contain photothermal
image information, which is now dispersed over a time
coordinate rather than over modulation frequency.
The obvious relationship between vertical depth of a
buried thermal feature and the transit time of thermal
energy to the sample surface are responsible for the
time dispersion of photothermal image information.

Impulse response analysis of photothermal signals
can be handled by Green’s function formalisms of tran-
sient heat conduction.1%!! In this work, we present a
generalized 3-D thermal wave theory which provides
analytical time-domain expressions for the Green’s
function evolution in homogeneous solids and thin
surface layers at, or close to, the sample surface. This
3-D theory is expected to be generally useful both in
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quantitative thermal characterization and imaging ap-
plications with well-defined geometries and is directly
applicable to the wide bandwidth optical reflectance
thermal wave measurement methodology reported in
Part 2,

. General Theory of 3-D Photothermal Green’s
Function in Solids

The present model is concerned with a prediction of
the form of the Green’s function for thermal diffusion
at a solid surface due to an impulsive heat source. The
origin of the heat source is considered to be thermal
energy generation following absorption of an optical
impulse, which is the mathematical equivalent to ran-
dom or FM excitation with a chirped wavetrain on the
surface. In our experimental configuration, thermal
wave information is recovered from the temperature
dependence of the surface reflectivity as predicted by
the reflectivity response.12

o . (OR
AR(rz = 0,¢) = By + ( aT)MU

To(r,z = 0,t), (1)
where Ry is the surface reflectivity of the sample at
ambient temperature T, (OR)/(8T) is the temperature
coefficient of surface reflectance, assumed to be con-
stant over the interval of temperature changes studied,
T’ is the time-dependent temperature variation in the
material due to thermal wave propagation. The opti-
cal reflectivity signal is a direct probe of the thermal
wave phenomena because of the direct proportionality
between AR measured at the detector and the surface
temperature variation Ts. (In contrast, the thermo-
elastic deformation signal is proportional to the tem-
perature gradient, 7/dr, providing a more indirect
thermal probe.) The solution of the relevant coupled
heat conduction equations to obtain T(r,z = 0,t) will,
therefore, yield the form of the observed reflectivity
response directly.

The geometry adopted for the purposes of this work
is shown in Fig. 1. The sample solid (2) is assumed to
be of infinite lateral extent, a valid approximation in
view of the very tightly focused laser pump and probe
beams (~3 um) in our experiments. The temperature
distribution T5(r,2,t) can be obtained from the solution
in cylindrical coordinates of homogeneous heat con-
duction equations of the form

aT,

VT rat) — - Szt =0, @

a; 9

i = (1) gas, (2) solid, or (3) backing, subject to homoge-
neous boundary conditions with an impulsive contri-
bution (a Dirac §-function in time) due to the cylindri-
cal thermalsourceatz =0. InEq.(2), o;isthe thermal
diffusivity of region i. Taking Laplace transforms
(t = 5) of Eq. (2) subject to the initial conditions,
T{rz,0) =0 3
yields
V2Ti{r,2,8) — qiTi(r,z,5) = 0, @
where



qi(s) = (s/a)"2. 5

The system of Eqgs. (4) can be solved using the con-
ventional boundary conditions of temperature and
heat flux continuity at the (1,2) and (2,3) interfaces.1?
There exists a formal correspondence between the fre-
quency-domain harmonic optical excitation and pho-
tothermal response of a solid using Fourier analysis as
described by Chow!3 and the present time-resolved
impulse response treatment which employs Laplace
transform analysis. This correspondence manifests
itself in the physically equivalent phenomena of re-
sponse phase lag (frequency-domain) and time delay
(time-domain) as discussed elsewhere.'* With these

A-C-D=E, (11a)
B — C exp(—a,l) — D exp(a,l) = E exp(—ayl), (11b)
—k0yA — kgoy,C + kyoyD = —ky0,E, (11c)

k303B — kooyC exp(—ayl) + kyoyD exp(oyl) = —kyoyE exp(—ayl),
(11d)

where

E= ~—. (12)

Solving for A(k) in a straightforward fashion gives

k(1 + byy)[exp(ayl) + exp(—ayl)]

k = ’
AR = oL+ ) (L + bry) explagl) — (1 — by (1 — byy) exp(—a))] (13)
remarks the Laplace transforms of the boundary con-  with
ditions can be written ‘
T,(r,0,5) = To(r,0,5) (6a) bi(8) = kioi(s)/kja (s). 14
Tofr,=Ls) = Tyri=Ls), (6b) N ow, rearranging the denominator of Eq. (13) and
L i using the expansion
T, T,
kl _'a" (r,O,s) = k2 8 (7',0,3), (60) hed
z 2 (1-271= Z x% x<1 (15)
k o, (r=1s) =k T, (r,=1s) (6d) "
—— r=iL8) = T ry—hS),
2 oz SARNCHYY transforms A (k) to

where k; is the thermal conductivity of the ith region.
Solutions to Eqs. (4) can be written using Sommer-
feld’s method as applied by Stratton.!?

