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A combined variational-Grccn's function approach to the dctcrmination of thc capncitancc of v;u.io~~s ~ ~ s c f u l  tlircc- 
dimensional geometries is developed. This forrnalisrn leads to gcncral, cxact cxprcssions for the capncitancc. which can bc 
used with all geometries provided thc spatial distribution of thc charge can bc dctcrmincd. In particular, thc thcory tnkcs into 
account the finite thickness and unequal areas of thc capacitor plates. Spccific applications of thc theory inclutlc circular 
capacitors with disc and ring-shapcd charged platc geometrics. Such ?cometries arc commonly encountered in cxpcrinicntnl 
set-ups for capacitive measurements of thin film thickncsscs in thc ficld of microclectronics. Numerical rcsults indicate that 
the values of thin film thicknesses calculated via simplified one-dimensional formulac for thc capacitance may bc incorrect by 
more than 10% 

Une approche h la dCtcrmination dc la capacite de divcrscs gCornetrics tridimensionnelles a CtC tleveloppCc. utilisant unc 
fonction de Grecn combinCe h unc rnCthode variationnclle. Cettc formulation concluit B des cxprcssions ginkralcs ct exactcs 
pour la capacitk. Ces cxprcssions pcuvcnt Ctrc utilisces quellc que soit la gCornCtrie, pourvu que la tlistribution spatiale de la 
charge puisse Ctre dkterrninkc. En particulicr, la thCorie tient cornptc dc I'Cpaisscur finic ct dcs supcrficics inCgales dcs 
armatures du condensateur. Dcs applications spCcifiqucs de la thdorie cornprcnncnt des condcnsateurs circulaires avcc des 
armatures en forme dc disques ou d'anneaux. Dc tellcs gComCtries sont comm~rnkment utiliskes B ties fins cxpCrin~entales pour 
des mcsures capacitativcs d'Cpaisscurs dc couchcs rninccs dans Ic dornaine de la microklectroniquc. Les risultats nurnCriqucs 
indiquent que I'errcur dans le calcul dc 1'Cpaisscur dc la couciie mince, obtenue en utilisant des formules sirnplifidcs 
unidimensionnelles pour la capacitk, peut Ctrc supcricurc :I 10%. 
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1. Introduction 
Accurate measurements of thin film thickness are 

becoming more important in the field of micro- 
electronics as device dimensions constantly decrease. 
For some materials, such as polycrystalline silicon, the 
electrostatic capacitance method may be the only tech- 
nique available which will yield accurate mea- 
surements. In this method, thickness calculations are 
based on simple capacitance formulae. These are valid 
strictly for two infinitely thin parallel plates of equal 
area, separated by a dielectric slab. However. for very 
thin film measurements the effects of the finite thick- 
ness of the capacitor plates and the possibility of un- 
equal plate areas ought to be taken into account, in 
order to ensure the utmost possible accuracy of mea- 
surement. 

In this paper a formalisni has been developed for the 
capacitance of a dielectric medium between parallel 
conducting plates of nonzero thickness and arbitrary 
area ratios. It is based on a combination of the vari- 
ational (1)  and the Green's function (2)  methods. The 
present work provides accurate, closed-form expres- 
sions for the capacitance of three-dimensional geonie- 
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tries with various plate shapes and thin dielectrics. 
Cotnpared to other coniputational methods previously 
applied to several geometries (3-8). the present tech- 
nique has greater flexibility. more conip~~tational trac- 
tability, and is less cunlbersome. It is well suited for 
application to experimental data derived from capaci- 
tance measurements of thin dielectric films. 

