Quantitative diffuse reflectance spectroscopy of
large powders: the Melamed model revisited

Andreas Mandelis, Farnaz Boroumand, and Hubert vanden Bergh

The popular statistical theory of absolute diffuse reflectance of powders put forth by Melamed [J. Appl. Phys.
34, 560-570 (1963)] a quarter century ago has been re-examined thoroughly. Substantial errors in the
physical formulation of the theory have been found and a corrected version is being presented. Some of
Melamed’s data fits to the theory are also re-examined in the light of the corrected theoretical model.

I. Introduction

In the past quarter century the Melamed model! has
been used by many investigators wishing to perform
quantitative diffuse reflectance spectroscopy of pow-
dered specimens. Thesuccess of that theoryliesin the
fact that, unlike earlier discontinuum theories,?3 Me-
lamed was the first author to use statistical summa-
tions over discrete particles reflecting light diffusely
according to the laws of geometrical optics. There-
fore, the realism of the Melamed statistical approach
prevailed over theories treating particles as discrete
plane parallel layers,?3 although its validity is limited
only to the geometric optics limit, i.e., for particle sizes
much larger than the exciting optical wavelength.
Kortiim has reviewed the salient features of the layer
discontinuum theories and those of Melamed’s model.*

A review of the literature built on the Melamed
model revealed that warnings about numerous typo-
graphical errors encountered in the original paper!
have been voiced previously.>® These errors include
the final analytical expression for the absolute diffuse
reflectance R, given by Melamed [Ref. 1, Eq. (6)]. A
great deal of confusion exists even in ascertaining
whether a given author has used the erroneous formu-
la for R, or the typographically correct one.> In our
own effort to obtain quantitative optical absorption
coefficient spectra of large size powders using diffuse
reflectance IR Fourier transform spectroscopy
(DRIFTS) we thoroughly re-examined the Melamed

The authors are with Federal Polytechnic of Lausanne, Chemical
Technology Laboratory, Ecublens CH-1015, Switzerland.

Received 2 May 1989,

0003-6935/90/192853-08$02.00/0.

© 1990 Optical Society of America.

model due to its direct applicability to the interpreta-
tion of compensated (i.e., relative) spectra in terms of
the optical properties of powders. In addition to the
numerous, but easily corrigible typographical errors,
we found several physical inconsistencies of the model.
We also encountered great difficulties in the use and
application of numerical formulas for the pertinent
internal and external reflection coefficients, integral
parts of the calculation for R given by Melamed.

In this paper a corrected version of Melamed’s the-
ory is given in agreement with fundamental physical
principles of energy conservation. New fits to some
original data by Melamed are worked out and dis-
cussed. Finally, correct analytical expressions for the
average external reflection coefficient, m,, and the in-
ternal reflection coefficient, m;, themselves a subject of
inexact numerical approximations in the past, are giv-
en in the Appendix.

fl. Physically Corrected Melamed Theory

The pertinent diffuse reflectance geometry utilized
by Melamed is shown in Fig. 1. Application of Lam-
bert’s cosine law over the volume of an idealized spher-
ical particle!** yields the following expression for the
radiation fraction reaching the particle surface after
absorption in bulk:

M= 2

(kd)?
where k = k(M) is the particle optical absorption coeffi-
cient at the wavelength A, and d is the particle diame-

ter. The total transmitted fraction through a single
particle layer T was found to be!

[1 — (kd + 1) exp(—kd)], (1)

TR @

where m; is the averaged internal reflection coefficient
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of the particle, integrated over all angles up to the
critical angle o, = sin~1(1/n), n being the refractive
index of the powdered material relative to that of the
surrounding gas (air). Equation (2) includes both
downward and upward transmission, i.e., all escaping
optical energy. This is one of the shortcomings of the

model, as only the downward component can be associ- .

ated with actual transmission, while the upward frac-
tion contributes to reflection. In this case, the sum of
all transmitted fractions of an original ray impinging
on the surface particle from above after an infinite
number of interreflections is given by:

Fr(M) = (1= m)M + (1 — mm3M® + (1 — m)miM> + ...