Ty(r,2,s) = L ) Jo(kr)A(R) exp(—ay,)dk; 2 2 0, V)

To(rz,s) = j: Jolkr) [C(k) exp(aq2) + D(k) exp(—oy2)

Lk exP(if?"z')] dk; 0>z > =, @)
dTay0,
Tyras) = || B0 explote + Dldbsz< =1, @)

where A,B,C,D are constants to be determined by the
boundary conditions.

The last term in brackets of the integrand in Eq. (8)
is due to the instantaneous source at 2o =0inthez <0
half-space (Fig. 1). In Egs. (7)—(9), we have defined

oi(s) = [k? + g¥(s)], (10)

and Jj is the Bessel function of zeroth order. Here it
appears due to the cylindrical geometry imposed by
the symmetry of the laser beams. Now we only need
solve for the Laplace transform of the temperature
field at the gas—solid interface, T1(r,0,s), where prob-
ing of the temperature dependence of the reflectivity
takes place. Therefore, substituting Eqgs. (7)-(9) into
Egs. (6) gives the following algebraic equations for
A,B,C,D:

©

k[1 -2
[L + exp( - fsz] Z ¢ exp(—2nayl), (16)
n=0

Ak) = ——— 8
(k) 2wagoy(l + byy)
where

_ (A= b)(1 =5y

_(1=b)(1 = by) an
(1 + bg)(1 + byy)

Because of the low thermal conductivity of: gases
relative to solid materials in general, the condition

ko> ky (18)

will be assumed to hold for all cases of experimental
interest. In this condition

a2 19

so that substitution of Eq. (16) into the expression for
the Laplace transform of the gas temperature T (r,2,9),
Eq. (7) yields

_ =[1+ exp(=20,)) | <
Tl(r,z,s)=§;1&; j [ exi;—“—ag—]Z?‘

0 n=0

X exp(—2no,yl — 02)do(kr)kdk 220  (20)

On separating out the n = 0 term in Eq. (20) we can
write
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Tl(r,z,s)

=1 { ] X0R) )k
2 0 ()

Tty

= exp(=20,]
+ j exp(220l =02 ryedh
0

4]
»

+ Z [ m( )exp( 2nayl — 0y2)dy(kr)kdk

N
+ 2
55 ()
X exp[—2(n + 1)ayl — (rlz]Jo(kr)kdk} . (21)

It is worthwhile noticing that the last three terms in
Eq. (21) appear due to the presence of a finite solid
boundary at z = —I. In the limit [ — =, the first term
represents the thermal response in the gas due to a
semi-infinite solid excited by a unit cylindrical ther-
mal impulse of infinitesimal spatial extent in both r
and z dimensions at ¢ = 0.

Equation (21), which forms the basis for our 3-D
point irradiation model, is a zero-order Hankel trans-
form. It expresses the solution to the three-layer
problem gas-solid backing in the Laplace domain as an
integral function over the Bessel wavenumber k. Itis
of interest to point out that Eq. (20) can be written
equivalently in the Hankel transform form

Ty(r.z.s) = Erl{z L Flz,sik)Jo(kr)kdE, (22)
where the kernel F(z,s;k) becomes equivalent to the
Laplace transform of the 1-D problem (uniform irra-
diation along the r direction)!4 in the limit of s = 0. In
that limit, the net effect on F(z,s;0) is that the variables
oi(s) are replaced by the respective g;(s). This feature
has also been pointed out by Rosencwaig and Opsalin a
frequency-domain derivation of the expression for the

surface temperature of a multilayered sample via ther-

moacoustic detection,!® and once again it reflects the
formal equivalence between time and frequency-do-
main formalisms.

Analytical inversions of Eq. (21) are possible, albeit
fairly complicated, in the general case. For our pur-
poses, simplified analytical inversions will be obtained
for the relevant experimentally realistic case limits of
interest.

ll. Special Cases

A. Semi-Infinite Solid

To a first approximation, the limit of a semi-infinite
solid (I — «) will be considered. In this condition we
obtain

- ,/k2+
(s = =L [ exp(~2yk* +47) W g krkde.  (29)
LN N s

For the experimentally important case where the tem-
perature field is required at the probe laser point on
the sample surface, z = 0, and Eq. (23) becomes

3400 APPLIED OPTICS / Vol. 27, No. 16 / 15 August 1988

_ J; (kr)kdk
Tyr08) = 5o jo o (24)
2

\/k—“’ﬁ

This integral can be solved by use of a method present-
ed by Bellman et al.1” and outlined in a modified form
in Appendix A, as applied to this particular integral.
Equations (24) and (A5) give

T,(r,0,t) = exp(—r2/4a2t). (25)

S
4(1ra2t)3/ 2
Equation (25) is the Green’s function showing the ex-
plicit spatial and temporal dependence of the surface
temperature of a semi-infinite 3-D solid, following an
impulsive excitation by a point source at ro = 29 = 0.
The form (25) is valid for all locations r on the surface
in relation to the time-dependent thermal diffusion
length!4

P«s(t) = 2@ (26)

and is in agreement with other derivations of the
Green’s function predicted for the same semi-infinite
geometry, the presence of the interface at z = 0 con-
tributing twice the value of the Green’s function for
infinite geometry.18

