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Infrared photothermal radiometric deep-level transient spectroscopy~PTR-DLTS! has been applied
to noncontact diagnostics of ap-Si wafer. Both negative and positive peaks in the PTR-DLTS signal
temperature scans have been detected. A behavior consistent with photoinjected carrier lifetime
enhancement due to the thermal filling of B1 dopant levels in the band gap has been observed. The
activation energies of 43 meV~negative peaks! and 60 meV~positive peaks! have been extracted
from the corresponding Arrhenius plots. ©1997 American Institute of Physics.
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In this letter we report the results of application of t
recently introduced infrared photothermal deep-level tr
sient spectroscopy~PTR-DLTS!1,2 to electronic level diag-
nostics in silicon. This new technique is based on the ra
window detection principle3 combined with wafer
temperature ramping. The motivation for introducing t
PTR-DLTS methodology was the limited availability and r
strictive character of existing techniques, such as the la
microwave4 and the surface photovoltage5 deep-level tran-
sient spectroscopies. Several advantages of the new me
over existing technologies—high spectral peak separat
high spatial resolution and no need for electrical contact
have been demonstrated recently in PTR-DLTS applicati
to noncontact measurements of deep impurity levels in G
and characterization of SiO2/Si MOS capacitor
structures.1,2,6 In this letter we discuss the PTR-DLTS dete
tion of shallow impurity levels in high-quality Si wafers.

The PTR-DLTS instrumentation setup used in t
present study was similar to those described previousl1,6

An Ar1 laser emitting;1 W at 514 nm was used as a
excitation source. The modulated square waveform of
laser-beam intensity was controlled by an acousto-o
modulator. The resulting infrared radiation emitted from t
sample surface was collected by two off-axis paraboloi
mirrors and detected using a liquid N2-cooled photoconduc
tive mercury–cadmium–telluride~MCT! detector with a de-
tection bandwidth of 2–12mm. Temperature ramps were in
troduced by a heater/temperature controller with the en
process being controlled by the computer. Special arran
ments of the setup have been made to accommodate
large-size wafers~diameter 10 cm!. The heating system wa
capable of varying and maintaining the sample tempera
up to 473 K with60.5° precision. A high-quality FZp-Si
wafer ~thickness 525mm, diameter 10 cm! doped with boron
to the resistivity of 10–15V cm was studied in several lo
cations across the surface.

The PTR frequency-domain~PTR-FD! method supple-
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mented with a finite-thickness, simultaneous amplitude-a
phase fitting algorithm,7 was used to determine the carri
lifetime ~t! and the surface recombination velocity~s!. The
modulation frequency range used for the PTR-FD scans
100 Hz–125 kHz with the lower limit chosen so as to pr
vent the thermal component from dominating the PT
signal.8 The two-parameter fitting of the correspondin
PTR-FD frequency responses yieldedt5350ms and s
5210 cm/s at 300 K.

The PTR-DLTS temperature scans of the Si wafer w
performed with fixed ratio of the pulse duration (tp) to the
pulse repetition period (T0) ~duty cycle!, equal to 50%. The
PTR-DLTS amplitude, phase, quadrature~Q!, and in-phase
~IP! components were recorded as a function of sample t
perature at variousT0 . Figure 1 represents some of the
PTR-DLTS spectra obtained withT0590ms. As has been
found in our previous studies of Si-based structures,6 the
PTR-DLTS phase temperature dependencies~Fig. 2! are
very important and more sensitive to the presence of
DLTS peaks than those of the amplitude, in-phase,

FIG. 1. PTR-DLTS amplitude, in-phase~IP! component, quadrature~Q!
component, and combined IP1Q spectra of FZp-Si wafer obtained with the
pulse repetition periodT0590ms and duty cycletp /T0550%.
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quadrature components of the signal. Neither the in-ph
nor the quadrature component temperature dependen
alone exhibited well-defined extrema in the temperatu
repetition period range used~Fig. 1!. However, the combined
IP1Q experimental parameter was found to possess a
temperature peak resolution and was as sensitive as the
DLTS phase. Both the phase and IP1Q peaks were repro
ducible in several different locations across the wafer a
were both considered as measures of the temperature de
dence of the carrier lifetime in the sample.

In contrast to our previous measurements of the SiO2/Si
interfaces where only negative PTR-DLTS phase peaks w
detected,6 in the case of FZp-Si the negative peaks in th
phase and IP1Q temperature dependencies are followed
positive extrema~Figs. 1 and 2!. The lifetimetp which was
assumed to be proportional toT0 @tp(Tm)5hT0# whereTm

is the PTR-DLTS peak temperature, was found to incre
with increasing temperature for both the negative and p
tive peaks in the phase and IP1Q scans asTm shifted to
higher temperatures with increasingT0 .

The Arrhenius plots of the PTR-DLTS lifetimes and th
calculated activation energies for both the first~negative! and
the second~positive! peaks in the phase and IP1Q tempera-
ture dependencies are presented in Fig. 3. It has been f
that both these Arrhenius plots are single exponential, in
cating a single trap. The value ofDE54362 meV was
found for the negative peaks both in the PTR-DLTS ph
and the IP1Q, while the same analysis yieldedDE560
63 meV for the corresponding positive peaks. Although
positive peaks were observed in a narrower temperat
repetition period interval than the negative ones, they w
reproducible in all tested locations across the wafer. The
relation between the PTR-DLTS phase and the IP1Q
Arrhenius-plot data was found to be very good with resp
to activation energy values as shown in Fig. 3.

The activation energies obtained from the phase

FIG. 2. Normalized PTR-DLTS phase spectra of FZp-Si wafer with various
pulse repetition periods (T0). Duty cycle 50%. Only the part of each spe
trum close to two extremes is shown.
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IP1Q data signal channels can be attributed to shallow e
tronic traps above the valence band and below the cond
tion band, respectively. The activation energy of 43 meV c
be assigned to the substitutional acceptor~boron,DE544.5
meV above the valence band,9! while the value ofDE
560 meV is close to that reported for the double therm
donor ~DE561 meV below the conduction band,10!. These
relatively low activation energies were the reason for wh
the PTR-FD frequency responses measured at various
peratures exhibited small thermal shifts. Nevertheless,
activation energies of 44. 5 and 60 meV are greater than
thermal quantumkBT ~26 meV at room temperature and 4
meV at 473 K!, and thus can be measured by the PTR te
nique in the 300 K<T<473 K range. In this temperatur
range the thermal occupation probability of the dopant lev
changes greatly. It appears that PTR-FD is not as sensitiv
minute lifetime variations with temperature associated w
small activation energies, whereas PTR-DLTS which is
pable of a higher signal-to-noise ratio,11 is more sensitive,
and can measure such variations.

In conclusion, the foregoing results show the ability
the PTR-DLTS technique to detect shallow doping levels
Si, including the B1 state inp-Si.
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