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The thermal and optical properties of multilayered dental tissue structure, the result of the surface-
grown prismless layer on enamel, were evaluated simultaneously using multiparameter fits of photo-
thermal radiometry frequency responses. The photothermal field generated in a tooth sample with
near-infrared laser excitation was described using a coupled diffuse-photon-density and thermal wave
model. The optical (absorption and scattering) coefficients and thermal parameters (spectrally averaged
infrared emissivity, thermal diffusivity and conductivity) of each layer, as well as the thickness of the
upper prismless enamel layer, were fitted using a multiparameter simplex downhill minimization algo-
rithm. The results show that the proposed fitting approach can increase robustness of the multipara-
meter estimation of tissue properties in the case of ill-defined multiparameter fits, which are
unavoidable in in vivo tissue evaluation. The described method can readily be used for noninvasive
in vitro or in vivo characterization of a wide range of layered biological tissues. © 2009 Optical Society
of America

OCIS codes: 170.1850, 170.7050, 160.4760, 170.5270, 170.6935.

1. Introduction

The rapidly growing area of laser-based treatment
and diagnosis requires accurate and precise in vivo
evaluation of optical and thermal tissue properties.
During the past decade, a host of in vivo methodolo-
gies were reported [1–3] for optical evaluation. These
techniques apply the diffusion approximation of the
transport theory [4] to extract from the measured
optical reflectance or transmittance the optical prop-
erties of tissues: absorption coefficient, scattering
coefficient, and the mean cosine of the scattering
angle. Usually, semi-infinite homogeneous tissue is

assumed, and the solution of the diffusion equation
at the surface is calculated, subject to appropriate
boundary conditions. However, many tissues are in
fact multilayered. It has been shown that a single-
layer approximation can lead to significant errors in
the optical evaluation of layered tissues [5]. On the
other hand, introducing several sets of optical coeffi-
cients for each layer and additional unknown thick-
nesses of the layers increases the complexity of the
fitting procedure, where the number of constraints
is smaller than the number of fitting parameters.
The problem becomes ill-defined, i.e., several sets of
parameters can describe the measured data equally
well, thus questioning the uniqueness of the fits. In
this case, the robustness of the fitting algorithm be-
comes of great importance. Several algorithms for
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extracting optical properties from the reflectance
data of a two-layered system were investigated: the
Marquardt–Levenberg nonlinear least squares algo-
rithm [5,6], the Newton–Raphson and neural
network algorithms [5], and simulated annealing
minimization [7]. The described algorithms require
an initial set of optical properties as input para-
meters. However, the main problem for the fitting
analysis of biological tissues is that the true values
of properties may vary greatly among the same type
of tissues. In this case, the range of the initial proper-
ties can be considerably wide, compounded by algo-
rithm sensitivity to changes in the initial guesses,
which, in turn, affects the accuracy of the fits. High
sensitivity to the initial parameters was reported for
many algorithms, including the widely used Mar-
quardt algorithm for multiparameter fits [7]. At the
same time, the simulated annealing algorithm exhib-
ited less dependence on the initial values. This algo-
rithm belongs to the family of multiparameter
minimization algorithms [8] searching the global
minimum of functions (e.g., the minimum of the
difference between experimental and theoretical
curves). One of the most robust algorithms of this fa-
mily, simplex downhill minimization [8], was com-
pared to the ubiquitous Marquardt–Levenberg
method for a wide range of initial data variations [9],
showing a significantly greater degree of confidence
in the fitted values than the latter. Indeed, for an in-
itial guess variation between 5% and 40%, the failure
rates for the Marquardt–Levenberg algorithm ran-
ged from 0.1 to 91% (using the 99% confidence level
from the resulting simplex distribution as a failure
criterion).
The analysis of laser tissue irradiation becomes

even more complicated due to involvement of the
optical-to-thermal energy conversion and the neces-
sity for the evaluation of thermal properties of tis-
sues in addition to purely optical analysis.
During the past decade, besides purely optical

methods, the so-called secondary-signal methods
emerged. They usually depend on the secondary re-
sponse in tissue generated due to light absorption,
usually thermal [10] or acoustic signals [11], to
measure tissue properties. The introduction of the
secondary signal enhances the sensitivity and
specificity of the measurements and increases the
possibilities for the detection of early changes in tis-
sues. The thermal and acoustic properties of tissues
were used as known values in order to fit the thermal
or acoustic signal in the aforementioned studies.
There are several studies on the measurement of