B. Solid of Finite Thickness on a Thermally Insulating
Backing (bsy; K 1)
In this condition, ¢ = 1, and Eq. (21) becomes

_ 1 exp(—2ay!)
Tyr0) = 5o { f L Jokrkdr + j S

©

. exp(—2na,l)
£y fo ST kY

n=1
2\ (= exp[—2(n + 1)ayl]
+ ; L e Jo(kr)kdk} @

Each integral in Eq. (27) can be solved according to the
general method outlined in Appendix B. The tem-
perature profile at the solid surface thus becomes

exp(—r?/da,t)

T(r0t) = —— —
1(r0:6) 4(1ra2t)3/2

X Z (exp[—(2nd)*/4ayt] + exp—[2(n + 1)]]%/4ayt}).
n=0

(28)

This form of the surface temperature profile impulse
response can be shown to be the z = 0 limit of the bulk
solid temperature profile obtained for double adiabat-
ic boundaries, as follows. Instead of placing a heat
source in the sample layer formally, it is possible to
solve the physically equivalent problem of the solid of
Fig. 1,in which an instantaneous 3-D point-source heat
fluxis present at the z = 0 boundaryat ¢ = 0. Usingthe
homogeneous part of Eq. (8) for the solid temperature,

TH(r,z,s) = [ " Jokr)[C(R) explayz) + D(E) exp(~ay2)]dk (29)
0

with the boundary heat flux condition



1

T o= L s 30‘
?z—(r, ) = At (r)é(t). (30)

The Hankel transform of the boundary condition is

I o Jy(kr)d
5 (k0,t) = 2m5(8) J Tokr?) o o ua),  (31)
9z 0 47r
Eg. (31) has the Laplace transform
9z ( »US) = Yo
so that
aTH 1 (=
072 (r0s) =, L Jy(kr)kdk. (33)

The second boundary condition is the adiabatic condi-
tion (bga K 1) atz = —L:
T H
Y (r=ts) = o0. (39
0z
From Egs. (29), (33), and (34) one obtains algebraic
relations for the integrands

o[Ck) — D(k)] = ’; : (352)
C(k) exp(—ayl) = D(k) exp(oyl), (35b)
so that
. N T
Cle) = 20, [1 - exp(—262l)] (36)

D) = .-

1- exp(—-202l)] ’ @7

k [ exP(_zle)

Expanding the denominators, substituting into Eq.
(29), and Hankel transforming by use of Appendix B
give the expression for the solid’s temperature field in
response to an impulsive excitation at z = 0:

@

—r2/4
Ty(r,2,t) = exp(—r*/4eyt) Z {exp[—(2nl — 2)%/4ayt]
=0

32
4(mat) £

+ expi—[2(n + 1)I + 2)¥/dagtly 0= 2= -~L (38)

of the sample. Now ¢ = —1, and Eq. (21) can be

written

_ 1 |- -
Ty(r,0,5) = ety {I 1(r,0,5) + I,(r,0,8)
+ > (=1 Tyu(r0:5)
n=1

+> (—-1)"T2(n+1)l(r,0,s):| , (39)
n=1

where the integrals I have been defined in Appendices
A and B. Using results from the Appendices, the
temperature profile of the sample surface becomes

z (=1)" (exp[—(2nl)*/4at]

n=0

exp(—r¥/da,t)

Ty(r,0,t) =
! Amagt)?

+ exp{—[2(n + 1)I]%/4ast}). (40)

A similarly structured expression has been previously
derived for the simpler case of a 1-D temperature field
with an adiabatic boundary condition at z = 0 and a
perfect heat sink at z = —[ (temperature kept at zero)*®
using the Method of Images.

IV. Effects of Spatially Distributed Photothermal Source

Pump laser beam profile effects can be readily incor-
porated in the Green’s function analysis for all three of
the cases just considered. The simplest example is the
semi-infinite case. However, the treatment developed
in this section applies identically to the radial part of
the other two cases.

Assuming a radially distributed and temporally im-
pulsive Gaussian beam profile impinging on an opti-
cally opaque solid of absorption coefficient 3, the heat
impulse produced per unit volume is given by

Q(r,2,t) ~ BP, exp(—r*/w}) exp(—Blz)s(t), (41)

where P, is the irradiance of the incident laser beam.
For such a distributed thermal source, the tempera-
ture of the solid surface (semi-infinite case) can be
written in terms of the Green’s function, Eq. (25):

® (0 (2% (@
THr,0,t) =] j f f T3(r,0,6570,0,t0) Q(ro,2g,t Irodrodzodbydt
0o J=1J0 0

8P, o o (2r exp[—(r — ro)?/day(t — t5)18(ty) 0
= Aoy Jo L L i €= 1) exp(—r&/wd)rqdrdfydty j_l exp(Bzy)dz,
P, r (o
= 4(7m:t)3 " L L expl[—(r — ro)*/4ayt] exp(—rd/wirqdrqdty, “42)
"It is instructive to point out that Eq. (38) may also be
verified to be physically correct by use of a graphic h ]
representation of the Method of Images. Thiswillbe — W1er® BL>> 1 was assumed.
demonstrated in Sec. V. Now in cylindrical coordinates
(r—rg)?=r2+r3—2rrycos(y - 0), (43)

