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Perturbation Theoretical Approach to the Generalized 
Kubelka-Munk Problem in Nonhomogeneous Optical Media 

A N D R E A S  M A N D E L I S *  and J .  P. G R O S S M A N  
Photothermal and Optoelectronic Diagnostics Laboratory, Department of Mechanical Engineering, University of Toronto, 
Toronto MSS 1A4, Canada 

The generalized Kubelka-Munk problem is considered in nonhomoge- 
neous optical media with arbitrary depth-dependent absorption and scat- 
tering coefficients. Regular perturbation theory is applied to the resulting 
Riccati equation, and explicit expressions are derived for the diffuse 
reflectance and transmittance of a finite thickness layer. The first-order 
perturbation solution to the problem with exponentially distributed ab- 
sorption and scattering coefficients is presented, and the implications 
for the quantitative study of nonhomogeneous optical media, such as 
powdered layers, are discussed. 
Index Headings: Reflectance spectroscopy; Transmittance spectroscopy; 
Analytical methods; Optics; Spectroscopic techniques. 

INTRODUCTION 

The Kubelka-Munk (KM) theory 1 has found wide ac- 
ceptance and applicability in applied spectroscopy due 
to its ability to relate the diffuse reflectance and trans- 
mittance signals to the absorption and scattering coef- 
ficients of a light-diffusing material. The most successful 
use of the KM theory is through the "Kubelka-Munk 
function": 

(1 - R ~ )  2 k 
F ( R ~ )  =- = - (1) 

2R~ s 

where Roo is the diffuse reflectance of an infinitely thick 
sample, k(k) is its absorption coefficient, and s(k) is its 
scattering coefficient, both functions of the wavelength 
of the incident radiation and both assumed to be inde- 
pendent of depth in the material. 2 The simple KM theory 
is further readily extendable to the case where both k = 
k ( x )  and s = s ( x )  are functions of depth with the same 
functional dependence: 

k ( x )  = k J ( x )  (2) 

and 

s (x )  = s J ( x ) .  (3) 
This special case can be encountered with a powdered 
sample, when the packing density varies with depth. Then 
both s and k may be proportional to the density p 
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f ( x )  = p(x)  (4) 

so that  the ratio k / s  will be constant and independent 
of x. Recent experimental results with two types of silica 
powders (Cab-O-Sil and Li Chrosorb) 3 have shown con- 
crete evidence that  variations in packing density of the 
powder may lead to k ( x )  and s ( x )  depth profiles which 
are quite different from each other, and for which no 
simple relation, such as Eqs. 2 and 3, may be found. For 
example, the diffuse reflectance infrared Fourier trans- 
form (DRIFT) spectra of Cab-O-Sil powders of thickness 
d at ~ = 2247 cm -1, a characteristic absorption peak due 
to the chromophor-CN, following treatment with the 
aminosilane DMP.CN, was found to give the best fit to 
a heuristic numerical KM model with K ( x )  = 2k(x) and 
S ( x )  = 2s(x), where 

K ( x )  = C + B exp[-A(1 - x /d ) ]  (5a) 

and 

S ( x )  = C' + B'exp[-A'(1  - x /d ) ] .  (5b) 

The assumption of exponential depth profiles of K and 
S can be justified, somewhat tenuously, if one assumes 
that  the powder density gradient is proportional to the 
density itself at a given depth x and that  the powder size 
increases with depth (i.e., the density decreases)--a typ- 
ical situation arising after ultrasonic (mechanical) agi- 
tation of the powdered system2 

For the dependences of Eqs. 5a and 5b, there can be 
no analytical solution to the KM problem. This is also 
true for all functional forms of K and S, such that  

S ( x )  ~ const. × K ( x ) .  (6) 

The reason why this statement is true is that  the two 
coupled KM equations for the light flux in the forward 
direction, I(x), and in the back-scattered direction, J ( x )  
(see Fig. 1), can be shown to be equivalent to the general 
Riccati equation, which has no known general closed- 
form solution under the condition of Eq. 6. If it did, that  
solution would be equivalent to a quadrature solution 
for all linear second-order equations, which has never 
been discovered. 4 

Lin and Kan 5 considered the KM problem with an 
exponential k ( x )  dependence of the type described in 
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Eq. 5a, while the scattering coefficient s was assumed to 
be depth independent, without further justification. Un- 
der these conditions, those authors were able to find an 
analytical solution in terms of Kummer's confluent hy- 
pergeometric equation. The solution given in terms of 
Kummer's serial function must, however, lie within a 
specified radius of convergence, a typical property of 
series solutions to ordinary differential equations. In that 
particular case the solution was convergent for all values 
of the depth parameter x, with slowest convergence for 
values of x near the sample surface. 