_G-maM
1 - (f;liM)Z ’

where
Fp(M) = (1 — mmM? + (1 — m)miM* + (1 — m)miMs + ...
(- mym M

1 - (m;M)?

is the sum of all upward fractions contributing to the
reflected energy. The choice of the T value, of course,
does not affect the functional dependence of the ex-
pression for the absolute diffuse reflectance R on 7.
Figure 2 shows the corrected version of Fig. 1. The
most crucial correction appears in the value of the
fraction of light that emerges from the upper surface of
the surface layer particle after a single internal reflec-
tion at the lower surface: Assuming unit input inten-
sity of radiation, the initial contribution to R is taken
to be! 2xm., where x is the fraction of radiation scat-
tered in the upward direction, expressed as a fraction
of 47 steradians, Therefore, the fraction of downward

@
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Fig. 1. Idealized geometry used

by Melamed to represent light

scattering, absorption, and dif-

fuse reflectance processes in pow-
° ders. [Ref. (1), Fig. 1].

scattered radiation of a ray impinging on the upper
surface of a particle from the inside (i.e., being inter-
nally reflected/scattered downward) is given by (1 — x)
(as a fraction of 4w steradians). Inpractice x and (1 —
x) are probabilities of upward and downward diffuse
scattering of the incident radiation. The remaining
intensity (1 — 2xm,) enters the particle. Out of that, a
fraction x(1 — 2xm,) is reflected upward at the lower
surface. Once it reaches the upper surface, a fraction
(1 — x)[x(1 — 2xm,)] is internally reflected downward,
while the remainder exits the particle in the upward
direction, thus contributing to R. This remainder is
x(1 —2xme) — (1 = x)[x(1 — 2xm,)] = x2(1 — 2xm,), so
that the emerging (transmitted) fraction is x2(1 —
2xm,)T as shown in Fig. 2. This is at variance with
Melamed’s calculation of a fraction equal to x(1 —
2xm,)T. With this correction the sum S of all rays
emerging from inside the particle, following internal
reflections, is

S(T) = 2zm, + (1 — 2)(1 — 2xm,)T + x(1 — x)(1 — 2xm,)
+x%(1 ~ 22m)T. (5)

In the limit of k = 0,M = T = 1 and Eq. (5) gives
S =1, (6)

as expected from conservation of optical energy for
unit input intensity and a totally nonabsorbing parti-
cle. It should be noted that energy conservation can-
not be attained with the expressions derived by Me-
lamed in Fig. 1. The uncorrected absolute diffuse
reflectance from the surface layer alone is given by the
upward fraction of Eq. (5), i.e., Sy(T) = 2xm. + x2(1 —
2xm,)T. Atkd=0,T =1and Sy(1l) = 2xm.(1 — x2) +
x2 > 0, so that, in this limit, Sy(T) + T results in the
nonphysical situation of nonconservation of optical
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energy. Physically, in the limit of no absorption, up-
ward and downward emission should be equally proba-
ble, so that R will be determined by the scattering
process. When the proper upward and downward
fractions of T are taken into account, Egs. (3) and (4)
yield at k = 0:

ml
Fp) =1~ (19)

Fr(1) = Tom,’
sothat Fr(1) + Fr(1) = 1,asexpected. Thisinadequa-
cy of Melamed’s theory will be addressed in a separa-
tion publication.?

Figures 1 and 2 show that the remaining fractions of
upward and downward transmitted light, after reflec-
tion from the underlying bulk, have been calculated
correctly by Melamed. However, the summations for
each transmitted component are different: The con-
tribution of the initial ray to the upward transmission
(i.e., to the observed reflectance) after infinite interre-
flections is

Sp = 2xm, + x%(1 — 2xm,)T

- - TR
+x(1—x)(1 —m)(1—2xm,) (I—_—;;j) .
The contribution of the initial ray to the downward
transmission (i.e., to the observed transmittance from
asingle layer of particles) after infinite interreflections
is
Sp=2x(1 - x)(1 = 2xm,)T
+ (1 - x)%1 - 2xm,)(1 - m,) _TR_ ®
(2 (2 1 — ’;leR .

