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Abstract. A model for the description of the strong 
thermal-wave nonlinearity exhibited by a non-stationary 
("breathing") crack (delamination) in a solid is proposed. 
The description of the nonlinear thermal-wave frequency 
spectrum both in the regime of the laser-induced thermal 
tansparency and of the laser-induced thermal darkening 
of the crack is presented. The conditions under which the 
amplitude of the thermal-wave second harmonic becomes 
on the order of the fundamental thermal-wave amplitude 
are derived. It is further demonstrated that the dependence 
of the photothermal response on the pump-laser inten- 
sity provides mechanical information on the crack 
(delamination). This type of informaton is different from, 
and additional to, that provided by the traditional mea- 
surements of the photothermal-response dependence on 
laser-beam intensity modulation frequency. 

PACS: 78.20.Nv, 03.40.Kf, 62.20.Mk 

Growing interest in nonlinear photothermal phenomena 
has been motivated by several experimental investigations 
which demonstrated that the thermal-wave second- 
harmonic detection can provide better contrast both in 
photothermal microscopy [1, 2] and in photothermal 
depth-profilometry [3]. Experimentally observed ampli- 
tudes of the thermal-wave second harmonic were on the 
order of one percent of that of the fundamental frequency. 
This correlates well with our theoretical estimates [4, 5], 
which take into account the dependence of the material 
heat capacity C = C(T) and thermal conductivity K = 
K(T) on temperature T [4, 5], and on the thermal expan- 
sion of solid layered structures [5]. The theoretical models 
presented to-date [4, 5] were based on the method of 
stepwise successive approximations, the justification of 
which is based on the assumption of the weak thermal 
nonlinearity of the system. 
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Nevertheless, as was first noted in [1], thermal non- 
linearity may be caused not only by the nonlinearity of 
the physical parameters of the material (such as C and 
K) but also by the presence of material defects such as 
sub-surface cracks and delaminations. In this case, a mod- 
ulation in the "effective K" will be caused by the periodic 
thermomechanical opening and closing of a crack 
resulting in a periodic change in the thermal boundary 
conditions. This effect was first investigated in the regime 
of weak thermal nonlinearity in [2], where the "breathing" 
crack was modulated by the nonlinear thermal resistance 
R = R(~), where q~ is the heat flux across the resistance and 
zl T is the temperature change. Under this condition, the 
temperature change A T can be written [2] 

~T --= R(~b)~b. (1) 

In the regime of weak nonlinearity, R(~b) is described by a 
linear function of~b (AT = Ro(~ + Rx~b 2) [2]. Note that the 
application of the stepwise successive approximation meth- 
od [1, 2, 4-6] leads directly to linear dependence of the 
amplitude of the fundamental frequency thermal wave, 
and to quadratic dependence of its second harmonic, on 
pump-laser intensity. Thus, there always exists an upper 
intensity limit for the validity of this approximation. 

1 Theoretical 

In the present work we have theoretically investigated, 
for the first time, the photothermal response of a non- 
stationary ("breathing") crack in the regime of strong 
nonlinearity. We have determined the conditions under 
which the amplitude of the thermal-wave second (and 
higher order) harmonics become comparable to that of the 
fundamental frequency. We have also showed that moni- 
toring the dependence of the amplitudes of the harmonics 
on the laser-induced heat flux, which is proportional to 
pump-laser intensity, provides additional information on 
the crack or delamination. 

We start from a simple photothermal model, i.e. we 
consider a coating (0 < z < H) on a semi-infinite backing 
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(z > H), where H is the thickness of the coating. The modu- 
lated light beam induces a heat flux Je from the irradiated 
surface (z = 0) into the sample: 

- K 8_ T(z = 0) = d E .  (2) 
U Z  

Assuming that the crack or delamination is localized at 
the interface z = H and is thermally thin, we describe it by 
the thermal resistance R [7, 8] 

A T =  T ( z = H - O ) - T ( z = H + O )  

= - R K ~ z T ( Z = H - - O ) - R O .  (3) 