An empirical approach to the fully generalized KM 
problem was adopted by Moser-Boroumand2 The pow- 
dered sample was theoretically divided into thin layers, 
and the values of K t and Sj were assumed to be constant 
within the j t h  layer. In each layer the corresponding 
value K t = K(xi)  , S t = S(xt) was determined from Eqs. 
5, so that the contributions to the diffuse reflectance, R, 
and transmittance, T, from the local values Rj and Tj, 
were 

¢ 

dx 

k=k(x), s =s(x) I(x) 

It  
l(x) 

FIG. 1. One-dimensional geometry for the generalized KM problem. 

considerations of a radius of convergence--a severe con- 
straint of series solutions for many functional forms. 

and 

sinh(b~Sjdj) (7a) 
R t = %sinh(btSidj ) + bjcosh(biSjd j) 

bt (7b) 
Tj = %sinh(bjStdj ) + bicosh(bjSjdj) 

for all layers but  the deepest one ( j  = n). For that layer, 
the diffuse reflectance was written as 

R,  = 1 - Rg[an - b,coth(b,Sndn)] (8) 
a n + bncoth(b,S,dn) - Rg 

In Eqs. 7 and 8, dj is the thickness of the j t h  layer; aj - 
1 + KJSt ;  b t = (at 2 - 1)'/2; and Rg is the reflectance of 
the sample backing material (substrate or container). 
The values of A, A', and B' in Eqs. 5a and 5b were 
adjusted through the best fit of the properly summed up 
total theoretical reflectance R to the DRIFT data as a 
function of the average absorption coefficient (k > for the 
Cab-O-Sil system. The values of C and C' were set equal 
to zero, and B was renormalized to unity. 

The above empirical approach, albeit practically quite 
satisfactory, tacitly assumes via Eqs. 7 and 8 that each 
layer is decoupled from those above it and below it 
through a zero boundary reflectance condition, except 
for the nth layer. That  this is only a rather crude ap- 
proximation to the generalized KM problem is borne out 
by the fact that the original differential equation was 
replaced by the sum of the equations for each strip (j), 
each with a different set of constants (%, bt). This op- 
eration based on the linearity property is, generally, not 
allowed with nonlinear equations, such as the generalized 
KM (Riccati) equation. 

For these reasons we present the first mathematically 
rigorous formulation and solution of the generalized KM 
problem in terms of Regular Perturbation Theory, in 
which the zeroth-order solution is obtainable in terms of 
the well-known conventional KM solution. Analytical 
expressions for general K(x )  and S(x)  profiles may be 
obtained, while the perturbation formalism can be shown 4 
to be convergent for all values of x, not limited by local 

THE GENERALIZED KM EQUATION 

Considering a strip dx in Fig. 1, the optical energy flux 
balance equations in the forward (d -~ 0) and the reverse 
(back-scattered, 0 -~ d) directions can be expressed in 
terms of K(x )  = 2k(x) 

d 
-d--~I(x) = - [ K ( x )  + S(x)]I (x)  + S (x )J (x )  (9) 

d 
~xJ(X)  = - [ K ( x )  + S(x)]J(x)  + S(x)I (x) .  (10) 

The wavelength dependences of K(x)  and S(x) have 
been suppressed, since they can be carried along without 
altering the depth dependences. Upon definition of the 
parameters: 

K(x)  
a(x) -- 1 + - -  (11) 

S(x) 
and 

J(x)  
r(x) =- I (x)  ' (12) 

addition and rearrangement of Eqs. 9 and 10 yields 

d r ( x )  = S(x)[r2(x) - 2a(x)r(x) + 1] (13) 

with the boundary conditions: 

r(d) = R, r(O) = Rg (= 0 for simplicity). (14) 