C. Solid of Finite Thickness on a Thermally Conducting
Backing (bay > 1)

In this case we are dealing with the physical situa-
tion in which a heat sink is attached to the rear surface

and using the result?°
2 rro
f exp[—(2rro/dast) cos(fy — 6)]do, = I, ( - ~~—) ) (44)
0 2a2t
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where Ij is the modified Bessel function of zero order,
we can write
Py exp(—r*/dayt) rry

Tlli(r,(),t) = - ‘7‘(;;2”3/2 L exr»(-r%/ﬂg)lo (4a22> rodrg, (45)

with .
1_1, 1

= . 4
9 wp dest 4o

Equation (45) can be integrated using Weber’s first
integral?! and give

P 2
T9(r,0,8) = - 00

o v .
S (ragt) A (daagt + ) SPLT et )l (47)

V. Discussion

A. Photothermal Response of Semi-infinite Solids

The time profile of a two-layer sample’s response to
a surface heat inpulse is governed by the nature of the
relative thermal properties of the first and second lay-
ers. The simplest case theoretically is to extend the
thickness of the first layer to infinity, so that the ob-
served profile is predicted by the semi-infinite re-
sponse.

The semi-infinite response, Eq. (25), clearly pro-
vides no depth profiling information, since no energy
reaches the second boundary, which is located at an
infinite distance from the surface. However, it is use-
ful for the evaluation of the thermal diffusivity of the
solid due to the contribution of the radial factor
exp(—r?/4ast). For an infinitesimally small probe
beam, sampling reflectivity changes at r = 0,z = 0, the
observed response is of the form A¢~3/2, a monotonical-
ly decreasing function of time with no explicit profile
dependence on as. By displacing the probe beam to
increasing offset positions, however, one obtains a
sample response of the form,

t—‘:/—é exp(—r¥/4ayt),

which yields an impulse response profile with a well-
defined maximum at 74 = r2/6a due to the finite time
required for the radial transit of thermal energy to the
offset position r. The situation is described in Fig. 2,
which illustrates the response profiles observed for a
semi-infinite sample of an insulating material [« = 6 X
10~8m?/s, typical of an insulating polymer film, such as
polyvinylidene fluoride (PVDF)]. The increase in off-
set position from r = 0.1 um to r = 6 um gives a large
variation in the peak delay 74 and peak width Arq due
to the slow diffusion of energy in the insulator. Diffu-
sion also controls the rather steep radial drop in the
peak intensity, which decays inversely proportional to
r3. In samples of sufficiently low thermal diffusivity
very small offsets will produce large variations in 74, so
that measurements of «s are readily possible with a
well-calibrated offset between pump and probe beams.
With high thermal diffusivity samples such as metals,
on the other hand, large radial offsets are required to
produce appreciable peak delays. The radial drop in
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Fig. 2. Impulse response (Green’s function) from a 3-D semi-infi-

nite solid sample with thermal diffusivity ay = 6 X 10~8 m2/s (PVDF

polymer) using Eq. (25) at pump-probe beam offset distances r = 0.1

pm (1), 4 pm (2), and 6 um (3). All curves have been normalized to
unity peak value.
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Fig. 8. Impulse response (Green’s function) from a 3-D semi-infi-

nite solid sample with a; = 5 X 10~7 m%/s (a glass), including pump

beam size effects, Eq. (47), at pump-probe beam offset distance r =

0.1 pm. Pump beam waist size wo = 1 pm (1), 10 gm (2), and
1 mm (38).

signal intensity, however, inhibits detection at large
offsets in practice due to an obvious loss of sensitivity.

Another strategy is experimentally available for
thermal diffusivity measurements on semi-infinite
samples. A transition can be made from the 3-D to the
1-D response by allowing the pump beam radius wy to
increase to a sufficiently large value. This situation is
diagrammed in Fig. 3, which includes the effect of
increasing the beam profile dimensions from wy = 1 X
1076 m to wo = 1 X 1073 m for a semi-infinite sample
with g = 5 X 1077 m?/s (typical of a glass) according to
Eq. (47). The 3-D response with a tightly focused
pump beam has the form At~3/2 predicted by Eq. (20).
At very large pump beam radii, the response approach-
es the 1-D case At~1/2, while intermediate w, values
produce a time dependence between the 1-D and 3-D



cases. Physically, the controlling behavior is the spa-
tial thermal gradient setup at ¢ = 0 in the neighbor-
hood of the point 7 = 0. A tightly focused pump beam
produces a large initial transverse gradient at z = 0:
heat diffuses rapidly away from r = 0, z = 0 in three
dimensions. As the beam is expanded, the initial
transverse thermal gradient in the neighborhood of r =
Odrops. Foralarge enough wy, the transverse thermal
gradient in the neighborhood of » = 0 is effectively
zero, so that there is a negligible radial component of
transverse heat conduction, and a 1-D decay is ob-
served. A comparison between 1- and 3-D thermal
responses is made for the semi-infinite case in Fig. 3.
The 1 — 3-D transition in response is predicted
analytically from Eq. (47). For small wo, we have the
condition w? « 4ast, and the response is 3-D:

2
Pywg

8(7ra2t)3/2

At the other extreme, when w% becomes very large, the
response approaches the 1-D time dependence result-
ing from almost uniform surface irradiation with a
laser of large beamwaist:

2
wi < 40[3;>

T¢(r,0,t) exp(~r?/4ayt). (48)

wE > 4oyt P,

éw(wagﬁ)m

TY(r,0,t)

exp(—rY/w}). (49)

B. Measurements of Thin Layers with Insulated
Boundaries

The second special case of interest is the one con-
cerning effectively adiabatic conditions at the bound-
aries of the sample layer, i.e.,at z = 0 and z = —[. This
limiting case of the general theory is experimentally
applicable to photothermal measurements on the sur-
face of thermal conductors of unknown thickness or
unknown thermal diffusivity, which are in intimate
contact with an insulating layer at 2 = —I. An alterna-
tive geometry would be that of a freely suspended thin
film.

The impulse response of a photothermally saturated
sample with adiabatic boundary conditions can be in-
terpreted graphically on consideration of Eq. (38) in
the form

exp(—r¥/da,t)

Tolrz,t) = W-- {exp(—22/4a2t)

+ z (exp[—(2nl — 2)*/4at]
n=0

+ exp{=[2(n + 1)l — 2]*/4ayt)

+ 2 exp{—[2(n + 1)l + 2]¥/4ayt}) } - (50)

The physical interpretation of the temperature profile
predicted from Eq. (50) is depicted in Fig. 4, which is
typical of the Method of Images approach.22 The
zero-order reflection, due to the direct diffusion of the
source energy away from the front boundary, is ac-
counted for by the term exp(—z2/4ast) and the n = 0
term of exp[—(z — 2nl)?/4ast]. The odd ordered re-

o4 3 ‘

|

6t 51 41 3 2 - z=0

20 3 4 TR
Fig. 4. Graphic depiction of Green’s function solution Eq. (50) by
the method of images.

(a) Three dimensional model {b) One dimensional model

Early times

Intermediate times

z=-1 z=0
Late times
T—) =T
/| For conductor
T(t—o)—0
For conductor, insulator

z=-1 z=0 z=-] z=0

—— Good conductor
—~=-=-Good insulator

Fig. 5. Three-dimensional (a) and 1-D (b) photothermal impulse
response of a sample with adiabatic boundariesatz = 0 and z = —L

flections are accounted for by exp[—(z — 2nl)%/4ast]
and exp{—[z — 2(n + 1)I]2/4«ast}, while the even ordered
reflections are accounted for by the terms of the form
exp{—[z + 2(n + 1)I]%/4ast]. The weighting of these
terms is twice that of the other two because of the
presence of the source term which doubles the value of
the zero-order reflection.

The number of terms n required to bring about
convergence of Eq. (50) is directly determined by the
number of thermal reflections taking place at the
boundaries of z = 0 and z = —[. The thermal compo-
nents are reflected in a manner analogous to the reflec-
tion of acoustic waves at rigid surfaces, except that in
the present case, the signals are damped with distance
traveled in the medium.

The signals observed with adiabatic boundary con-
ditions may be understood by folding or reflecting the
semi-infinite response back into the region —/ < 2 <0,
as shown in Figs. 4 and 5. The semi-infinite response
[Eq. (25)] is a Gaussian profile in z of the form exp(—22/
¢2) with an appropriate variance o2 = 4agt. The peak
value is damped over time by a factor of 1/t32. Conse-
quently, the depth of penetration of the temperature
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gradient in the sample is directly determined by the
thermal diffusion length us(t). For a given fixed time
delay, the extent of thermal wave penetration into a
thermally insulating sample will be relatively small,
while highly conducting samples such as metals will
have very long-range penetrations of the temperature
profile for the same time delay.

The time evolution of the temperature profile in a
sample with adiabatic boundaries is illustrated in Fig.
5. At the earliest times, for both conducting and insu-
lating materials, the temperature profile is well ap-
proximately by the semi-infinite response of Eq. (25).
At later, but still relatively early, times [Fig. 5(b)],
much of the thermal energy propagating in the conduc-
tor hasreached z = —{ and been reflected at the bound-
ary. In the insulator, the temperature profile is still
highly localized near the front surface. At relatively
late times, the temperature profile in the conductor
shows many reflections at z = 0 and z = —[, while in the
insulator, it is damped, so that a negligible amount of
energy is reflected. Similar physical trends were pre-
viously observed both experimentally and theoretical-
ly by Tam et al.,232¢ using the technique of backscat-
tering pulsed photothermal radiometry (PTR) and 1-
D mathematical analysis appropriate to excitation
with large diameter laser beams.