purely thermal properties of biological tissues pub-
lished in the literature [12,13]. Since the separate
evaluation of thermal properties would increase
the complexity of the investigation, the requirement
for simultaneous measurement of both optical and
thermal properties using the secondary-signal meth-
ods becomes attractive. However, considering the
fact that biological tissues are usually layered struc-
tures and several sets of parameters must be intro-

duced for each layer, the complexity of the fitting
analysis increases dramatically in this case.

Frequency-domain photothermal radiometry
(PTR) has recently shown the potential to provide
simultaneous quantitative analysis of optical and
thermal fields in multilayered dental tissue struc-
tures [14]. The technique has already shown its cap-
abilities for the noninvasive optical evaluation of
dental tissues [15]. The authors, however, considered
a single-layer approximation and extracted optical
properties only.

In this study, we apply frequency-domain PTR to
simultaneously evaluate optical and thermal proper-
ties of teeth as layered structures. We measure the
amplitude and phase of the PTR signal and apply
the simplex downhill algorithm for the multipara-
meter fits of the relevant properties. The theoretical
profiles are generated with the coupled diffuse-
photon-density wave and thermal wave model for
the multilayered turbid structures [14]. In the study,
we considered enamel as a homogeneous layer. Since
bulk enamel properties can be significantly different
from the surface-grown prismless layer, the thick-
ness of which can vary from 5 to 60 μm [16], in the
present study the enamel layer was divided into
two layers with separate sets of optical and thermal
properties: a prismless enamel layer and a bulk en-
amel layer.

2. Theoretical Model of Coupled Diffuse Photon and
Thermal-Wave Fields

A. Diffuse and Coherent Photon Fields

The theoretical approach is described in detail in our
previous study [14]. We assume that a three-layered
one-dimensional turbid structure is irradiated with
laser light (Fig. 1). As a result of the incident
radiation, a one-dimensional photon field density
Ψt arises in the medium. It can be divided into
two components:

Ψtiðz;ωÞ ¼ Ψciðz;ωÞ þΨdi
ðz;ωÞ; ð1Þ

where Ψci is the coherent photon density and Ψdi
is

the diffuse photon density of the turbid medium.
Here, the subscript i denotes each layer of the dental
structure (Fig. 1). The first layer of the structure is
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Fig. 1. Effective layered tooth structure for the PTR model.
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the prismless enamel layer [17]. The second layer is
healthy enamel, and the third layer is dentin.
The one-dimensional coherent photon-density field

takes into account the reduction of the incident in-
tensity due to the scattering and absorption [14]:

Ψc1 ¼
I0ð1 −R1Þfexp½−μt1z� þ R2 exp½−μt1ð2L1 − zÞ�g

1 − R1R2 exp½−2μt1L1�
;

Ψc2 ¼
I0ð1 −R1Þð1þ R2Þ exp½−μt1L1� exp½−μt2ðz − L2Þ�

1 − R1R2 exp½−2μt1L1�
;

Ψc3 ¼
I0ð1 −R1Þð1þ R2Þ exp½−ðμt1L1 þ μt2L2Þ� expf−μt3 ½z − ðL1 þ L2Þ�g

1 − R1R2 exp½−2μt1L1�
; ð2Þ

where I0 is the laser intensity, R1 is the reflectivity of
the outermost turbid medium,R2 is the reflectivity of
the second layer, and

μti ¼ μai þ μsi : ð3Þ

Here, μti is the total attenuation coefficient of layer i,
which includes the absorption coefficient μai

(m−1)
and the scattering coefficient μsi (m−1) of the medium.
The one-dimensional diffuse-photon-density equa-

tion in frequency domain can be described as [18]

d2

dz2
Ψdi

ðzÞ − 3μai
μ0tiΨdi

ðzÞ ¼ −
1
Di

GiðzÞ: ð4Þ

Here,

μt0 ¼ μa þ ð1 − gÞμs ð5Þ

is the reduced attenuation coefficient. g is the mean
cosine of the scattering angle.D represents the mean
free path of photons limited by absorption and scat-
tering. The function Gi represents a photon source
[18]:

GiðzÞ ¼ μsi
�μti þ giμai

μti − gμsi

�
Ψci : ð6Þ

The general solutions for the optical fields for each
layer ði ¼ 1; 2; 3Þ, including coherent and diffuse com-
ponents, can be written as

Ψt1ðzÞ ¼ a1 expðQ1zÞ þ b1 expð−Q1zÞ
þ Ieff ð1þ Cμ1Þfexp½−μt1z�
þ R2 exp½−μt1ð2L1 − zÞ�g; ð7aÞ

Ψt2ðzÞ ¼ a2 exp½Q2ðz − L1Þ� þ b2 exp½−Q2ðz − L1Þ�
þ Ieff ð1þ R2Þð1þ Cμ2Þ expð−μt1L1Þ
× exp½−μt2ðz − L1Þ�; ð7bÞ

Ψt3ðzÞ ¼ b3 expf−Q3½z − ðL1 þ L2Þ�g
þ Ieff ð1þ R2Þð1
þ Cμ3Þ exp½−ðμt1L1 þ μt2L2Þ� expf−μt3 ½z
− ðL1 þ L2Þ�g; ð7cÞ

where the integration constants due to the coherent
field solutions are given by

Cμi ¼
3μsiðμti þ gμai

Þ
3μai

μti 0 − μ2ti
;

Ieff ¼
I0ð1 − R1Þ

1 − R1R2 expð−2μt1L1Þ
: ð8Þ

In Eqs. (7) Qi are defined as Qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μai

μti 0
p

. The
third-kind boundary conditions at the air–tooth in-
terface and the continuity of photon-density field
and photon flux at the interfaces between solid layers
are applied:

Ψd1
ð0Þ ¼ A

d
dz

Ψd1
ðzÞ

����
z¼0

;

Ψd1
ðL1Þ ¼ Ψd2

ðL1Þ;

D1
d
dz

Ψd1
ðzÞ

����
z¼L1

¼ D2
d
dz

Ψd2
ðzÞ

����
z¼L1

;

Ψd2
ðL1 þ L2Þ ¼ Ψd3

ðL1 þ L2Þ;

D2
d
dz

Ψd2
ðzÞ

����
z¼L1þL2

¼ D3
d
dz

Ψd3
ðzÞ

����
z¼L1þL2

: ð9Þ

Here, the constant A is defined as [19]

A ¼ 2D

�
1þ r
1 − r

�
; ð10Þ

where r is the internal reflection of uniformly diffus-
ing radiation, which depends on the index of
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refraction of the sample [20]. Solving the system of
the five boundary-condition equations, using the
photon diffusion fields Eqs. (7) and the coherent field
Eqs. (2), in Eq. (1), one can obtain the coefficients a1,
a2, b1, b2, and b3:

a1 ¼
−d1P− f 1N expð−2μt1L1Þ− ð2VFþGÞexpðQ1L1Þ

ð1þX12−2VX12Þ
M−

ð1−X12þ2VX12Þexpð2Q1L1Þ
ð1þX12−2VX12Þ

;

b1 ¼−a1M−d1P− f 1N expð−2μt1L1Þ;
a2 ¼b2þd2Y22þX12a1expðQ1L1Þ−X12b1expð−Q1L1Þ

þY12ðf 1 −d1Þexpð−μt1L1Þ;
b2 ¼VF−VX12a1 expðQ1L1ÞþVX12b1 expð−Q1L1Þ;
b3 ¼−a2X23 expðQ1L1Þþb2X23 expð−Q1L1Þ

þY23d2 expð−μt2L2Þ−Y33d3: ð11Þ

Here, the parameters M, N, P, X , Y , and d are de-
fined as

M ≡
1 −Q1A
1þQ1A

; N ≡
1 − μt1A
1þQ1A

; P ¼ 1þ μt1A
1þQ1A

;

Xij ≡
DiQi

DjQj
; Yij ≡

Diμti
DjQj

;

d1 ¼ Cμ1Ieff ; f 1 ¼ d1R2;

d2 ¼ Cμ2Ieff ð1þ R2Þ expð−μt1L1Þ;
d3 ¼ Cμ3Ieff ð1þ R2Þ exp½−ðμt1L1 þ μt2L2Þ�: ð12Þ