Equation 13 is the generalized Riccati equation. The 
substitution 

dw(x) /dx  
r(x) = (15) S(x)w(x) 

gives the linear second-order equation: 

+ pl(x)  w(x) + po(x)w(x) = 0 (16) 

where 
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d 
p~(x) - 2a(x)S(x) - -~x In S(x) (17a) 

and 

po(X) =- S2(x). (17b) 

A further change in variable according to: 

w(x) v(x)exp[- f ] 
= Pl(Y) dyj  (18) 

transforms the generalized Riccati equation into 

-~x~V(X) + o(X) - - ~ p ~ ( x )  - p~(x) v(x) = 0. ( 1 9 )  

At the same time, it is easy to show that the original 
boundary conditions (Eq. 14) must be replaced by 

and 

v'(0) = ~v(0)pl(0) (20a) 

v'(d) 1 
= :p~(d) - RS(d).  (20b) 

v ( d )  z 

It is, therefore, apparent that the expression for the 
total diffuse reflectance R can be obtained via the second 
boundary condition, provided that Eq. 19 can be explic- 
itly solved. Equations 19 and 20 comprise the generalized 
Kubelka-Munk problem. 

In the limit of constant a(x) (i.e., if S and K are both 
constant, or they have the same functional dependence), 
r(x) is well known 2 

where 

r(x ) = sinh [ boQ (x ) ] ( 21) 
aosinh[boQ(x)] + bocosh[boQ(x)] 

ao = 1 + Kof(X_____~) = 1 + __go (22a )  
Sol(X) So 

b0 = (ao 2 - 1) ~/2 ( 2 2 b )  

and 

Q(x) = 

Now, Eq. 15 yields 

[C: w(x) = exp - 

foo" S(y)  dy. (23) 

S(y)r (y )  dy] 

1 
= ~[(ao + bo)e b°Q(x) 

- ( a o -  bo)e-b°Q(x)]e -a°Q(=). (24) 

Finally, Eq. 18 gives the solution to the generalized KM 
problem when a(x) = ao: 

1 
Vo(X) [(ao + bo)e b°Q(~) 

2boS~/2(x) 

- (ao - bo)e-b°Q(=)]. (25) 

In a tedious but  straightforward manner, Eq. 20b be- 
comes: 

R p~(d) v'o(d) 
2S(d) S(d)vo(d) 

sinh[ boQ( d) ] 
(26) 

aosinh[ boQ( d) ] + bocosh[ boQ( d) ] 

as expected from the hyperbolic solutions to the con- 
ventional KM problem. 

REGULAR PERTURBATION THEORY OF THE 
GENERALIZED KM PR OB L E M 

The derived Eq. 25 represents the exact solution to 
what will be now considered the zeroth-order (leading 
term) in a perturbation expansion of the fully generalized 
KM problem, Eqs. 19 and 20. The pertinent small pa- 
rameter ~ can be defined in terms of the particular func- 
tional dependences adopted for K(x)  and S(x).  In gen- 
eral, and in agreement with the requirement that the 
solution to Eq. 19 should obey 

lim v(x) = lira v(x; ~) = Vo(X), (27) 
a(x)~ao ~ 0  

one may write: 

a(x) = a o + eV(x). (28) 

Equation 17a now becomes 

p~(x) = p~(°)(x) + ~pl(~)(x) (29a) 

where 

d 
p~(°~(x) = 2aoS(x) - ~x In S(x) (29b) 

p~)(x)  = 2S(x) V(x). (29c) 

Equation 19 is replaced by 

v"(x) + [G~°)(x) - ~Y(x) - ~2X(x)]v(x) = 0 (30) 

with the following definitions: 

G(°)(x) - Po(X) - ~[pl(°)(x)] ' - [pl(°)(x)] 2 (31) 

1 
Y(x) -~{[p~(1)(x)]' + p~(°~(x)p~(~)(x)} 

= S(x)[aoPl(~)(x) + dV(x)/dx] (32) 

and 

X(x)  =- S2(x)V2(x). (33) 