The convergence of Eq. (50) has been addressed for a
thin sample of aluminum (s = 1 X 104 m?2/s; [ = 20
pum). Since aluminum is a good thermal conductor,
contributions to the temperature field from many re-
flections at z = 0 and z = —/ are required, especially at
later times. It was found that all profiles converge at
early times with only one term (n = 0) due to the
dominance of the zero-order semi-infinite term. The
series expansion with n = 3 was found to be adequate
for times up to 40 us. In the case of the aluminum
sample, convergence of the series in Eq. (50) was typi-
cally obtained with n =~ 20 over the 0-600-us time
range. By contrast, the photothermal impulse re-
sponse profiles for typical insulating solids converged
after one or two terms over the same time span.

It is also possible, in the case of a sample with adia-
batic boundaries, to observe a transition from the 3-D
to the 1-D response as the radius of the heating beam is
expanded from wy ~ 0 to wy — <. This transition is
examined in Fig. 6, which shows the effect of increasing
the irradiation spot size wy from 0.1 um to 1 mm for a
thin insulating sample (az = 6 X 10~8 m?/s; [ = 9 um).
A 3-D — 1-D thermal response transition is observed
as the beam is expanded from a tightly focused to a
defocused spot. One-dimensional heat conduction is
approached as the spot size of the irradiating beam
exceeds the sample thickness by a factor of ~2-3. The
relative spot size of the irradiating beam required to
sustain 1-D heat flow is, of course, dependent on the
thermal diffusivity of the sample and the attainment
of the condition w? > 4ast. Highly conducting sam-
ples require larger beam profile sizes to achieve the 1-D
heat flow.

The time profiles of the 3- and 1-D responses are
inherently quite different. The only difference math-
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Fig. 6. Theoretical profiles of the transition from 3-D to 1-D pho-

tothermal impulse response of a 9-um thick PVDF film (o = 6 X

10~8m?/s) at r = 1 X 10~" m as a function of beamwaist size: wg = 0.1
um (1), 10 um (2), 25 um (3), and 100 um (4).

ematically between the two cases in the present model
is a shift in the time damping factor from ¢=3/2 to ¢~1/2
as the 1-D response is approached. This apparently
minor variation in response overlies an important dif-
ference in the thermal decay channels. In the 1-D
case, the only avenue for heat dissipation is longitudi-
nal (z-direction) conduction: radial conduction does
not occur. Because conduction takes place in one
dimension only, the signal is dampled by a factor or
t=2, In the 3-D case, both radial and longitudinal
conduction processes contribute, which is reflected in
the cubed form of the damping factor £~3/2. The most
important feature of the observed 1- and 3-D responses
is the behavior at long times past excitation. The 3-D
signal eventually decays to the baseline because the
radial boundaries are placed at infinity [i.e., T(,z2,t)
= 0]. The heat flux initially deposited in the sample
region eventually dissipates itself over an infinite vol-
ume. In the 1-D case, the only coordinate for heat
conduction is z, so that impulse energy initially depos-
ited at z = 0 eventually diffuses into the sample and
broadens to a uniform temperature-distance profile.24
In other words, the only effect of 1-D impulse heating
in a sample with adiabatic boundaries, at long times
after the application of the pulse, is a spatially uniform
net heating of the sample. Hence the temperature
baseline attains an equilibrium value rather than going
to zero. Mathematically, the later time convergence
of the 1-D profile to the equilibrium, ¢ = «, value is due
to an increasing number of n values contributing as t —
» [Eq. (50)]. The large number of n values is partially
offset by the damping factor ¢t~1/2, which gives the
uniform profile predicted as t — «.

Because of this damping factor, the thermal decay
profiles in insulators converge to much smaller equilib-
rium valuesast — . These trends can be observed in
Fig. 7, which compares the 1-D thermal response for a
range of samples of varying ay at fixed . The insulat-
ing material (bottom curve) converges to the lowest ¢
equilibrium value of the three examples, while the
highest a; sample achieves the equilibrium condition



much earlier than any of the other three. This trend
can be understood in terms of the requirement for
retention of larger quantities of energy per unit volume
in insulators than in conductors in conditions of equal
energy inputs, which results in lower equilibrium tem-
perature for the insulator.

The attenuation effect of the equilibrium (¢ — «)
temperature in the sample’s response observed for in-
sulators may be offset by arbitrarily decreasing the
sample thickness [. In very thin samples, flat equilib-
rium temperature/distance profile is reached sooner,
because more reflections of the thermal energy may
occur before time damping contributes. For the type
of solid of Fig. 7 it can be shown that the effect of
decreasing [ on the 1-D temperature profile observed
for a thermal insulator is the following: As{decreases,
the temperature profile flattens at earlier times and
approaches a higher equilibrium value than for thicker
samples. Similar trends have been verified experi-
mentally by Leung and Tam?3 using a short (approxi-
mate nanosecond) duration laser pulse.