A consideration of Fig. 2 and Egs. (7) and (8) shows

why the correction of a single term in the summations
carries so much weight in the final result: The correc-
tion term x2(1 — 2xm,)T is responsible for the second
largest contribution to diffuse reflectance. It is also
the most important term carrying optical absorption
coefficient information from the particle, as it results
from the first upward emerging ray after a single pass
through the body of the surface particle. The impor-
tance of this term will become apparent in computer
simulations later on.
The expression:

1—m,

r(Io) = xRT (m)’o
represents the fraction of light of intensity I, which
emerges upward (away from the bulk of the powder)
after an infinite number of interreflections between
the lower surface of the upper layer particles and the
bulk matter of reflection B. This was first presented
without proof by Melamed and is easy to derive as the
summation of a series of the rays F; emerging between
particle and bulk in Fig. 2. Furthermore, the fraction
of the light which emerges downward (into the bulk of
the powder) and thus contributes to transmittance is
the remainder of Eq. (9):

1-m,

t(I;) = (1 — x)RT ( = eR)I°'

If I, is now replaced by the total fraction transmitted
into the bulk in Fig. 2, we obtain

’[(i Fi)T:I = T(1 - 2xm,)[x%(1 — x)Q + x(1 — x)?Q%,  (11)

i=1

)

(10)

where
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_(1=m)RT
“1-mR
Eq. (11) is there entirely due to the fact that the,

otherwise nondescript, bulk reflects upward a fraction
R of the downward transmitted ray fraction

T(Z F,-).

It should be noticed that this is an oversimplification
(and perhaps an inconsistency) of the Melamed model,
as the diffuse reflectance of the semi-infinite bulk is
that of a continuous plane interface with no particulate
characteristics, which is not the same as the statistical-
ly averaged (summed up) quantity above the free sur-
face of the distinctly discrete surface powder. In any
event, we uphold this assumption for the sake of re-
taining the main features of the Melamed theory.
The fraction of (3°;; F;)T which returns to the

bulk is:

t[(z F,-)T] = T(1 - 2xm,)[x(1 — x)2Q + (1 — x)°Q? 13)

i=1

(12)

and, out of this amount, the fraction:
HT(1 = 2xm){x(1 — x)’Q + (1 — x)°Q?]}

= T(1 — 2xm,)[x%(1 — x)*Q@* + 2(1 — x)°Q%] (14)
returns to the upper particle surface, exits the powder
and contributes to R. A straightforward repetition of
this process ad infinitum results in the final expression
for R, using Egs. (7), (13), (14):
R =2xm, + x%(1 — 2xm,)T[1 + (1 — x)Q + (1 — x)2Q?

+(1-2°Q@+ ... ]+ x(l~2)(1 - 2xm,)TQ[L + (1 — x)Q
+(1-2)2Q*+ (1 -x)°@ +...]

or

R =2xm, +x(1 - 2x"-’e)T{(l —m)1~x)TR+(1 - meR)x} '

(1=mnR) ~(1-x)(1-m,)TR
(15)
Eq. (15) is quite different from Melamed’s final Eq.
(6), the typographically corrected form of which is
repeated here for comparison purposes.
1-mRy
(I—mRy) - (L—2)1— rﬁe)TRM} ’
(16)

The solution of Eq. (15) requires retaining the negative
root only, for physically meaningful values (R < 1):

R =[1+AC—-BD ~ (1 + AC — BD)? - 4C(A + xB)]/2C, (17)

Ry =2xm,+ x(1 — 2xrﬁe)T{

where
A=2xm, (18a)
B=x(1—2xm,)T (18b)
C=m,+(1-x)A-m,)T (18c)
D=(1-x)1-m)T - mx. (18d)

2856 APPLIED OPTICS / Vol. 29, No. 19 / 1 July 1990

lil. Computer Simulations of the Corrected Theory

The corrected Melamed formalism has been used for
simulating large size powder behavior and best-fitting
some of the originally published data by Melamed.!
The calculations require evaluation of the coefficients
me(n) and m;(n). Details on the evaluation are shown
in the Appendix. Figure 3 shows the absolute diffuse
reflectance as a function of kd for n = 1.55 correspond-
ing to didymium glass.! As expected R(0) < 1, while
Rum(0) = 1. Figure 4 shows the diffuse reflectance with
the refractive index as a parameter. All curves have
been normalized by the R(0) values.