Now we assume a perturbation expansion of the form 

v(x) = ~ Em~=(x). (34) 
m=O 

Substitution of Eq. 34 in 30 and separation of the 
various orders results in the following iterative system 
of equations for calculating the successive terms of the 
expansion: 

q2"o(X) + G(°)(X)~o(X)= 0; O(1) (35a) 

• "l(x) + G(°)(x)~l(x) = Y(x)~o(X); O(c) (35b) 
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q~".(X) -}- G(°)(X)'.lffn(X ) = Y(x)'~,,_l(x) + X(x)~,,_2(x); 
O(~"), n > 2. (35e) 

The boundary conditions (Eq. 20) may be recast in the 
perturbational formalism upon setting 

c o  

R = ~_~ e~Rm. (36) 
r n = 0  

Equations 20 and 36 give for the various orders: 

• 'o(O) = ] 
• ' o (d )  = pl(O)(d) - S(d)Ro ~o(d) 

,I/gO) = 

xIt'l ( d )  _- 

1 
[p,(°)(O)~,(O) + p,(~)(O)~'o(O)] 

O(e) (37b) 

, I / . ( 0 )  = 

= 

2 [ p 1 ( ° ) • . ( 0 )  + p~(1)(0)~._,(0)] 

[lp,(°)(d) - S(d)Ro]~,(d) 

+[2Pl (1) (d) -S(d)R ,Jq t . - l (d )  

- S(d)[Rz'~,,_2(d) 

+ Rs'~,_3(d) + . . .  

+ Rn~o(d)]; n >- 2 

O(E"). (37c) 

It should be noticed that the zeroth-order Eq. 35a, sub- 
ject to the boundary conditions (Eq. 37a), is identical to 
the conventional KM problem with constant a(x) = ao, 
the solution of which is given by Eq. 25: 

% ( x )  = Vo(X) (38) 
and Ro = R in Eq. 26. Now the first-order perturbational 
function ~I,l(X) can be determined from Eqs. 35b and 37b 
with the use of the technique of variation of parameters 
and the definitions: 

e +- boQ(x) 
- - ,  F+_(x) =- 81---/2(x ) (39) 

The solution (complementary and inhomogeneous) of 
Eq. 35b is 

XIfl(X ) -~" A~F+(x) + A2F_(x) 

+ ~ [F+(x)H_(x) - F_(x)H+(x)] (40) 
zoo 

where A1 and A2 are integration constants to be deter- 
mined from the boundary conditions, Eqs. 37b, and 

H+_(x) = Y(y)~o(y)F+(y) dy. (41) 

Following some tedious algebraic manipulations, one ob- 
tains for the first-order perturbational KM function: 

1 
~I,l(x) = 

2boS1/2(x ) 

where 

x { a o s i n h [ b o Q ( x ) ]  + bocosh[boQ(x)] 

+ (ao- bo)[aoM_(x) + boM+(x) - boe-b°Q(')V(O)] 

--e -b°Q(') [H+(x) - H+(0)]} (42) 

M+_(x) =- eb°Q(')H_(x) +_ e-boQ(')H_(O). (43) 

Although higher orders are, in principle, straightforward, 
in practice they result in very complicated algebraic ex- 
pressions. Extensive numerical modeling of the present 
formalism with specific V(x) dependences, including O(E=), 
has shown that  for wide ranges of e < 1 the ez terms incur 
a correction of less than 3% to the O(e) contribution 
[0.001 < e < 1]. Therefore, we decided not to extend the 
perturbation expansion beyond O(~), having numerically 
proven that  the correction effected by higher orders is 
well within experimental uncertainty in many applica- 
tions to applied spectroscopy. 

DIFFUSE REFLECTANCE AND 
TRANSMITTANCE FUNCTIONS 

Once the perturbation functions xI, j(x) are determined, 
Eq. 20b may be used to express the total diffuse reflec- 
tance from an inhomogeneous sample of thickness d: 

1 1S'(d) ~=o 
R=ao + eY(d) - - S - - ~  ~-~-~-~ -~ . (44) 

r n = 0  

For finite-thickness layers, the diffuse transmittance can 
also be calculated from Eqs. 9, 15, and 18 as follows: 

From Eqs. 15 and 18 

1 1 dr(x) 
r(x)S(x) = :p l (x)  (45) 