In this work, in order to demonstrate the major physical 
features of the phenomena under investigation we further 
assumed that the backing (z > H) plays the role of a heat 
sink which saturates the temperature 

T(z = H + 0) - 0.  (4) 

This situation is of practical importance, as the backing is 
typically used in applications not only to support thin 
films but also for their cooling (e.g. in semiconductor 
lasers;with silicon-on-sapphire structures etc.). To achieve 
sufficient cooling it is important to have a thermally thin 
coating, i.e. the thickness should be less than the thermal 
wave penetration (thermal diffusion) length x/~/2co, where 
D = K/C is the thermal diffusivity of the film and co is the 
characteristic angular frequency of the thermal waves. 

Under the condition H:  << Dido, the equation for heat 
conduction 

(82 i 8 )  T(z't) = z D St ' (5a) 

with the boundary conditions (2-4) reduces to the ordinary 
differential equation for the flux ~b 

CH d (Ro)(t ) 4- O(t) ~- JL(t), (5b) 

while the surface temperature usually detected experimen- 
tally is determined by 

T(z 0; t) ~-- n = ~ JL(t) + (R(~)(t). (6) 

In the present report we will also assume that the internal 
thermal resistance of the coating to the heat flux (i.e., H/K) 
is much less than the external thermal resistance 

H/K << R .  (7) 

Therefore, we will treat our system as a lumped heat- 
capacity system [9]. Then, (5b) and (6) provide the follow- 
ing description of the time evolution of the film tempera- 
ture T - T(0): 

T(0; t) + 1 T(0; t) - JL(t) 
8-tt ZR CH ' (8) 

where ~R -= CHR is the thermal time constant of the film, 
i.e. the characteristic cooling time of the thin homoge- 
neously heated film, as a result of heat transfer through the 
thermal resistance. 
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In order to use (8) for the examination of nonlinear 
photothermal phenomena it is necessary to describe the 
dependence of the crack thermal resistance on tempera- 
ture. We assumed the thermal resistance to be propor- 
tional to the thickness h of the gas layer inside the crack 
or delamination: R = h/Kg [7, 8, 10], where the value of 
the gas effective thermal conductivity constant Kg depends 
on the regime of gas heat transfer (i.e. diffusional or ballis- 
tic [7, 10]). In most cases the h dependence on temperature 
may be modelled by h(T) = h (°) + yT (here, h (°) is the 
gas-layer thickness in the absence of laser action and 7 is 
a proportionality constant). For example, if the elastic 
interaction of the coating and the backing is negligible, 
then closing of the crack caused by the thermal expansion 
of the film should take place y --~ - f l * H  (? < 0), where 
fl* > 0 is the effective bulk thermal-expansion coefficient 
of the coating in the one-dimensional geometry [11]. If 
there exists perfect elastic bonding between the coating 
and the backing around the delamination not far from the 
tested area, then additional opening of the crack caused 
by the predominance of the thermoelastic bending of the 
thin film may be expected [12-14]: 

7 ~ fl*r2/H (7 > 0), (9) 

where r is the characteristic linear dimension of the 
delamination. These possibilities define two different types 
of non-stationary, or "breathing" cracks. 

We can model both situations introducing the constant 
= y/h (°) in the description of the temperature dependence 

of the characteristic time ZR: 

~R = ~°)(1 + a T ) .  (10) 

Here, z~o) = CHRo = CHh(O)/Kg is the coating time con- 
stant in the absence of heating. The description of (8) and 
(10) encompasses both the regime of laser-induced thermal 
transparency (i.e. when a < 0 and the thermal resistance 
of the crack decreases with increasing laser intensity) and 
the regime of laser-induced thermal darkening (i.e. when 

> 0 and the thermal resistance of the crack rises with 
rising laser intensity). 