The variational method provides upper and lower 
bounds on the value of the capacitance by means of trial 
functions for the potential. If the trial function satisfies 
Poisson's equation and the boundary conditions within 
the volume in question, the variational technique gives 
the exact value for the capacitance. The space integral 
of the Green's function multiplied by the spatial charge 
distribution does satisfy both the boundary conditions 
and Poisson's equation, so it can be consideretl as an 
optimal trial function. An analytical approach of this 
nature yields a general expression for the three- 
dimensional electrostatic capacitance for all geome- 
tries, with or without axial symmetry. This can easily 
be implemented numerically with high accuracy and 
convergence guaranteed by that of the well-behaved 
Green's function. Furthermore, knowledge of the 
charge distributions for a given geometry gives closed- 
form analytical expressions for the capacitance. Thus, 
the general fornialism was subseq~~ently applied to ge- 
ometries of interest to the experimentalist. Specific ap- 
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FIG. 1. Cross section of a capacitor with annular platc 
geometry. 

plications investigated include ( i )  a ring of charge of 
finite thickness; (ii)  a disc of finite thickness; and (iii) 
an infinitely thin disc, all raised to a potential V,, and 
separated from a grounded plane by a clielectric slab, 
Figs. 1-3. Each system was assumed to possess cylin- 
drical symmetry, which is the case with a large number 
of n~icroelectronic configurations. Furthermore, axially 
symmetric geometries were used in order to simplify 
the computational task. The resulting mathematical ex- 
pressions can be comparecl. in the appropriate limit(s). 
to well known results for simpler geometries as a further 
check of the validity of the theory. In the configurations 
of Figs. 1-3 the radius ci of the grounded plate was 
assumed to be greater than. or equal to. the radius R of 
the charged plate. The experimentally realistic condi- 
tion that the grounded substrate thickness. I. be several 
orders of magnitude larger than those of the charged 
plate and the dielectric was met by letting r + 2. This 
approxilnation restricts the clomain of the geometry to 
the semi-infinite space z r 0.  MKS units and cylin- 
drical coordinates were used throughout the present 
theoretical development. 

2. Theory 
(1 ) C~i]7~l<'~~<lll<'<~ Of (711 ~ l l ~ / > ~ l l ~ ~ l l ~ ~  <'/7~ll.g<> (/i.Sll~~/)il tj017 

u(x): ~ . ~ c i r i c i ~ i u ~ i ~ ~ /  for1n7//~1tio17 
U[qJ], the total energy of the electric field created as 

a result of the potential Y ( x )  due to an arbitrary charge 
distribution u ( x )  within a volunle V. is given by the 
expression (7):  

The capacitance of the system whose charge distribu- 
tion u ( x )  causes energy U[Y] to be stored in the electric 
field is (9): 
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FIG. 2. Cross section of a capacitor with charged disc plate 
of nonzero thickness. 

FIG. 3. Cross section of a capacitor with thin charged 
plate. 

Its value can be found by summing up (integrating) thc 
discrete (continuous) charge distribution clensities: 

In [1.3] the distribution u ( x )  was assumed to be con- 
tinuous. From [ I .  { ] - [ I  .3] the electrostatic capacitance 
C[Y]  due to the potential distribution Y ( x )  can be writ- 
ten: 

This can be viewed as a variational expression for the 
capacitance of a charge distribution u ( x )  in a volume V, 
when the true potential function is not known. but i t  can 
be replaced by a trial function Y ( x ) .  which satisfies the 
boundary conditions on the outer sutface(s) of V. [ I  .4] 
is a general expression for the electrostatic capacitance 
and applies to all geometries. I t  provides upper (or  
lower) bounds for the true capacitance. If Y ( x )  is the 
true potential function satisfying Poisson's equation 
within V, then [ I  .4] gives the true capacitance of the 
system. 

where Q ,  is the total amount of charge in the volume V. 



Assuming that the dielectric thin films of the config- tends throughout the region of space where charges 
urations in Figs. 1-3 have a uniform dielectric constant exist. a ,  and a? are the charge distributions in the di- 
E , ,  the potential fields in thc positive z half-space are electric and in the vacuum, respectively. These reniain 
described by the Poisson equation: to be determined. The boundary conclitions [2.2~1,b] 

impose the requirement that the Green's function 
G(x.xl) obey Dirichlet boundary conditions at z, z' 

[2. lb] V2Y(x)  = -u?(x) /E~~;  z > d = 0. I!,: 

subject to the follow~ng boundary conditions: [2.3] G(p.$.z = 0. Llp1,+',z' = 0. L) = 0 

[2.2c1] Vf (p .6 ,~  = 0 )  = 0 In the (six) boundary conditions [2.2c] the designations 
p = R I ,  R1 and p = R refer to Fig. I and Figs. 2 and 3, 

[2.2h] Y(p,+.z = L) = 0 respectively. 