In the usual experimental range kd < 1, Fig. 5 indi-
cates the differences between the original Melamed
model, Eq. (16) and the corrected version, Eq. (17):
For small values of n, there is substantial disagreement
in the kd < 0.1 range. Large values of n, however,
exhibit disagreement throughout the entire kd range
of Fig. 5 except for kd < 0.02. In Fig. 6 we show the
best fit of the physically corrected normalized quantity
R(kd)/R(0) to data for didymium glass presented by
Melamed. Eq. (17) was normalized by its value at kd
= 0 and the best fits were obtained using an expression
for x taking into account the anisotropic emission from
the particles due to absorption®:

Xy

T 1= (1 —x,[L +exp(=E)T

In Eq. (20) x, represents the probability for diffuse
scattering in the upward direction, thus contributing
to the diffuse reflectance. Curve 1 was obtained with
%, = 0.284, the same value as that used by Melamed for
close-packed spheres, corresponding to a solid angle of
(4 — V3/2)7 steradians. Melamed’s fit, though, was
obtained! for radiation emerging isotropically from a
particle by means of the simplified expression

— xu
T 1-(1-22)T"

When Eq. (21) was used in our fit to the data on Fig. 6,a
best fit was obtained for x, = 0.321. The resulting
curve was essentially identical to Curve 1 and is not
shown here. Curve 2 indicates the effect of varying x,,

x (20)

x 21)

~ in Eq. (20) from its optimum value 0.284 to the value

0.321, the optmum value when Eq. (21) is used. It is
important to notice that both fits in Fig. 6 are quite
good in the kd > 0.08 region and poor in the region
below that. Melamed’s original fit (Ref. 1, Fig. 6) also
showed some deviation at very low values of kd, less
than the one observed in Fig. 6 (ca. 10%). Figure 7
shows the sensitivity of Eq. (17) to the value x,: It
turns out that both the original and the corrected
Melamed model are most sensitive to this value, which
can only be estimated upon fitting the model to the
data for nonhomogeneous, nonspherical particles.
This sensitivity has been noticed previously: Com-
panion® had to use x,, = 0.1 with Eq. (21) for a best fit of
Eq. (16) to V205 spectra, assuming n = 2.4. A compar-
ison between Figs. 7(a) and 7(b) shows that the actual
functional form of x = x(kd), Eq. (20) or Eq. (21), has
little effect on powders of loose packing (low x,). The
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effect becomes much more pronounced at high x,,, with
the x, = 0.35, Eq. (21), curve in Fig. 7(b), virtually
coinciding with the x, = 0.30, Eq. (20), curve in Fig.
7(a). These considerations clearly indicate that little
physical significance can be given to the actual x,, value
that determines a best fit, and that x, may only be
significant as a characteristic indicator of the repro-

R (Kd) /R (0)
NORMALIZED REFLECTANCE
o

0.0_ L 1 1 1 1 1 1 ] i
0.00 0.04 0.08 0.12 0.16 0.20

Kd

Fig. 6. Best fits of theoretical R(kd)/R(0) curves for didymium

glass (n = 1.55) to data from 128-um diam particles presented by

Melamed.! The fitting parameter was x = x(x,) with x, = 0.284

[optimum fit with Eq. (20), Curve 1}; and with x,, = 0.321 [optimum
fit with Eq. (21), Curve 2]. Both fits used Eq. (20).
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Fig.7. Computer simulations of Eq. (17) withn = 1.55 and x, as a
parameter; (a) x = x(x,), Eq. (20); (b) x = x(x.), Eq. (21).

ducibility of average packing conditions in powdered
specimens. Figure 8 shows that the model is much less
sensitive to the refractive index value than to the x,
value. The greatest variation with n occurs at very low
kd values (See also Fig. 4). In view of the steeper
decrease in R with increasing n at low kd, an improved
fit to the data in Fig. 6 could have been obtained in the
kd < 0.1range, if allowance for the variation of n with £
had been made in the model. A similar remark with
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the original Melamed theory (Curve 2); (a) n = 5,and (b) n = 1.2. All
reflectance curves shown are absolute (unnormalized).

respect to both Johnson3 and Melamed! models has
previously been made by Companion.
The original and corrected Melamed models con-

verge in the limit of very high kd to the same value
[Eqgs. (16), (17)):

Ry(kd > 1) = R(kd > 1) = 2xm (n). (22)
For very opaque powders only the first ray reflected

from the surface particle will contribute to the diffuse
reflectance. Any other ray entering the particle will be
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extinguished due to absorption, before it can perform
the requisite double traversal through the bulk of the
particle, including an internal reflection at the lower
surface. Figure 9shows that for high n the two models
converge at kd > 0.5, whereas for low n substantial
differences remain up to kd ~ 8. It thus appears that
the present model should be used in lieu of the original
theory for practically all quantitative analysis of pow-
der spectroscopy.