The coefficients F, G and V are defined as

F ¼ d2
expð−μt2L2ÞðY23 − 1Þ
expðQ2L2ÞðX23 þ 1Þ þ d3

expð1 − Y33Þ
expðQ2L2ÞðX23 þ 1Þ

− d2Y22 − ðf 1 − d1ÞY12 expð−μt1L1Þ;
G ¼ −ðf 1 þ d1Þ expð−μt1L1Þ þ d1 þ d2Y22

þ ðf 1 − d1ÞY12 expð−μt1L1Þ;

V ¼ 1

1 −
ðX23−1Þ
ðX23þ1Þ expð−2Q2L2Þ

: ð13Þ

B. Thermal-Wave Field

The analytical solution for the thermal-wave field is
described in detail in our study [14]. The total diffuse
photon density field Ψt is the source of the much
more slowly propagating thermal-wave field given by

d2

dz2
Tiðz;ωÞ − σ2i Tiðz;ωÞ ¼ −ηNR

μai

κi
Ψtiðz;ωÞ;

i ¼ 1; 2; 3; ð14Þ

where

σi ¼
ffiffiffiffiffi
iω
αi

s
ð15Þ

is the thermal wave number (m−1), which depends on
the modulation frequency and on the thermal diffu-
sivity α (m2s−1) of the ith layer. Here, ηNR is the non-
radiative efficiency and κi is the thermal conductivity
of the ith layer (Wm−1K−1).

The thermal-wave fields for each layer can be writ-
ten in the form

T1ðz;ωÞ ¼ A1 expðσ1zÞ þ B1 expð−σ1zÞ þ C1 expðQ1zÞ
þD1 expð−Q1zÞ þ E1 expð−μt1zÞ
þ F1 exp½−μt1ð2L1 − zÞ�; ð16aÞ

T2ðz;ωÞ ¼ A2 exp½σ2ðz − L1Þ� þ B2 exp½−σ2ðz − L1Þ�
þ C2 exp½Q2ðz − L1Þ� þD2 exp½−Q2ðz − L1Þ�
þ E2 exp½−μt2ðz − L1Þ�; ð16bÞ

T3ðz;ωÞ ¼ B3 expf−σ3½z − ðL1 þ L2Þ�g
þD3 expf−Q3½z − ðL1 þ L2Þ�g
þ E3 expf−μt3 ½z − ðL1 þ L2Þ�g: ð16cÞ

The coefficients Ci, Di, Ei, and Fi are defined as

Ci ¼ −
ηNRi

μai

κiðQ2
i − σ2i Þ

ai; i ¼ 1; 2;

Di ¼ −
ηNRi

μai

κiðQ2
i − σ2i Þ

bi; i ¼ 1; 2; 3;

Ei ¼ −
ηNRi

μai
ð1þ CμiÞ

κiðμ2ti − σ2i ÞCμi
di; i ¼ 1; 2; 3;

Fi ¼ −
ηNRi

μai
ð1þ CμiÞ

κiðμ2ti − σ2i ÞCμi
f 1: ð17Þ

Here, ai, bi, di, f 1 are given in Eqs. (11) and (12). To
determine the coefficients Ai and Bi, the following
boundary conditions are used:

κ1
dT1ðz;ωÞ

dz

����
z¼0

¼ HT1ð0;ωÞ;

T1ðL1;ωÞ ¼ T2ðL1;ωÞ;

κ1
dT1ðz;ωÞ

dz

����
z¼L1

¼ κ2
dT2ðz;ωÞ

dz

����
z¼L1

;

T2ðL1 þ L2;ωÞ ¼ T3ðL1 þ L2;ωÞ;

κ2
dT2ðz;ωÞ

dz

����
z¼L1þL2

¼ κ3
dT3ðz;ωÞ

dz

����
z¼L1þL2

: ð18Þ

As a result, the coefficients of the photothermal
fields T1, T2, T3 in Eqs. (16) can be found from the
solution of the following system of equations:
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A1ð1−b01Þ−B1ð1þb01Þ¼C1ðb01−q11ÞþD1ðb01þq11Þ
þE1ðb01þm11ÞþF1expð−μt1L1Þðb01−m11Þ;