[2.2c] ' ~ ( p = R l , R ~ , R ; ~ ~ ~ = ~ I . ~ l + D ) = V I I  Green's theorem may be applied to the potential dis- 
tributions of [2.la,b] via the use of Green's second 

In [2. Ih] E,, is the permittivity of free space and z ex- identity (7). The result is: 

= / G(x,x')V'Y(xl)  d'.rf 
V' 

because the Dirichlet boundary condition [2.3] implies that G(x.xf)  = 0 at all boundaries for x '  on the surface 
S'. The potential distribution Y ( x l )  vanishes at z' = 0 and z' = L, so that the surface integrals in [2.4] are equal 
to zero. iJ/i~n' is the normal derivative at the surface S'. directed outwards from inside the volu~ne V'. 

Forrn [2. Ic~.b] and the linearity of the V' operator. [2.4] becomes: 

where V,' and V?' are defined as the space regions [O,tl] and [cl .~],  respectively. 
For axially symmetric charge distributions about the z-axis the form of the Green's function Gil"(x.x') valid for 

a cylindrical region in the whole : 2 0 half-space with the z = 0 plane grounded is (10): 

1 Jll(k~l,,p)Jo(ko,,p') sinh (ko,,z.:) cxp (-kc,,,: .)  
[2.6] G'"'(x,xt) = 7 

n(1- ,, - 1 ko,, J i(ko,,a) 

where LI is the radius of the d~electric layer, Figs. 1-3, and J,,,(li,,,,p) i$ the Bessel function of integral order tn. The 
coeff~cients k,,, are related to the 11th root, xu,, of the function J,, in the follow~ng manner: 

P .71  ko,, = x,,, la 

'The variables z,. and z, are defined as (7): 

[2.8] z . = { ~ ~ ~ ~ ~ } ( z , z l )  

Upon combining the expressions [2.5] and [2.6], the potential distribution in the z 2 0 region can be written 
in terms of the charge distributions u , ( x )  and u?(x): 

7 ' sinh (ko,,z,) exp (-k~,,,~,)J~,(k0,,p) 
[2.9] Y\V(p,z)=', 

ko,,J i(ko,,4 
i,' p1 dp' [ ~ ~ ~ ~ ~ ~ ~ ~ , , p ~ ~ ~ ~ ~ ~ p ~ . ~ ~ ~  dzr 

ElLl- , , - I  

2 " sinh (ko,,z,) exp (ko,,z,)Jo(k,l,,p) 
+, 2 [ P' dp' ,/: J,l(ko,,p1)~2(p',z1) dzf 

EON- ,, = I ko,,J $k[l,,d 

In [2.9] the functional forms of a , (p1,z ' )  and a?(pr,z ' )  depend on the specific axially symmetric shape of the 
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charged upper plate of the capacitor. Since the expression [2.9] satisfies both the boundary conditions [2.2] and 
the Poisson's equation [2.1] for all z 2 0 ,  it can be inserted in the variational expression [I .4] to give the e.rrlct 
value of the capacitance. The equation [ I  .4] can be written in cylindrical coordinates as a function of the charge 
density a :  

~ l ~ ~ u ( p t , ~ t ) ~ [ u ( p ' . z ' ) ] P 1  dpl  dz' 
[2.10] [c(u)]-l  = 

dp'  dz']' 

where: 

(3 )  Charge distributions for three chargecl plate geometr-ies 
(0) A ring of,firzite thickr~ess 
This upper plate geometry is shown in Fig. I .  The thickness of the right cylindrical ring is D, and the inner and 

outer radii are R I  and R1, respectively. It is assumed that the ring thickness is small in comparison with R I :  

The condition [3. I ]  is valid for common experimental configurations in nlicroelectronics applications. Near the 
edges at z = d and z = cl + D the charge density u,(p) on each flat surface of the plate, and that on the cylindrical 
side surface, as(z),  become equal and approach that of the charged rectangular wedge (5) .  The charge in the 
neighborhood of the wedge is given by (7): 