Z v(x) dx 

Now Eq. 9 becomes 

dl(X) [a(x)S(x) - l ] = ~pl(x) dx + v(x'---~- 

= { a o S ( x ) -  lpl<°)(x) 

Equation 46 is easily simplified: 

dv(x) 
v(x)" (46) 
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dI(x)  [S'(x) ] dv(x)  
I(x----)- = L2-"S~ J dx + v(x---~ 

or, upon integration between x = d (surface) and x = 0 
(sample/substrate interface): 

_-- - -  - / s ( o ) r / . ( o )  / I(0) 
I(d--~ -= LS--~J Lv-~J" (47) 

Finally, this expression can be written in terms of the 
perturbation expansion, Eq. 34: 

o o  

[S(O) ] 1'~ 2 :~Ao)  
~o: ° (48) 

T = IS(d)J ~ e'"~m(d) 

m=0 

Setting V(x)  = 0 in Eqs. 44 and 48, along with Eq. 38, 
results in the conventional KM expressions (Eqs. 7a and 
7b), as expected. 

A SPECIAL K(x),  S(x)  CASE 

In this section we will show the application of the where 
perturbational KM solution developed in this work to a 
particularly useful functional dependence of the coeffi- 
cients K ( x )  = 2k(x) and S(x )  = 2s(x)--namely, expo- 
nential decay profiles. Such depth profiles were consid- 
ered in earlier studies2 ,6 If K ( x )  and S(x )  are assumed and 
to have the same functional depth dependence, then a (x) Jl(Z) 
= ao, and this relation implies V(x)  = 0. It is easy to see 
that  the perturbation expression for R becomes 

1 [1S'(d) ~'o(d) ] 
R = ao S-(d) L 2 S - ~  + ,I%(d) J" (49) 

Equation 49 can be easily transformed to the well-known 
Eq. 26 upon use of Eq. 38. Similarly, Eq. 48 gives 

IS(0) 11/2 ~o(0) 
T = LS-~ j 

bo 
(50) 

aosinh [ boQ( d) ] + bocosh [ boQ( d) ] ' 

as expected. 
In the generalized case where K ( x )  and S(x )  have sim- 

ilar (exponential) functional dependences on x, but dif- 
ferent depth profiles 

S(x )  = So e-B~e-x) (51a) 

and 

K ( x )  = Ko e-a(e-x), (51b) 

assuming that K o < So, the perturbational representation 
of a(x) ,  Eq. 28, is written as: 

e=Ko /S o ;  V ( x ) = e x p [ ( B - A ) ( d - x ) ]  - 1. (52) 

The rest of the perturbation functions are 

Y(x)  = So[2aoSo(e -A(d-=) -- e -B(e-=)) 

- (B - A)e(B--a)(d--~)]e -B(d-~), (53) 

X ( x )  --- S ~ [ e  - A ( e - x )  - e-S(e-x)] 2, (54 )  

and 

Q(d) = ~ ( 1  - e-Be). (55) 

Now we are left with the evaluation of the first-order 
perturbation integrals H+_(x) and M+(x)  (see Eq. 42). 
After considerable algebra we obtain: 

H_(x) = (ao + bo)e -b°q 

x [2aoSo(A-le-a(e-~) - B-le-B(e-~)) 

+ e(B-A)(e-'q -- (ao -- bo)e b°~ 

/2(ao + bo)SoJ~[2bo(So/B)e-B(e-~q 
X \ B[ 2bo( So/B ) ] Am 

+ {(ao/bo) + e ~-A~-x~} 

x exp[-2bo(So/B)e-B(e- , )] )}  (56) 

, 

za/"~_~ (-1)m z~ " (Taylor; z < 1) 
~-o ~ L ( A I I ~  -+ m ' 

(B/A)za/Be-~ 

x 1 + m~l ~-~ [(A/B) - I -~(A/B) - 2] ; 
• " [(A/B) - m ] ]  

(Asymptotic; z >> 1). 