A1expðσ1L1ÞþB1expð−σ1L1Þ−A2−B2¼C2þD2þE2

−C1expðQ1L1Þ−D1expð−Q1L1Þ
−ðE1þF1Þexpð−μt1L1Þ;

b12A1expðσ1L1Þ−b12B1expð−σ1L1Þ−A2þB2

¼q22C2−q22D2−m22E2−q12C1expðQ1L1Þ
þq12D1expð−Q1L1Þ−m12ðF1−E1Þexpð−μt1L1Þ;

A2expðσ2L2ÞþB2expð−σ2L2ÞþB3

¼−C2expðQ2L2Þ−D2expð−Q2L2Þ
−E2expð−μt2L2Þ−D3−E3;

q23A2expðσ2L2Þ−q23B2expð−σ2L2ÞþB3

¼−q23C2expðQ2L2Þþq23D2expð−Q2L2Þ
þm22E2expð−μt2L2Þ−q33D3−m33E3; ð19Þ

where the following definitions are used:

bij ≡
κiσi
κjσj

; qij ≡
κiQi

κjσj
; mij ≡

κiμti
κjσj

: ð20Þ

The photothermal radiometric signal represents
the overall Planck radiation emission integrated
over the depth of the sample:

VPTRðωÞ ¼ CðωÞμIR
�ZL1

0

T1ðz;ωÞ expð−μIRzÞdz

þ
ZL2

L1

T2ðz;ωÞ expð−μIRzÞdz

þ
Z∞
L2

T3ðz;ωÞ expð−μIRzÞdz
�
: ð21Þ

Here, μIR is the spectrally averaged effective infrared
absorption/emission of the medium. Given the spec-
trally averaging approximation of μIRðλÞ implicit in
this formula over the mid-IR detection bandwidth,
for simplicity we set all μIRðλÞ coefficients equal (in
the mean) across the entire half-space of interest
ð½0;L1�; ½L1;L2�; ½L2;∞ÞÞ.
The instrumental transfer function CðωÞ was cal-

culated using a thermally thick glassy carbon sample
(diameter 40mm, thickness 10mm, Grade GC-20SS,
Tokai Carbon Co., Ltd., Japan) with known thermal
properties (ks ¼ 5:8Wm−1 k−1, αs ¼ 4:8 × 10−6m2=s)
as a black semi-infinite reference. The PTR
frequency-scanned signal VcarbonðωÞ from the glassy
carbon was measured, and the data were fitted to
the theoretical signal calculated for the semi-infinite
opaque solid [18]:

VcarbonðωÞ¼CðωÞ
Z∞
0

Tcarbonðz;ωÞdz

¼CðωÞ
Z∞
0

I0

2

�
1þk0σ0

ksσs

�
ksσs

expð−σszÞdz;
ð22Þ

where k0 and σ0 are the thermal conductivity and the
thermal-wave number of air, and ks and σs are the
thermal conductivity and the thermal-wave number
of carbon glass. I0, Wm−2, is the incident laser inten-
sity. The only unknown parameter, the instrumental
factor CðωÞ, was thus obtained from the fits.

The measured PTR signal has an oscillating char-
acter and can be represented as

VPTRðωÞ ¼ jVPTRðωÞj exp½iφPTRðωÞ�; ð23Þ

where the amplitude and phase components are

AmpPTRðωÞ ¼ jVPTRðωÞj; PhasePTRðωÞ ¼ φPTRðωÞ:
ð24Þ

It should be mentioned that in order to reduce the
complexity of the computational fits to the three-
layer description of the tooth structure, a two-layer
approximation of the three-layer model was used in
the fits of enamel data. This was done due to the fact
that the bulk enamel thickness (>800 μm [21]) can be
considered semi-infinite since its poor thermal and
optical properties prevent the photothermal field
from deep penetration beyond the enamel–dentin
junction. In the two-layer approach, the tooth struc-
ture consisted of a finite prismless layer plus semi-
infinite bulk enamel and no dentin layer, which sim-
plified the analysis greatly. To verify the validity of
the two-layer approximation, a set of simulations
was performed, where the theoretical PTR signal
was calculated with a three-layer model assuming
that the third layer is dentin. The averaged litera-
ture values of the optical and thermal properties of
enamel and dentin were used [15,22–24]. The simu-
lations showed that the enamel thickness does not
affect the calculated PTR curve in the frequency
range above 8Hz (Fig. 2), i.e., the dentin layer can
be eliminated from consideration and the enamel
layer can be considered as semi-infinite. This fre-
quency range (>8Hz) was used to collect data for
best-fitting analysis.