[3.2] aw(x)  = const. x 

where x is the distance from the edge. 
Furthermore, the charge density a & )  must be a function of R' (5),  where R is the outward radial distance 

measured from the inner edge of the ring, Fig. I: R l  5 R 5 R2. The R'dependence is dictated by the requirement 
that a & )  should be a minimum midway across the surface of the ring, due to the symmetric distribution of charge 
expected with respect to the (idealized) right-angled outer and inner boundaries of the ring:' 

Using a similar argument for the charged side surface of the ring (5). the charge density as(z)  must be a function 
of Z', where Z is the upward distance measured from the lower edge of the ring. Fig. I :  d 5 Z 5 cl + D .  us(z) 
must have a minimum at the equator:' 

Suitable functional forms for all and a s ,  which satisfy the conditions [3.2]-[3.4] are: 

and 

The important r z  = 0 term may be called the "fundamental" term in both radial and lateral charge distributions. 
The remaining terms may be called "correction" terms. This non~enclature has been used previously by Smythe 
( 5 )  in his treatment of the charge densities on the surfaces of charged right circular cylinders. Use of the condition 
[3.1] shows that only the fundamental term rz = 0 in [3.6] contributes significantly to the value of the charge 
density anywhere on the side of the ring, and therefore it is the only term that will be kept in what follows. 
Similarly, in his treatment of the numerical values of the coefficients of the radial charge density function a12(p) 

'ln reality the right-angled boundaries of the conducting cylinder arc not infinitely sharp. The finitc radius of curvature would 
add a correction term to the equations for crw(s).  In the limit of the geometries of Figs. I and 2, i.c., for D 9 r-,, this term 
is negligible; r, is the radius of curvature of a rounded edge. 



for different ( D / R 2 )  ratios of the right charged cylinder. Smythe has shown that only the fundamental term is 
important. The coefficients of the correction terms decrease rapidly, especially for D < R2 values. Therefore, only 
the fundamental term will be kept in [3.5] without loss of precision. The expressions [3.5] and [3.6] are then 
simplified to: 

where: c l  A. and C? -- B ~ ( D / ~ R ? ) - ' " .  In order that these fundamental terms match at the edges, it  is necessary 
to impose the requirements: 

[3.9] lirn u F ( R I  + E )  = lirn uF(R2  - E )  = lirn us (D  + cl - E )  = lirn us(d  + E )  
e-0 e-O r-0 r-IJ 

Keeping terms of only first order in E G I ,  we find: 

Collecting terms yields the charge density on the cylindrical conducting ring in the symbolic form: 

[H(p - Rl)  - H(p  - R,)][6(z - (9 + 6(z - d - D)]  
[3.1 I ]  u ( ~ , z )  = U F ( ~ )  + = c.1 

R l  + R2 
p ) / ( R ~  ; R I ) ] ~ ) " ~  

) I 3 ( l  - [ ( d + f - z ) / ( ~ / ~ ) ] l ) l l '  i2 (R2 - R , )  

In the expression [3.11] the function H is the Heaviside operator, defined as: 

The actual value of c ,  in [3.1 I ]  is a function of the applied voltage V,. However, it  is of no importance in the 
calculation of the capacitance. The latter is given as the ratio of two expressions, both of which are proportional 

7 

to c;. 
(b) A disc of rzorzzero thickness 
For this configuration the radial charge distribution equation [3.7] must be modified, in order to dispose of the 

nonphysical charge density singularity along the z-axis at the pole. For this geometry uF(p) on the two flat surfaces 
must be a function of p' and have a minimum at the center, due to the symmetric charge distribution: 

a 
[3.13] - a F ( p ) I r , = O  = 0 a P 

An expression satisfying the condition [3.13] has been given by Smythe ( 5 ) .  Using the constraint: 

the functional form of the radial charge distribution can be derived in a manner entirely analogous to that used 
to derive [3.7]. 