IV. Conclusion

The present physically corrected Melamed model
has been compared with the original theory. The most
substantial differences were found to occur at low kd,
with the goodness of fit of the corrected model to the
didymium glass spectroscopic data of Melamed being
~5-10% worse than the original uncorrected model.
The variation of n with k& was found to be a possible
cause of the discrepancy. As aside result, a corrected
analytical expression for m.(n), and an analytical ex-
pression for m;(n) for the first time, have been present-
ed. The corrected Melamed model should be used in
most cases of practical experimental interest (low n,
low kd ranges semi-infinite powder layer). A more
realistic discontinuum model for layers of finite thick-
ness has recently been developed.8
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Appendix: Analytical Expressions for the Reflection
Coefficients m,(n) and m,(n)

The Fresnel relations for specular, unpolarized re-
flection yield the refractive index dependence of the
average external and internal reflection coefficients,
m. and m;, for uniformly diffuse radiation. It can be
shown that4

7, (n) = L ™ Hesm) sine cosar da (A1)

mi(n) = 1 - sina, + L * Hayn) sina cose de (A2)
where

flayn) = ::Z: . Z; zzzzz ; g : (A3)

where o and B are angles of incidence and refraction,
respectively. Walsh?® carried out the integration for
Eq. (A1) over 50 years ago; however, the expression as
perpetuated by Kortiim,!° at least, is wrong and gives
negative values for m.(n) in some n ranges. Further-
more, no easy access to the original paper by Walsh can
be had, in our experience, due to the obscurity of the
publication. Numerical techniques have been also
used to carry out the integrations, Eqs. (A1) and (A2).
The results vary somewhat from one author to the



next, owing to the nature of the approximation(s)
used.1112 Melamed (in Ref. 1, Appendix I) used nu-
merical integrations for both coefficients. For small
values of «, he also gave an explicit formula for m;(n),
which is, however, erroneous. As there is a lack of
_analytical expressions for m;(n) and no easy accesstoa
(correct) m.(n), we carried out the analytical calcula-
tions in this Appendix. The resulting expressions can
henceforth be used without recourse to numerical pro-
cedures.

A. External Reflection Coefficient mg(n)
Snell’s law can be written as

sin = % sina (Ad)

for incidence from a medium of unit refractive index
into a medium of refractive index n. Combination of
Eqgs. (A1) and (A3) and transformation of variables
from trigonometric to algebraic yields

2
) 1- y2/n2)1/2 —_ % a- y2)l/2
m,(n) = f 1 ydy
ol @ -»m)"" + —1- YV

1

| W=D % -y |
+ j ydy (A5)

o (1—yy24 % (1 - ynd)V2

Rationalizing the fractions involved in both integrands
and performing the resulting algebra gives

my(n) = (J, — 4J, + Jy — 4n2J,) (A6)

I
(n*—1)
where
1
dJy = [ [n* + 6n% + 1 + 8x* — 8(n® + 1)x%Jxdx
o
1( 4 2 _ 1Y,
3 (n + 2n 3), (A7)

1
Jy= j (n2+1—2x))[x* — (n® + 1)x2 + n?V2xdx
o

n? [Ref. 13, entries 2.262.1 and 2.262.2]; (A8)

|

1
Jy= f {[n'(n? + 1)% + 4n%] — 2n%(n? + 1)%2
0

+ [(n* + 1)2 + 4n#xY)/[n? — (1 + nH)x?)Hxdx

- 1
2(n? + 1)?