C. Detection of Buried Heat Sinks

The third case of experimental interest accessed by
the present theory is for a relatively thermally insulat-
ing sample layer placed in contact with a heat sink at z
= —[ so that the boundary condition Ts(r,—I,t) = 0 is
satisfied. The theoretical profile predicted by Eq.
(40), when generalized for arbitrary z in a manner
entirely similar to the method which led to Eq. (38),
can be put into the following form for ease of interpre-
tation:

exp(—r?/4ast)
Tyrat) = oo 2
Al = )

12

08
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3)

)
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Fig. 7. Theoretical predictions of the effect of the value of sample

thermal diffusivity on the decay profile of the 1-D temperature field:

g =8X10"8m2/s(1);4 X 10-"m?/s (2);and 8 X 10~"m?%/s (3). Other
parameters arer =1 X 1077 m, | = 20 pm, wy = 1 mm; n = 100.

increases so that more energy reaches z = —[ and is
attenuated by the heat sink. The effect of increasing
s is entirely analogous to that of decreasing [ in Fig. 8.
In the insulator very little energy reaches z = —I, and
the signal decay has the familiar form of the 1-D semi-
infinite profile. As the thermal diffusivity increases,
more and more energy arrives at z = —[ causing an
increasingly sharper attenuation of the response pro-
files after about ten thermal transit times.

VL. Summary

In this work a 3-D photothermal impulse response
theory has been presented using the appropriate

[exp(—zz/4a2t)

+ i (=1)" (exp[—(@nl — 2)/4ast] — exp{—[2(n + 1)I -

n=0

2]H4ayt} — 2 expl—[2(n + 1)I + 2]2/4a2t}):| - (61)

Equation (51) yields in the limit of z = 0
lim Ty(r,2,t) = To(r,0,t) = Ty(r,0,t); [given by Eq. (40)].
2—0

The theoretical profiles predicted by Eq. (51) can be
discussed in terms of Fig. 8, which examines the effect
of sample thickness on the temperature time decay on
placing a heat sink in contact with the lower surface at
z = —|. The top curve is the typical 1-D semi-infinite
response predicted for a sample in which the thermal
profile is attenuated before much of the energy reaches
z = —[. A heat sink placed at the rear surface of the
sample has very little influence on the decay profile in
this timerange. Asthe heatsinkis moved closer tothe
front surface, i.e., as [ decreases, the temperature-time
profile slopes downward until it effectively reaches the
baseline at about ten multiples of the thermal transit
time in thesample. For very thin samples this effect is
very pronounced (bottom curve).

A similar argument applies in the case of the ag
dependence of the response profiles. As «y is in-
creased, the penetration distance of thermal waves

107
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0.0 008 01 023 030 058 0.45 053 060
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Fig.8. One-dimensional theoretical predictions of the effect of the
presence of a heat sink in contact with a solid of variable thickness: [
=100 um (1); 5 um(2); 3 um (3); and 1 um (4). Other parameters are
r=1x10""m, wy=1mm, az = 6 X 10-8 m2/s; n = 100.
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Green’s function formalism with a solid of finite thick-
ness, which is excited by a laser beam of tightly focused
but finite waist size and is probed by an infinitesimally
small laser probe beam in the thermoreflectance con-
figuration. Expressions have been derived for appro-
priate experimental geometries and the effects of sys-
tem thermal, and geometric parameters on the time
decay profiles of the temperature field have been dis-
cussed. Several experimental results using FM impulse
response detection will be compared to our theoretical
predictions in Sec. II. .

= Jy(kr)kdk

=F

Appendix A: Inversion of I4(r,0,s) = j

I, can be written in the form

j Jokr) U exp(—w4/k% + qz)dw] kdk,

so that its inverse Laplace transform
LT, (r,0,8)] = I,(r,0,t)

= 'F Jolkr) {F L exp(—wy/k% + q%)]dw} kdk. (AD)
o o

Now the Laplace transform

2
L7 exp(—w\/k® + ¢3)] = - t)1/2 exp l:— (4—% + a2k2t>] (A2)
2

is well-known,25 so that

1
(41ra 3)1/2

Lr0) = j kdkd (k)

X exp(—ayk?t) [F w exp(—w2/4a2t)dw:|
0

= P ) expleagkOkdE.  (A3)
(47m t3)1/2j o(kr) exp(—ay .
Using the result?! (Weber’s first integral)
@ 2
j Jo(kr) exp(—pk?)kdk = P Cr/4p) (A4)
0 2p
we get
L(rot) = w12 exp(—r?/dayt). (A5)
Appendix B: Inversion of Ig(r,0,s) =

Jy(kr) kdk

j exp(—Gy K + ¢)
0 VE+ ¢
I can be written
I, = [ Jokr) U exp[—(w + G)\/k% + Q2]dw:| kdk.  (B1)

Then, following the method of Appendix A, we find
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Io(r0,t) = ——-— ) Jy(kr) exp(—a,k%t)kdk
or00) (41ra2t3)1/zjo 0 g

X {F (w + @) exp[—(w + G)2/4a2t]dw}
o

or

Is(r0t) = exp(—r?/4ayt) exp(—G¥4dayt). (B2)

1
(4w tS) 1/2
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Whipple continued from page 3340

expands and contracts, the precisely fashioned figure
changes shape and degrades the image at focus. The tradi-
tional solution to this problem has been to make the mirror
out of the most thermally inert substance possible. (The 6-
m mirror, currently the world’s largest, is made from a special
low-expansion glass.) Various ceramics, specialized kinds of
glass, and natural and man-made quartz have all been used.
But all these materials are quite expensive and difficult to
work with.

