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A novel infrared photothermal radiometric deep-level transient spectrog3p3-DLTS has been
developed for semiconductor noncontact characterization and applied to GaAs wafer diagnostics.
The technique is based on rate-window detection combined with wafer temperature ramping. Unlike
other deep-level methodologies, PTR-DLTS should be easily implemented remotely for on-line or
off-line impurity/electronic defect diagnostics and enjoys high spectral peak separation and spatial
resolution limited only by the pump laser beam foc(’s1 um). The impurity level in a
Cr-compensated semi-insulating GaAs wafer has been detecte®iratK using the 514 nm line of

an Ar' laser. A Te-doped GaAs sample exhibited behavior consistent with photoinjected carrier
lifetime enhancement due to surface stdtap) thermal filling at elevated temperatures. 195
American Institute of Physics.

In this letter we report a feasibility study of the recently signal-to-noise ratio afforded by the lock-in amplifi&tA ).’
introduced photothermal rate-window detection techriqgae  The optical pump was an Arlaser emitting~1 W at 514
deep electronic level diagnostics in semiconductors. The maam. The modulation square-wave form of the laser-beam in-
tivation for introducing the present novel methodology wastensity was controlled by an acousto-optic modulator
the limited availability of existing noncontatind especially (AOM). Temperature ramps were introduced by a heater/
remote deep-level transient spectroscopic technicfiés. temperature controller with heating rates programmed by the
These techniques tend to be quite restrictive in their applicacomputer. The PTR-DLTS apparatus further allowed the ac-
tions’ scope. For instance, laser-microwave deep-level tranguisition of optical conductance deep-level transient spectra
sient spectroscopyLM-DLTS) requires, for detection, the (O-DLTS) with the use of a metallic needle probe, a voltage-
presence of free carrier concentrations within limits deterpulse generatathe same as the one driving the AQ&hd a
mined to bé 8.3x10'%=n=<2.6x10*° cm 3. Boonton Model 7200 Capacitance Meter, the output of which
Furthermore, the spatial resolution of LM-DLTS is limited was connected to a second LIA. Three samples were exam-
by the microwave probe-beam spotsigen the order of ined: a Cr-compensated semi-insulatii§l) sample; an
10-20 mm(Ref. 3], which is usually too large for device n-GaAs, Cr-compensated, and Te-dopedx@!” cm™3)
structure imaging compared to the laser carrier photoinjecwafer; and a Au-coated GaAs wafer used as a purely
tion beam spotsizéon the order of 50—-10@m and possibly  thermal-wave photothermal radiometiBTR) signal wave
much less;~1-5um). On the other hand, surface photovolt- form generator for comparison purposes. Temperature scans
age deep-level transient spectroscdfyPV-DLTS is virtu-  were performed in the range 310—400 K, which includes the
ally a contacting technique, owing to the requirement forO-DLTS peak at~375 K due to the Cr-level in eithgr or
extreme closeneg®.2—-0.5 mm(Ref. 5] between the wafer n-type GaA< PTR rate-window scans of the GaAs:Cr were
surface and the transparent conducting pick-up electrode reptained, clearly indicating an optimal duty cyetg/To in
quired for adequate capacitve coupling. Furthermore, the suthe range 40%-60%, whers is the pulse duration ant,
face photovoltage technique may possibly exhibit practicals the pulse repetition period. The PTR-DLTS spectra of the
difficulties in performing rapid scanning imaging of the wa- GaAs:Cr and the GaAs:Te samples were obtained under
fer surface as it requires perfect constancy of the wafefdentical experimental conditions with,=15 us and repeti-
surface-electrode distance to yield meaningful relative sigtion period 30us, Fig. 1. In GaAs:Cr a peak consistent with
nals. Photothermal rate-window spectrometry of semiconthe Cr level in GaAs appeared at370 K, Fig. 1a), the
ductors has exhibited very good sensitivity to various impu-exact position of the peak depending on the aciyatho-
rity species in Si(Ref. 6 and in this letter we report its sen; significant peak shifts to lower temperatures were ob-
extension to a full deep-level spectroscopic technique iserved when the pulse repetition period was varied between
GaAs. 30 and 9Qus. The position of the rather flat GaAs:Te peak is