For harmonic modulation of the laser-initiated heat 
flux 

JL(t) = J0(1 + coscot). (11) 

The solution of the problem of (8, 10) by the method of 
stepwise successive approximations [4, 5, 10J and with the 
additional separation of the average T o and oscillating Tos~ 
components can be presented in the form: 

T= To + To,¢= To + ~ T~, (12) 
n = l  

where 

To 

1 (Jo~  1 cos[~ot -- tan-l(~z~R°))J , 
+ 

(13) 

(14) 

and 
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1 

T2~ -~ 2 ~  ~ [1 + (C0~(R0))2JX/1 + (2C0Z(R0)) 2 

× COS [2cot -- 2 tan -1 (COZ(R °)) -- tan -1 (2COZ(R °)) 

- -  (1 -- sgn ~)u/2]. (15) 

Here Jet - 1/]a] Ro is the characteristic critical magnitude 
of the thermal flux. The solution (14) is valid for Jo << Jor 
at all frequencies. In estimating the nonlinear photo- 
thermal effects, a useful parameter is the ratio of the second- 
harmonic amplitude A2~ to the square of the funda- 
mental wave amplitude A~, because the latter does not 
depend on laser intensity in the regime of weak pumping 
Jo << Jc~ [4]. For the system under consideration we ob- 
tain from (14) for O~Z(R °) << 1: 

N =-- Az~/(A~,) 2 ~ I~l. (16) 

In the case of the laser-induced thermal transparency, (16) 
leads to N ,,~ fl*(H/h(°)). This nonlinearity is significantly 
stronger than the one associated with the thermal expan- 
sion of the system composed of solid layers (N ~ fl*) [5]. 
In fact, even under the restriction of lumped heat capacity 
[condition (7)], i.e. H/h (°) << K/Kg, one can choose H/h (°) 
103 (for example, for the metal-gas combination K/Kg > 
10 a is typical). The explanation of this strong nonlinearity 
is rather self-evident: the thermal expansion of the solid 
layer predominantly modulates not its own thermal resis- 
tance, but the thermal resistance of the trapped gas layer, 
and the latter process is ~ (K/Kg) times more efficient. 

The solution (14) further demonstrates that there exists 
the parameter COZ(R °) which, in addition to the parameter 
(Jo/Jcr), may force the higher-harmonic amplitudes to de- 
crease with increasing order. This fact allows us to apply 
the stepwise successive approximation method at high 
frequencies, too (mZR >> 1), assuming that the major ther, 
mal resistance changes are controlled by the average tem- 
perature field, i.e. 

1 + aTo >> I ~ T o ~ l  • ( 1 7 )  

Using the ratio ]~Tos=l/(1 + ~To) << 1 as a small parameter 
we obtained the following solution of (8) subject to (10): 

1 (Jo/Jor) (18a) 
I~1 E1 - sgn~(Jo/J¢~)] 

_~ l ( J o ~  1 
T o I~x[ \ J c r / / ~ c o s ( ~ t  - 7r/2), (18b) 

1 ( J o ) Z [ 1 - s g n o ~ ( J o / J ¢ r ) ]  3 
T2°) ----- 4 ~  J c r  ((-0~(0') 3 

× cos[2c~t - 3u/2 - (1 - sgn a)u/2]. (18c) 

Given that in the regime of the laser-induced thermal 
darkening, *R is an increasing function of the thermal 
flux, the conditions for the validity of (18b) for a > 0 are 
strengthened with increasing pumping: 

COX "(°) >> 1 - -  ( J o / J c r )  ; 0 < Jo < J~r. (19) 

The solution (18a) for the average temperture To in the case 
of thermal darkening becomes unbounded when Jo 
approaches the critical value. It is apparent that one 
should take into account other nonlinearities (e.g. the one 
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associated with radiation heat transfer) to avoid this singu- 
larity. Furthermore, it is important to remember that the 
gas layer itself becomes thermally thick for sufficiently 
large Jo and thus cannot be described by the concept of 
thermal resistance. 