Similarly: 

H+(x) = (ao 

where 

+ bo)e-boq 

[2(ao -- bo)SoJ2 [ 2bo(So/B)e -B(e-')] 
X \ B[ 2bo( So/B ) ] Am 

(57a) 

(57b) 

- {(ao/bo) - e (B-A)(d-')} 

exp[ 2bo(So/B)e-B(d-x)]) - (a o - bo)e ~ X 

x [2aoSo(A-le-a(e-x) - B-le-B(e- , ) )  

+ e(B-A)(e-=)]} (58) 
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J2(z) 

~ 1  F m ] 
v , - / .  z,, ; (Taylor;z < 1) 
~--o m! [ (A /B)  + m 

t oo (B/A)zA/Se z 1 + ~ ( -1)  m 
m=l 

: ] 
x [ (A/B)  - 1-H(A/B) - 21 ; 

• .. [ (A/B)  - m l /  

(Asymptotic; z >> 1). (59) 

Once the two fundamental functions H+ (x) and H_ (x) 
are defined and calculated for this special depth profiling 
case, Eq. 43 may be used to calculate M+(x) .  Then R 
and T can be calculated up to O(E) from Eqs. 44 and 48, 
noting that  V(d)  = 0 for the particular choice of Eq. 52 
for V(x) .  These results were examined via computer sim- 
ulations for several ranges of the parameters. Under the 
above conditions, the perturbation expressions for the 
diffuse reflectance and transmittance up to first-order 
for the profiles of Eqs. 51a and 51b are: 

and 

1 I(1 + e)D'(d) + eE'(d) 1 
R = ao - SoL"~ + e )n (d )  + eE(d)  J (60) 

(1 + e)D(0) + eE(0) 
T = (61) 

(1 + e)D(d) + eE(d) 

where 

1 
D(x)  - ~o(aosinh[boQ(x)]  + bocosh[boQ(x)]) (62) 

and 

D'(x)  

= 2S(x)(aocosh[boQ(x)]  + bosinh[boQ(x)]). (63) 

Also: 

1 
E ( x )  =- =7, { (ao - bo)e b°q 

ZOo 

x [aoM_(x) + boM+(x) - boe-b°qV(O)] 

- e - b ~  [H+ (x) - H +  (0)] } (64)  

and 

E' (x )  = 1S(x){(ao - bo)e b°q 

x [aoM+(x) + boM_(x)  + boe-b°qV(O)] 

+ e-boq[H+(x) - H+(0)]}. (65) 

Figure 2 shows reflectance and transmittance curves, Eqs. 
60 and 61, for a sample of thickness d = 3 mm, in which 
identical exponential depth profiles S ( x )  and K ( x )  exist, 
with only the pre-exponential factor ratio K o / S  o varying. 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.3 

0.1 

0 

Reflectance 

========================== 

- 3  - 2 , 5  - 2  -1.5 - 1  -0.5 

log(Ko/So) 

FIG. 2. Conventional (--) and perturbational (-O-<)-) KM behavior 
of a sample with d = 0.3 cm, A = B = 3 mm -1, and So = 10 mm -1. 

Also plotted are the conventional KM curves for constant 
absorption and scattering coefficients (Eqs. 7a and 7b) 
with zero background reflectance condition. It can be 
seen that  the two sets of curves are identical over three 
orders of magnitude in ~ = Ko/So. The total number of 
terms used in evaluating the functions H+ (x) in Eqs. 56- 
59 were 61. This figure bears out the fact that  the original 
KM functions can adequately describe constant and 
depth-variable K and S profiles of identical functional 
dependenceY It is also a proof that  the regular pertur- 
bational approach used here is well behaved in the limits 
of both these cases (e = 0 or A = B in Eqs. 51a and 51b). 