It should be noted that the strict three-layer ap-
proach will be necessary for the subsequent analysis
of the demineralized enamel, where the subsurface
demineralized enamel layer appears [25]. For the
purposes of the current two-layer study, we still used
the three-layer equations and set the thickness of
layer L2 (bulk enamel) to an effective semi-infinite
value (5mm). This allowed us to keep consistency
in using the same mathematical description and
software package for our studies involving teeth
demineralization [25].
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3. Experimental Setup

The PTR experimental setup is shown in Fig. 3. A
semiconductor laser diode emitting at 659nm
(Mitsubishi ML101J27, maximum power: 120mW)
was used as the source of the PTR signal. The dia-
meter of the laser beam was approximately 3mm
to ensure the one-dimensionality of the photother-
mal field. A diode laser driver (Thorlabs, LDC 210)
was triggered by the built-in function generator of

the lock-in amplifier (EG&G 7265) to modulate the
laser current harmonically. The modulated infrared
PTR signal from the tooth was collected by two off-
axis paraboloidal mirrors (Melles Griot 02POA017,
rhodium coated) and focused onto a mercury
cadmium telluride (HgCdTe or MCT) detector (Jud-
son Technologies J15D12; spectral range, 2 to 12 μm;
peak detectivity D� ≈ 5 × 1010 cmHz1=2W−1 at ap-
proximately 12 μm). Before being sent to the lock-
in amplifier, the PTR signal was amplified by a pre-
amplifier (Judson Technologies PA-300). The lock-in
amplifier was controlled by the computer via RS-
232 ports.

A visually healthy tooth sample was mounted on a
LEGO block base and placed on a micropositioning
stage. The laser was turned on 10 min before mea-
surements commenced, so that the sample surface
was stabilized thermally.

The experiments consisted of frequency scansmea-
suring the amplitude and the phase of the PTR signal
by varying the frequency from 8Hz to 100Hz. The
frequency range was segmented into equal intervals
on a logarithmic scale by a data acquisition computer
program and the frequency was automatically incre-
mented to the next value after each measurement.
There was a 15 s time delay between each frequency
step to allow for thermal stabilization of the tooth
surface.
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Fig. 2. PTR (a) amplitude and (b) phase calculated for various
enamel thicknesses.
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Fig. 3. Experimental setup.

Table 1. Upper and Lower Limits for the Initial Guess of Parameters (Bulk Enamel) [15,16,22–24]

Lower Limit Upper Limit Mean Value and Range of Change

Absorption coefficient, μa2, m−1 1 100 50:5� 49:5
Scattering coefficient, μs2, m−1 4000 8000 6000:0� 2000:0
Thermal diffusivity, α2, m2=s 4:2 × 10−7 4:69 × 10−7 ð4:445� 0:245Þ × 10−7

Thermal conductivity, λ2, W=mK 0.910 0.926 0:918� 0:008
Nonradiative efficiency, ηIR2 0 1 0:5� 0:5
IR absorption coefficient, μIR, m−1 30,000 200,000 115; 000� 85; 000
Heat transfer coefficient, H, W=m2K 0 1 0:5� 0:5
Prismless layer thickness, L1, μm 5 60 32:5� 27:5
Mean cosine angle, g2 0.60 0.98 0:79� 0:19
Reflectance of bulk enamel, R2 0 1 0:5� 0:5
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4. Multiparameter Fits to Experimental Data