Equation (18b) describes the monotonic increase of the 
fundamental frequency component T o, and (18c) shows the 
non-monotonic behavior of the second-harmonic ampli- 
tude T2~ with increasing laser-induced thermal flux. The 
maximum of the second-harmonic amplitude is achieved 
when Jo --- (2/5)Jcr- The explanation of the second-har- 
monic amplitude decrease for fluxes higher than (2/5)J,  
can be sought in the relaxational nature of the nonlinearity 
in the system under consideration: One can readily see 
from (8) that the nonlinearity is suppressed with increasing 
ZR and this is exactly what takes place with increasing laser 
pump power in systems with induced thermal darkening. 
This explanation correlates well with the monotonic de- 
crease of the nonlinear parameter N introduced in (16) 

U =- A z o / ( A ~ )  2 ~ [c~l(1 - -  J o / J c r )  3 • (19) 

If one is interested in the relative magnitudes of the funda- 
mental and the second-harmonic amplitudes in (18b, c) 
then this ratio exhibits a maximum for Jo ~- (1/4)Jet. 

The solution set of (18) shows that in the case of laser- 
induced thermal transparency (a < 0) the average temper- 
ature To saturates for large pump-induced heat fluxes: 

To --* 1/[~1, when Jo >> Jcr, 

while the thermal resistance approaches the zero value (i.e. 
a completely closed crack) only asymptotically: 

R ~ Ro/(Jo/Jcr ) when J >> Jcr" 

Since in this regime the characteristic time VR increases 
with increasing pump power, the condition for the validity 
of (18) becomes more stringent under high pumping: 

O~Z(R °) >> max[l ,  Jo/J~r]. 

The nonlinear parameter N in this regime grows mono- 
tonically with increasing laser-induced heat flux in corre- 
lation with decreasing ~R" It should be remembered that 
the magnitude of the thermal resistance is bounded in 
the model leading to (8) from below by virtue of the condi- 
tion (7). 

An exact analytical description of the entire thermal- 
wave spectrum can be formulated in the quasi-stationary 
regime, i.e. at low frequencies o~ R << 1: 

r = [~ 1 - JNsgna(x/1 -- JNsgne + 1) 

+ ~ 2(JN)" 

,=x x/1 -- JN sgn ~(x/1 -- JN sgn ~ + 1) 2" 

× cos[ncoot -- (1 -- sgn ~)(~/2)(n -- 1)] t . (20) 

Here JN is the normalized laser-induced thermal flux JN - 
2Jo/Jcr. By comparing (18) and (20), one can readily see 
that in this low-frequency regime the critical value of the 
flux is twice as low as in the high-frequency limit. This is 
caused by the fact that in the quasi-stationary solution (20) 
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of (8) and (10) we were able to model the contribution of 
the oscillating flux components to the average temperature 
field, as a result of the oscillating nonlinearity introduced 
by the breathing crack itself. 

In the limit of weak pumping (i.e. JN << 1) the solution 
(20) reduces to 

1 ~JN (JN)" 
n = l  2 2n-1 

x cos noJot - (1 - sgnc0~(n - 1) . (21) 

This expression is related to (14) but, in addition, it very 
clearly and directly demonstrates the broadening of the 
thermal wave spectrum as a result of the multiple reflec- 
tions of the thermal wave from the breathing crack. Note 
that the amplitude of the n-th harmonic grows propor- 
tional to (JN)". 

In systems exhibiting laser-induced thermal darkening 
(c~ > 0) the solution (20), in the high pumping limit, i.e. for 
JN - '  1, transforms to: 

+ 22,_1 / l  _ __ cos not  . (22) 
T "~ ~]  JN , =1 J n  

This expression describes a divergence in the temperature 
field components when Jo approaches the critical value 
(Jcr/2). In agreement with (20) the nonlinear parameter 
decreases with increasing thermal flux: 

N ,'~ Jc~lx/f - J w .  (23) 

It also follows from (20) that the ratio of the amplitudes of 
the second and the first harmonic increases roughly pro- 
portional to JN. The solution (20) is valid in a system 
exhibiting laser-induced darkening for ¢OZ~R °) << X/1 -- JN" 

In a system with laser-induced thermal transparency 
(~ < 0) the solution (20), in the high pumping limit (JN >> 1) 
transforms to: 

T~- ~ 1 + ~ ~ c o s [ n o ) o t - -  1) (24) 
L 2 ( n  - " 