Figure 3 shows diffuse reflectance and transmittance 
curves as functions of sample thickness d for several 
values of e and widely different exponential decay profiles 
of K ( x )  and S ( x )  into the sample. Substantial decreases 
in the saturation values for R are observed with increas- 
ing e (i.e., with increasing Ko) since So = 10 cm -1 through- 
out these simulations. This is expected, since less light 
is available for reflection with increased absorption. Sim- 
ilarly, the transmittance decreases strongly with increas- 
ing K0. The total number of terms used for the functions 
H_+ (x) was 61. Although quite adequate for most of the 
d-range sampled, there are some values of d for which 
the R and T curves exhibit sharp, localized vertical as- 
ymptotes. These divergences recover very quickly: typ- 
ically two or three such divergences can appear in Fig. 3 
with recovery range ~ dj + 0.1d i. They have been traced 
to the need for many more terms in representing H+ (d) 
for certain values of d where the denominators in Eqs. 
60 and 61 are such that  D ( d )  and E ( d )  change signs. In 
order to avoid long computation times and computer use, 
we found that  it is possible to eliminate these local di- 
vergences through direct manipulation of the curves 
themselves, rather than through inclusion of a much larg- 
er number of terms near the neighborhood of the as- 
ymptotes. This strategy is very efficient, since (1) there 
is no a pr ior i  knowledge of where the local divergences 
will occur for a given R and T curve, and (2) the majority 
of the data in each curve exhibit well-behaved, conver- 
gent values with fewer than 100 terms in the H_+ series. 
The method utilized to eliminate the asymptotes and 
thus produce continuous curves such as those of Fig. 3 
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Diffuse refleetance (A) and transmittance (B) as a function of 
thickness. Absorption and scattering coefficient depth profiles have 
parameters A = 0.1 mm -1, B = 1.5 mm -1, So = 10 mm-L The pertur- 
bation parameter e = 10 -8 (+ + +); 10 -2 (* * *); 10 -1 (O-O-O); and 1 
( x - x - x )  

was based on modify ing  each curve R(d)  or T(d)  to a 
s m o o t h  one representing their envelope.  For R(d) ,  for 
instance,  a suitable mapping  was generated which maps  

1 
the  curve y = ~ onto  y = R(d) .  The  specific mapping  

used was 

k 
R(d)  =- md + b + - -  (66) 

d - d a  

for values  of  d close to the  center value da at which R(d) 
exhibi ted divergence.  Us ing  four points  p ,  P2, P3, P4 with 
Pi =- [di, R(di)] and dl < d2 < da < d3 < d4, one  obtains  
four equat ions  in the  four variables m, b, k, and do. Solv- 
ing Eq. 66 for these  variables,  we redefine the  s m o o t h e d  
curve as 

k 
Rs(d) = R(d)  d - da" (67) 

This  m e t h o d  proved very effective and was incorporated 
into all further s imulat ions ,  producing curves of  very 
good continuity .  Similar s imulat ions  to those  of  Fig. 3, 
but  with  A = 1.5 m m  -1, showed  very little change in the  
obta ined  profiles of  both  R and T curves. This  e f f ec t - -  
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FIa. 4. Diffuse reflectance (A) and transmittance {B) vs, thickness 
with the absorption profile exponent A as a parameter. B = 1.5 mm-', 
So = 10 mm -1, ~ = 0.01. The values for A are: 0,1 (+ + +); 0.5 (* * *); 
1.0 (O--O--O); and 1.5 ( x - x - x ) .  

namely ,  the  lack of  measurable  sensit iv i ty  of  the  data to 
the s teepness  of  the  exponent ia l  absorpt ion prof i l e - - i s  
i l lustrated in Fig. 4. Marginal ly  higher transmit tance  is 
seen for the s teepest  chosen  absorpt ion profile in Fig. 
4B. This  t ransmit tance  e n h a n c e m e n t  is expected,  as the  
integrated absorptance  

1 fod Ko (K)  = ~ K(x )  dx = ~-~ (1 - e -A~) (68) 