A particular difficulty in the multiparameter fitting
procedure is that the solution of the problem is usual-
ly not unique, i.e., multiple combinations of para-
meters can fit the data almost equally well. It is
possible to apply additional constraints to the
solution, e.g., measure (often destructively) some of
the unknown parameters separately and then as-
sume them as known values during the fits. However,
this solution is difficult to implement for in vivomea-
surements in multilayered tissues. The properties of
every layer can vary greatly among the same type of
tissues, so the data obtained with other samples will
not necessarily be the same as for the investigated
tissue. At the same time, the application of several
techniques even for the in vivo measurements of op-
tical and thermal properties separately is undesir-

able from the clinical point of view. Practically, it
would be much more convenient to apply one com-
bined technique for the simultaneous estimation of
the entire set of properties. Here, as was mentioned
above, the robustness of the fitting algorithm, i.e., its
independence from the initial guess of parameters,
becomes extremely important. In our fitting
procedure, we use the range of initial values within
the limits based on the literature values [15,16,22–
24] for every parameter (Table 1). The guess range
for the optical absorption coefficient of the prismless
layer was increased by 50% compared to bulk enam-
el, and for the optical scattering coefficient more than
twice, since different orientations of the enamel crys-
tals can significantly change the optical properties.
The thermal diffusivity range was also significantly
increased, since this parameter is highly sensitive to
the composition of the layer structure.

During the fits, we divided the set of these ranges
into equal steps and performed best fits for every

Input data: Experimental PTR scans. 
                  Limits for initial ranges for M parameters to fit. 
                  Number of intervals between the limits N.
                  Simplex tolerance and maximal number of iterations. 

Goal: Finding best fit of experimental data (i.e. minimal residual 
Rmin) using all combinations of initial parameters aij (1 < I < M,
1 < j < N+1).  

The parameters aij is a matrix M x (N+1), where every i-th row 
has N+1 elements produced by division of the corresponding 
initial range by N.

If any of the fitted parameters exceeds a limit, set it to 
the corresponding limit. Calculate the residual of the 
resulting fit. If R < Rmin, set Rmin = R.

Repeat for the next combination of M initial 
parameters aij.

For every combination of initial aij call Simplex algorithm, 
which returns M fitted parameters. Return the minimal R. 

Fig. 4. Algorithm chart.
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combination of points for every parameter (Fig. 4).
These combinations of values become the initial
guess sets for the fits. Thus, the dependence of the
fitting results on the different combinations was
thoroughly investigated before an actual set of re-
sulting parameters was accepted as the final result.
The experimental PTR data were fitted using the

simplex downhill algorithm for the multiparameter
minimization [8]. Since the algorithm does not pro-
vide any restrictions to the fitting results, i.e., it
can produce even negative numbers, only the result-
ing parameters that fell inside the initial range were
considered. The amplitude and phase of the PTR sig-
nal were both fitted to the theory, and the combined
residual represented the criterion for the best fits.
The residual was defined as follows:

Res ¼
Pnmax

n¼1 ½log10ðAmpExpÞ − log10ðAmpTheorÞ�2Pnmax
n¼1 ½log10ðAmpExpÞ�2

þ
Pnmax

n¼1 ½PhaseExp − PhaseTheor�2Pnmax
n¼1 ½PhaseExp�2

; ð25Þ

where AmpExp and PhaseExp are the measured PTR
amplitude and phase, respectively, AmpTheor and
PhaseTheor are the calculated data, and nmax is the
number of the frequency-scan points. Due to
the large change in amplitude during experiments,
the amplitude values were analyzed on a logarithmic
scale. The simultaneous use of two signals, the sali-
ent feature of the frequency-domain methods, dou-
bles the amount of information gathered in a
single set of scans compared to time-domain techni-
ques, increasing the fidelity of the fits.

The simplex downhill algorithm is described in de-
tail elsewhere [8]. The fitting procedure was per-
formed until the intrinsic tolerance of the fits was
reached, or until the maximal number of iterations.
The tolerance represents the change in the residual
corresponding to the change in one of the fitting
parameters. Once the change in any of the para-
meters stops decreasing the resulting residual (up
to a certain number defined by the tolerance), the al-
gorithm stops.
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5. Results and Discussion