The infrared photothermal radiometric deep-level tran-at ~320 K, Fig. 1b), the peak separation between the two
sient spectroscopfPTR-DLTS instrumentation described in  samples attesting to the high spectral resolution of PTR-
this letter was described elsewhere within the context of ratebL.TS. Te doping in GaAs is not known to produce deep
window detectior?. Lock-in rate-window detection was pre- electronic levels. Furthermore, the GaAs:Te peak shifted in
ferred over a dual-gate boxcar integrator due to the highethe opposite direction from that of the GaAs:Cr sample with
varying To. Therefore, the nature of this peak must be quite

aEjectronic mail: mandelis@me.utoronto.ca different from that exhibited by GaAs:Cr. The GaAs:Cr peak
POn leave from IFUG Universidad de Guanajuato, Mexico. is broader than those obtained by Mawinal® using capaci-
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earlier reporté. The signal level was more than 20 times

9.0 — — 4.0 .
E ' N lower than the PTR-DLTS. Nevertheless, the peak is well
_esh ity Ooooo °°Oooo 139 resolved in the 370 K range, in good positional agreement
s * RN (Q)OOoO 1 3 with the spectrum(a) of Fig. 1. Generally, it was observed
280F LT °q 3.8 = that GaAs PTR-DLTS spectra yield optoelectronic informa-
S .5k OO xxX 155 E tion in the T,<<100 us range. Longeil, ranges, however,
2 ) X 1 2 yield thermal-conduction transient wave forms and PTR-
0 70F oo o J36 DLTS “spectra” characterized by peak shifts to higher tem-
g - o “x ] g peratures with increasety. This trend was similar to that
o 6.5 o X, 339 & observed with the GaAs:Te wafer in the PTR-DLTS spec-
NN © “~ 1. K trum (b) of Fig. 1. TheTy<100 us transient signal wave
6OF o (b) "x 3.4 . . -
o x ] forms were quite different from thermal conduction
Y S N R N T transients? giving very clear evidence that the DLTS peaks
300 320 34OT [K]36° 380 400 and peak shift trends in both GaAs:Cr and GaAs:Te wafers at

To<100 us are due to electronic, rather than thermal,
phenomena.

The PTR-DLTS signal from semiconductors due to op-
tically injected carriers originates from the contributions of

o ) each free excess carrier to the black-body emission measured
tance O-DLTS, which is partially due to the fact that a LIA, by the mercury—cadmium—telluridéMCT) detector. For

rather than a dual-gate boxcar integrator was used for oWhaque semiconductors, such as the Ar-laser-excited un-
measurements: the LIA affords high signal-to-noise r"?‘t'ocoated GaAs samples in this work, if a single bulk impurity
(SNR) and broadened DLTS peaks, whereas the boxcar int§gye| and measurable carrier recombination at surface defect

grator yields a relatively poor SNR, but sharper peak®  gjtes are involved, the PTR transient signal has been shown
wafer coated with a~1000 A thick Au layer. Further inves-
+e Y W(\t/rg)—1],
Au thin film, following optical absorption and the subsequent
requiring electrical contacts, such as O-DLTS, is in thecarrier lifetimes, respectively, antf(x) is a function encoun-
o . . . 2

resistivity materials, such as Sl-GaAs. Neither capacitance,
were we able to obtain a high enough SNR in the conducCtut-off versus time for both GaAs:Cr and GaAs:Te wafers.

from the early decay sloper{~2 us), and the estimation

DLTS peak could be found within th&,<100 us range iy pave the following functional dependerfte:
tigation showed that there is a peak for this sample in the 1
3 ) ) . SZ(t7T7TS):Sl(t1TiTS)_Sl(t_TpaTITS)v
nonradiative deexcitation.
strength of the signal: The latter methods exhibit a muchterecj in time-domain diffusion-type problems:
nor conductance O-DLTS signal could be obtained for thel he validity of the single-level assumption was verified by
tance(but not in the capacitangehannel, so as to record an Two distinct slopes were observed and excellent fits were
of 7 from the late slopér-20 us). The temperature depen-

FIG. 1. PTR-DLTS spectrum ofa) Cr-compensated S| GaAs; arid) of
Cr-compensated and Te-dopeeGaAs. 7,=15 us; To=30 wus.