[n® — 8nf + 6n* + 1 + 16n*(n + 1) In(n)/(n® + 1];
(A9)
1
Jy EL {[n%(n? + 1) — (n* + 1)x%

X [xt = (n? + 1)x2 + nF?[n? — (1 + nH)x?Hxdx

2 _ 132 (n2 - 1)4 n+1
[2n(n 1) +——2(n2 T ln(n — 1) (A10)

1
2(n?+1)2

(Ref. 13, entries 2.267.1 and 2.267.2; also 2.261 and -

2.266). Finally, Egs. (A7-A10) give

8 1
4_8 3 9p2_ 2
TTEVTHTS nf-snf+enttl_ o2nd

22+ 1)2(n?—-1)2 (n?2+1)?

meln) = 2(n? — 1)?

8ni(n*+1) _[n*n?—-1) n+1
+ l:(n2 +1)(n2 - 1)4] In(n) [ n?+1)° ] ln(n - 1) (ALD)

B. Internal Reflection Coefficient my(n)

Snell’s law from an optically thick to an optically
thin medium of unit refractive index gives:

sing = n sina (A12)

with the critical angle o, = sin~1(1/n). Eq. (A2) may
be expressed as:

my(n) =1-n"%+ F(n) (A13)

where, when treated as in case (a) above, the function
F(n) can be written as:

i/n [(1 _ n2y2)l/2 —n(l- y2)1/2]2

Fn) = [ d
(n) o a- n2y2)1/2 +n(l - y2)1/2 yay

i/n a- y2)1/2 —-n(l - n2y2)1/2 2
+ dy (Al4
L l:(l - y2)1/2 + n(l — n2y2)1/2 yay ( )

The functional dependence of m;(n) can be written in
the form

mn)=1-n"2+ (5 — dndg + J; — 4ndy) (A15)

(n*-1?
where
1/n
Js= f [n* + 6n2 + 1 — 8n%(n® + 1)x% + 8n'x*|xdx
o

12 o1
-1 (n +2 3n2) , (A1)
1/n
Jg= j (n?+1 — 2n%) [t — (n? + D2 + 1]Y2xdx
o

[Ref. 13, entries 2.262.1 and 2.262.2], (A17)

W=

/n
I = L 1 {([(n? + 1)% + 4n%] — 2(n® + 1)%?

+ [(n* + 1)? + 4nY]29)/[(n® + 1)x® — 1]3xdx

2(” } 1) (”’ t 1) ln(n)/(” Il)],
(1\18)

1/n
Jy= L {[(n2 + 1) = (n* + 1)2?][n2* — (n2 + 1)x? + 1]12

X [(n? + 1)x2 — 1]3xdx

92y F—1) n+1
[(n e “‘(T * 1)] (A19)

T o2+ 1)

(Ref. 13, entries 2.267.1 and 2.267.2; also 2.261 and
2.266). Collecting terms in Egs. (A15-A19) gives the
following explicit expression for the internal reflection
coefficient.
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Fig. 10. Refractive index dependence of the reflection coefficients
me(n) and my(n). Analytical results [Eqs. (A11) and (A20)] and
numerical integration are shown for comparison. See the Appendix

for details.
- 1 1 s 8 1 on
=1-=+——(n?=Zpt+2-— )" _
mi(r) n?  2(n?-1)? ( 3 3n2) (n?+1)?
6 _ qnd 2.4 -2 2014
n°—8n*+6n°+n 8n°(n* +1) In(n)
2(n® + 1)%(n? - 1) (n?+ 1)(n? — 1)*

(n?~1)? n+1
[(n2 S 1)3] m(n + 1) (A20)
Egs. (A11) and (A20) have been plotted in Fig. 10.
Along with the explicit forms, we have plotted the
results of a numerical integration using the trapezoidal
rule and an increment Aa = 7/400.

There is no difference between numerical and exact
formulas for m.(n) up to the third significant digit and
both curves coincide entirely in the 1 < n < 5 range.
Some deviation of the numerical integration from the
exact formula for m;(n) appears in the region 1.2 < n <
2.6, i.e., where the increase of m; is steepest. Conse-

quently, the exact formulas for m. and m; were used in
all plots of the physically corrected Melamed model.

Andreas Mandelis is on leave from Photoacoustic
and Photothermal Sciences Laboratory of the Univer-
sity of Toronto.
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