The preliminary tests demonstrated that the quality
of the fits increases with decreasing tolerance value
(Fig. 5). However, the further decrease was limited by
substantial increase in the computational time
(Fig. 6).
In order to identify the optimal tolerance of the fits,

the residual was compared for fits with different tol-
erance for several numbers of intervals between the
parameter limits N. The number of unsuccessful fit-
ting attempts, when convergence was not reached, is
also shown for each set of parameters (Fig. 7). In this
particular study, the maximum number of iterations
1 × 106 was chosen so the calculation time was rea-
sonable (around 50 h or less per single fitting run).
It would be possible to decrease the number of non-

converged attempts by increasing the maximum
number of iterations, but this increases the calcula-
tion time dramatically. It can be seen that for the
smaller tolerances or larger number of intervals,
i.e., larger number of trials, the nonconvergent runs
appear more often (Fig. 7). At the same time, the re-
sulting residual is not significantly smaller than that

for the rest of the runs (Fig. 5). According to Fig. 5,
the tolerance 1 × 10−5 gives stable residual values,
i.e., the residual remains the same as with the toler-
ance values up to 10−6. At the same time, the number
of nonconvergent runs does not increase significantly
compared to the tolerance 1 × 10−4 (Fig. 7). The de-
crease of the tolerance number up to 10−6 increased
the calculation time (Fig. 6), significantly increased
the number of nonconverged attempts, and did not
decrease the residual, i.e., did not increase the qual-
ity of the fits. In addition, the investigation of the fits
for N ¼ 23, where the number of nonconverged at-
tempts was 0 for the set of tolerance numbers from
10−2 to 10−5 and the number of nonconvergent at-
tempts at 10−6 was 4, the smallest among all other
runs (Fig. 7), which showed stabilization of the re-
sults with tolerances from 10−5 to 10−6 (Figs. 8–
10). Therefore, the tolerance 10−5 was chosen for
the further investigation of the robustness of the sim-
plex fits, i.e., independence from the initial guess.

This investigation involved fitting the entire set of
parameters several times with different number of
intervals between the limits, i.e., with different
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and thermal coefficients versus tolerance. N ¼ 23.
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refining steps of the grid of initial parameters. It is
also seen (Fig. 5) that the main increase in the
precision of the fits takes place when the number of
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intervals is below N ¼ 20. The further refinement of
the initial grid gives stable values of the residual
with no significant improvement. Therefore, the
number of intervals between the limits of parameters
was chosen to be N ≥ 20. The upper bound for the
number of intervals was limited to N ¼ 30 due to
the calculation time length issues discussed above.
Figures 11–14 represent the results of the fits as a

function of the number of intervals N between the
upper and lower limits of the parameters used to
form the combinations of the initial guess sets. It
can be seen that some of the parameters exhibit re-
latively stable values, almost independent of the in-
itial guesses, and others vary considerably.
Table 2 summarizes the results of the fits. It can be

seen that all the ranges between the minimum and
maximum values of the resulting parameters are
considerably smaller than the ranges of the initial
guesses (see Table 1). The decrease in the deviation
range up to 100 times demonstrates that the fitting
algorithm can narrow the initial range down to rela-
tively firm values which can accurately describe the
properties of a sample, based on the best fits to the
experimental scans. One of the most important para-
meters for the quantitative analysis of a layered
structure, the thickness of the prismless layer L1
(Fig. 13), exhibited very stable fitted values com-
pared to the relatively wide range of the initial guess.
Figure 15 represents the final multiparameter

fitting curves for the PTR signal generated by a
healthy tooth, produced with the resulting para-
meters (Table 2) as initial values. The very good
agreement between the experimental and the theore-
tical curves confirms the robustness of the approach
for the simultaneous evaluation of the optical and
thermal parameters of a multilayered tissue struc-
ture applied in our study. The results of this study
have been further used in the in vivo optical and ther-
mal evaluation of dental tissue structures during the
demineralization process [25]. This type of analysis
can allow for noninvasive detection of subsurface car-

ies formation, thus opening a much needed possi-
bility for preventive dental treatments.

6. Conclusions

The coupled diffuse-photon-density and thermal-
wave model allowed for the theoretical description
of the photothermal field generated in a sample fol-
lowing absorption of modulated near-infrared laser
radiation. The optical (absorption and scattering)
coefficients and thermophysical parameters (spec-
trally averaged infrared emissivity, thermal diffusiv-
ity and conductivity) of each layer, as well as the
thickness of the upper prismless enamel layer, were
fitted using the simplex downhill minimization algo-
rithm. The results showed that the multiparameter
fitting approach developed in this work can increase
the robustness of the estimation of multiple tissue
properties. The described method has been further
used for noninvasive optical and thermal evaluation
of dental tissue structures during an artificial de-
mineralization process [25].
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