@

-
t<mp,;

t=7,,

(which characterizes the spectra of Fig. it the n-GaAs
S,(t,7,75)=constank [ 7/ 7 erf(yt/ 1)
ms range, which is purely due to thermal conduction in the
A major advantage of PTR-DLTS over DLTS methodswherer(T) and¢(T) are the semiconductor bulk and surface
lower signal response level from intrinsic and other high- W(x)=ex2 erfa(x).
GaAs:Cr wafer forTo<100 ws. Only for Ty=500 us fitting into Eq. (1) the PTR decay signal following the pulse
O-DLTS spectrum as shown in Fig. 2, in agreement withobtained which allowed the unambiguous estimationrof

dence of the lifetimes under low injection conditions was

R e e e T
- modeled by use of the Shockley—Read—HSIRH) theoreti-
_obp cal formalism!! Assuming a trap density much smaller than
s the equilibrium intrinsic carrier density, the SRH formula
505k
R reduces t&
% 04 7(Tm)=constank T, exp( AE/KT,,), ©)
z 0.3 — whereT,, is the temperature of the DLTS maximu(peak
g - and AE=E;—E, (for p-type materials or AE=E,
P02 — E+ (for n-type materials Here the subscriptd/,C,T) stand
© 01 b for valence band, conduction band, and trap/impurity energy
level, respectively. The PTR-DLTS maxima for several pulse
0.0 repetition pepods from the GaAs:Cr and GaAs:Te Wafgzrs
T [K] were plotted in an Arrhenius plot in Fig. 3. Consistently with

FIG. 2. Conductance O-DLTS spectrum of GaAs:@p=250 us; Ty

=500 us. Applied bias voltage: 0 V.

Appl. Phys. Lett., Vol. 67, No. 11, 11 September 1995

the direction of the PTR-DLTS peak shifts, the signs of the
two slopes were opposite. For the GaAs:Cr sample, an acti-
vation energy ofAE=0.73 eV was extracted from the slope
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optical penetration depth on the order ofuin, and in the

3‘03 ' ' absence of deep bulk levels to influence the photoexcited
,sf ] carrier recombination, the surface conditions of the GaAs:Te
“ 1 wafer are expected to dominate the PTR-DLTS signal, yield-
Job Y GaAs:Cr ] ing an activation energAE characteristic of surface-state
PR ; AE=0.73eV 1 and near-surface-state trapping processes. A similar mecha-
161 -F ] nism was reported earlier with PTR rate-window detection
\‘;/ 1 from deep-level impurityCr-) dopedn-type Si® Changing
"o F . ] the wafer surface treatment conditiofesg., by a chemical
i CahsiTe etch and/or comparing PTR-DLTS results obtained with
osk AE=-0.36eV E shallow and deep penetrating photon sources, the relative
i ] bulk/surface contributions to the signal can, in principle, be
O.Oi N e T deconvoluted to a large extent and the measured activation
2.4 26 2.8 3.0 3.2 energy of the GaAs:Te sample can be better understood. Ex-
1000/7 periments with a 1.0um cw Nd:YAG laser are currently
under way.

FIG. 3. Arrhenius plots of the PTR-DLTS temperature dependent lifetimes . .
from the peak positions of several spectra of GaAs:Cr and GaAs:Te samples Based on the foregoing evidence, there are excellent

obtained with 7,/ To=0.5 andT,=30, 50, 70, and 9Qus. prospects for the novgl technique to b.e develope_d to a re-
mote, fully noncontacting, process quality control diagnostic

of the curve. This value for the Cr-level activation energy infor ) reql—time in situ chgracterization of semicondu_g:tor—
GaAs is in excellent agreement with the 0.6-0.88 eV valuciNafer natl\_/e and process—m_duced deep-leyel d'efects(la)nd
range obtained using electrical capacitance deep-level tra or fast, high-spatial-resolution scanning imaging and map-
sient spectroscop{E-DLTS)'? and O-DLTS® Furthermore,

both those conventional DLTS techniques measure carri
lifetime temperature dependences whigdbcreasewith in-

creasingT, and this is also the case with PTR-DLTS. This h "I;Ihe aulthsor_s Would InéeEto gckngwlegge thehs%pport_loff
lifetime behavior can be considered to be characteristic o? e Natural Sciences and Engineering Researc ouncii
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