A telescope mirror that is not at the same temperature as
the surrounding air causes another problem. As the typical-
ly warmer mirror releases heat into the cooler surrounding
air, the air immediately above the mirror’s surface becomes
warmer than ambient air and disturbs the incoming star-
light.2 The low mass and open structure of the spun-cast
mirrors should enable them to remain close in temperature
to that of the ambient air and thereby minimize the above
problems. The possibility of controlling a mirror’s tempera-
ture by, in one scheme, blowing temperature-controlled air
through its core is being explored.

As a prelude to measuring the 48-in. mirror’s thermal
performance, the University of Arizona’s Optical Sciences
Center is grinding and polishing the blank to a spherical
curve to allow optical testing. Once this initial figure is
achieved, the mirror will be heated and cooled, cycling it
between 32° and 68°F. The quality of image produced by
the mirror will be tested at different temperatures during the
cycles to determine how well the mirror maintains its figure.

After testing concludes, the observatory will go out on bid
for a contractor to polish the mirror to its final figure. After
polishing, the honeycomb mirror will weigh 310 pounds.
The 48-in. telescope will be of the Ritchey-Chrétien optical
design. This means that both the primary and secondary
mirrors will have a hyperbolic shape rather than the more
usual spherical or parabolic curvature. While the hyperbol-
ic shapes are more difficult to polish into the finished optics,
the resulting telescope will have good quality images over a
far wider field of view.

The main disadvantage of a parabolic reflector, such as the
present 24-in. mirror, is its very small field of good focus.
The 200-in. Hale Reflector on Palomar Mountain, for exam-
ple, gives its best image quality over an area only one-fif-
teenth of the moon’s diameter. In contrast,the 48-in. reflec-
tor will have good imaging over the complete diameter of the
full moon.

The 48-in. telescope will have a chopping secondary mirror
for infrared astronomy. Infrared astronomers need to mea-
sure constantly the overall infrared emission from the back-
ground sky as they observe. The sky background is then
subtracted to determine the actual infrared radiation of an
object. This differential measurement can be accomplished
by having the telescope’s secondary mirror tilt or chop from
its normal position so that the astronomer can measure the
infrared radiation from the vacant sky next to the object of
study. The mirror then flips back to its normal position to

restore the astronomical object to view. The 48-in. telesco-
pe’s secondary mirror will chop five times per second.

Instrument specialists at Smithsonian Astrophysical Ob-
servatory headquarters in Cambridge, MA, are completing a
2-D infrared array for the telescope. This recent develop-
ment in detector technology “will allow routine infrared
imaging for the first time at the observatory,” resident as-
tronomer Nelson Caldwell says.

Before the infrared arrays, infrared detectors were usually
single-element devices that could measure the strength of an
infrared radiation source but could not provide a picture of
the object. The instrument specialists also plan to develop a
large-format charge-coupled-device camera for the tele-
scope. CCD cameras replace film with electronic light-mea-
suring elements. Images of stars and galaxies are recorded
as digital information stored on magnetic tape for later com-
puter analysis. The new camera could have a detector area
as much as 16 times larger than that of the CCD currently in
use on the 24-in. telescope. A new computer, already onsite,
will control the detector packages on the new telescope and
handle the data. Toreduce costs, the existing 24-in. telesco-
pe’s dome and part of the telescope mount will be used by the
48-in. instrument.

With the astronomy community planning the construction
of telescopes many times larger than the 48-in. reflector, why
build such a relatively small instrument? One reason is that
not all astronomical research requires large telescopes. As-
tronomers request time on telescopes appropriate to their
research projects. Very large telescopes are reserved for
studying the faintest objects, which require enormous light-
collecting power. Also, the 48-in. reflector, with its new
ultrasensitive light-detector packages, can be used for re-
search that would have required a much larger telescope a
generation ago.

Telescope-time-allocation committees at observatories
typically have two or more requests for each night of tele-
scope time available. David Latham, associate director of
the Center for Astrophysics’ Optical and Infrared Division,
says he expects the 48-in. reflector to fall into this oversub-
scribed category. “A 48-inch telescope with a new computer
and the latest in detector packages will be a formidable
addition to our research capability at Whipple Observatory,”
Latham says.

1. AtResearch Reports press time, a 3.5-meter-diameter mirror was
slowly cooling as it was being annealed in the University of
Arizona’s spinning furnace. On 21 April, 45,000 pounds of glass
were loaded into the mold. The furnace was fired on 23 April,
and the mirror was spun at eight revolutions per minute 25 and 26
April. The annealing process started 28 April. During this
process, the temperature is being lowered one-half degree per
hour until the mirror reaches room temperature. The mirror,
destined for a telescope in New Mexico, should be removed from
the furnace at the end of May.

2. Light’s direction of travel changes as it changes medium. A
common example is seen over an asphalt road on a hot day in the
form of a “wavy” effect, caused by light rays being bent as they
traverse layers of air at different temperatures.
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