This equation describes the saturation of the average tem- 
perature field, as well as the decrease of the oscillating 
components with increasing laser intensity: 

T. ,-, 1 / ~ / ~ .  

The dependences of the normalized partial thermal wave 
component amplitudes 

0~ -- la] Am ; m = 0, 1, 2, 3 (25) 

on the normalized heat flux JN plotted in accordance with 
the solution (20) are presented in Fig. l. One can see that 
the amplitudes of the first and the second harmonic, curves 
2 and 3, respectively, become of the same order of magni- 
tude already for JN "~ 1, i.e. for Jo "~ J , -  The nonlinear 
parameter N is a growing function of JN: 

N ~ I~1~/1 + J~ .  (26) 

Considering the induced thermal transparency one should 
take into account the fact that z~ decreases with increasing 
pump power in such systems. Thus, the condition for the 
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Fig. 1. The dependence of the normalized amplitude 0,, of the 
average temperature field and the first, second and third harmon- 
ics, curves 1-4, respectively, on the normalized laser-induced 
heat flux Jw in the quasi-stationary regime of thermal transpar- 
ency [(20), a < 0] 

validity of the quasi-stationary approximation is strength- 
ened with increasing thermal flux: 

°) << , / 1  + JN. 

2 Discussion and Conclusions 

In this work, we presented a theoretical model for the 
description of the laser-induced thermal transparency and 
thermal darkening of a sub-surface non-stationary crack, 
or delamination, thermally close to the irradiated sur- 
face. The derived asymptotic solutions of the nonlinear 
thermal-wave problem describe both the regimes of low- 
and high-laser modulation frequencies, as well as the cases 
of weak and strong laser-induced thermal fluxes. The 
presented theory predicts significant changes of the ampli- 
tude and phase of the fundamental frequency and of the 
second-harmonic amplitude and phase with increasing 
laser pumping. In the weak pumping limit (Jo << Jer) the 
description of both systems (i.e. those with a < 0 and a > 
0) is the same and is given by (14). However, in the strong 
pumping limit a system with induced thermal transpar- 
ency can be described in the low-frequency regime by (20) 
for J >> (Jor/2) [1 + (COZ(R0))2]. A system with induced ther- 
mal darkening can be described in the high-frequency 
regime by (18) for (1 - J/Jcr) << COZ(R °)" 

It is noteworthy that both amplitude and phase depen- 
dences on the modulation frequency in the weak pumping 
regime J << J¢~, (14), can be used in applications for the 
determination of the Characteristic time ZR, which contains 
information about both the layer thickness and the crack 
thermal resistance, z R = C H R .  These two parameters can 
be separated out by absolute temperature measurements 
at low and high frequencies. For example, in accordance 
with (14), the amplitude of the fundamental-frequency 
wave at low frequencies (cov~ °) << 1) depends only on the 
parameters of the crack: 

Ao, ~ JL R , 
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while at high frequencies (COr(R °) >> 1) it depends only on the 
parameters of the coating: 

A~ ~ Jo/CHco. 

The amplitude of the thermal-wave second harmonic in 
these limiting cases depends both on the parameters of the 
coating and on the parameters of the crack (14). This may 
provide better contrast in nonlinear photothermal micro- 
scopy and depth profilometry than in conventional 
photothermal measurements. 

Furthermore, the developed theory predicts that addi- 
tional information on the system under consideration may 
be obtained from its nonlinear behavior by observing the 
dependences of the harmonic amplitudes on pump-laser 
intensity, (18, 20). For  example, one can extract the value 
of Jcr ~ [c~[R from the saturation of the growth of the 
oscillating components in the case of induced thermal 
transparency, (20) and Fig. 1, or from the maximum of 
the second-harmonic amplitude in the case of the laser- 
induced thermal darkening (18). 

Finally, we wish to point out that there are no diffi- 
culties, in principle, in taking into account in the above 
theory the internal thermal resistance of the overlayer, as 
well as the possible existence of additional thermally thin 
layers of other materials between the delamination and the 
heat-sink. This extension may be important for experimen- 
tal applications. 
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