decreases  with  A >> d -1. The  s imulat ions  in Fig. 4 convey  
the  important  message  that  diffuse reflectance profiles 
are m u c h  more strongly dependent  on the  absolute  value 
of  surface and near-surface absorpt ion coefficient,  Ko (see 
Fig. 3), than on the  depth  profile of  this  coefficient. The  
cause of  the  apparent  insensi t iv i ty  to the value of  A is 
the  fact  that  A d  < 1 throughout  the  range of  parameters  
of  Fig. 4, so that  the  sample  behaves  as optical ly trans- 
parent  with  (K)  = Ko. Figure 5 shows  the effect of  the  
variat ion in A once  the  A d  < 1 condit ion is relaxed and 
So and B are fixed. Similar qual i tat ive results were ob- 
ta ined previously  by Lin and KanS- -namely ,  enhance-  
m e n t  in total  diffuse reflectance at a given Ko/So with 
increased A due to decreased total  absorptance,  as well  
as an increase in reflectance and in transmit tance  with  
decreased average absorptance  (K)  d (Eq. 68). 
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It is interesting to juxtapose the effect of varying the 
scattering coefficient profile depth decay rate constant 
B on the values of R and T as functions of layer thickness 
(Fig. 6). Low B indicates large scattering throughout the 
sample thickness, resulting in enhanced R and depressed 
T. At the other extreme, high B has a dampening effect 
on scatter and results in the opposite behavior: enhanced 
diffuse transmittance and decreased reflectance. These 
trends are consistent with results from a discontinuous 
approach to the diffuse problem with loosely packed 
powders, which exhibit a considerable degree of diffuse 
back-scatter. 7 It is seen that, even though the range of 
B values chosen is similar to that of the A values in Fig. 
4, the diffuse functions R and T nevertheless exhibit 
much stronger sensitivity to the scattering coefficient 
profiles. This result is also due to the well-known fact 2 
that back-scattering affects the reflectance enormously 
in the (S)d < 3 range, as per the conventional KM model. 
The effect is much less pronounced 2 with changes in (K>. 

D I S C U S S I O N  

Regular perturbation theory has allowed the study of 
the diffuse function dependence on assumed depth pro- 
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files of the absorption and scattering coefficients. The 
usefulness of such a treatment becomes apparent in the 
fitting of experimental data of normalized diffuse reflec- 
tance and transmittance signals as functions of the av- 
eraged absorptance 3 <K)d. The present theoretical con- 
siderations are expected to resolve the inability of the 
conventional KM theory to fit such data plots 3 by pro- 
viding adjustable parameters A and B, under the (not 
rigorously justified) assumption of exponential k (x) and 
s(x) depth profiles. Other types of profiles can be easily 
handled within the present theoretical framework by ac- 
cordingly redefining the function V(x) and the parameter 
e. It is important to emphasize that the perturbational 
formulation of the KM problem is mathematically rig- 
orous, aimed at providing a justifiable alternative to the 
empirical numerical approach by Moser-Boroumand2 At 
present, it appears that the use of particular depth pro- 
files of k(x) and s(x) is, at best, of little relevance to the 
actual profiles which may be possibly encountered in 
nonhomogeneous solid media, such as powders. The ex- 
ponential profiles and the concomitant mathematical ex- 
pressions (Eqs. 60-65) could be employed for a specimen 
to adjust the best fit to the spectroscopic data (Rj and 
T i) at each wavelength around an absorption peak, so as 



to obtain the local P values for Ko, So, A j, and B~. A port ion 
of the t rue  exper imental  dep th  profile of k(x)  and s(x)  
may thus be reconstructed from the set of all such local 
values between km~ and kmi,, observing tha t  only a region 
close to the sample surface is probed near a strong ab- 
sorption peak (i.e., high absorpt ion coefficient, small ab- 
sorption depth).  As k decreases, deeper  layers of the 
sample can be probed,  corresponding to a different  set 
of (Aj, B i) values, while keeping ko and So constant  (sur- 
face values evaluated at  kma,). Finally, plott ing kj(x) and 
Si(x)  vs. dep th  x i = ks l (x ) ,  where x~ corresponds to a 
pair (A i, B:), will yield reconstructed profiles for the ac- 
tual k~(x) and s~(x), each differential  sub-layer repre- 
sented by local exponential  scattering and absorpt ion 
profiles Soe-B/~-xJ ) and Koe-AJ(~-~: ), respectively. Exper-  
imental  implementa t ion  of these ideas will be repor ted  
in a future  publication. 

C O N C L U S I O N S  

A per turba t ional  theoret ical  t r ea tmen t  of the KM 
problem has been presented  up to first order  in the per- 
tu rba t ion  parameter .  The  general formalism is shown to 
be mathemat ica l ly  rigorous and has been applied to the 
special case of exponential  dep th  profiles for the material  
absorpt ion and scattering coefficients, and the resulting 

diffuse reflectance and t ransmi t tance  have been studied. 
Potent ia l  applications towards the spectroscopic recon- 
s t ruct ion of the absorpt ion and scattering coefficient 
dep th  profiles in nonhomogeneous  media have been dis- 
cussed. 
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