It is easy to verify that [3.8] is also valid in this case and gives the correct lateral charge distribution. Collecting 
terms yields the charge density on the cylindrical conducting disc in the symbolic form: 
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[H(p) - H(p - R)][6(z - ti) + 6(: - ti - D)] 
[3.15] tr(p,z) = u,(p) + us(z) = cI(VO) 

[I - ( P ~ R ) ? ] '  ' 

[H(: - ti) - H(: - ti - D)]6(p - R) + 
( D / ~ R  ( I  - [((I + - :j/(D/2)i2j1"] 

( c )  At1 it1fi:niteiy tlzin disc 
For a conducting disc with zero thickness [3.2] can bc changed to (7): 

[3.16] ( T ~ ( x )  = const. x s-"' 

By combining the condition [3.16] with the radial condition [3.13]. the charge distribution density may be written 
in the symbolic form: 

VS(Z) = 0 

The charge densities u l (x )  and u2(x) in [2. I ]  and [2.9] can be def~ned in terms of u , (p)  and u5(:): 

I 
I I [3.181 VI(P ,Z)  = T U F ( P )  

1 
[3.19] ~ r ? ( p , ~ )  = 7 ~ l ; ( p )  + US(Z) 

I In [3.18] and [3.19] it  is assumed that the charge density associated with the dielectric is that of the lower flat 
I 

surface of the upper conducting plate. The charge density associated with the vacuum is that of' the upper flat 
surface of the charged plate and of the cylindrical side surface. 

When the expressions for u l  and u l  from [3.l8] [3.19]. [3.1 I ] ,  [3.15], and [3.17] are inserted in the integrand 
I of the q(p .z) ,  [2.9], the potentials q l  and qz satisfy for all three geometries the relationship: 

I The equation [3.20] indicates that the continuity condition for the normal component of the displacement vector 
D, = -E,OY, is valid outside the upper plate area. at the vacuum-dielectric interface, where the free charge 
density is zero, as expected. 

3. Special cases 
Substitution of the expression [2.9] for the electrostatic potential into [2.10]. using [3.18] and [3.19], gives a 

general and exact expression for the capacitance of the configurations in Figs. 1-3: 

x [ ~ ~ ~ ~ ( k ~ , , ~ p ' ) [ u p O  + us(zt)] s n h  (ko , ,~ f )  exp [-hl,,(d + D)I}P' d p  dzl]) 
0 0 

This may be written more compactly in the form: 
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where: 

[4.3c] Q3 = J["p dp i r d :  Jo(ko!,p) [ ( ~ d p )  + crS(:)] sinh (k,,,,:) 

The ~ntegrals [4 31 may be evaluated for each of the three geornetr~es by ~ ~ s ~ n g  (cr) [3 1 I] to1 the annula1 upper 
plate, (0) [3 151 for the d ~ s c  w ~ t h  nonzero th~ckness. and (0 [3 171 tor the ~ n f ~ n ~ t e l y  th~n  d ~ s c  These evaluat~ons 
appear In the Appendice5 1-111 

A varlety of ~nterestlng specla1 cases w~l l  be rnvcst~gated below 
( I )  The expresTlon obtalned tor the ~nf~nltely th~n  d ~ s c  upon subst~tut~on ot [C I]-[C 31 Into [4 21 and uslng 

[3 171 IS 

1 1 - exp (-2k0,,ci) [ ~ o ( k , l , , p ) t ~ ( p ) p  dp]' 
[4.4] [ ~ ( a . ~ . d ) ] - '  = (----;I 2 ( 

2~ I ~ F O -  ,, - I ku,, J ;!(ko,,~) [J;(r(p)p dp]' 

- I 1 - exp (-2k,,,,cl) 
- (2ElT02R2~ I ka,, J (k1..(1) 

1 sin' (k0,,R) 

The following limits may be easily obtained from [4.4] 
(i. I )  In the limit of an infinitely large grounded conductor. a --, 71.. In this limit the discrete variable k,,,, becomes 
continuous. The formalism developed so far using finite values of the radius LI may be carried over to the casc 
cr + x, upon transforming (7): 

and 

Under the transformation rule [4.5] and [4.6]. [4.4] becomes: 

[ d [ - exp (-2kci)I [4.7] [C(R,cl)]-' = - 
[O,I(XP)(J(P)P dp] 

4'TrE I [S~(J(P)P +I2 'I 
The expression [4.7] gives the capacitance of a flat, thin, circular d ~ s c  of rad~us R located parallel to. and a distance 
cl above, an infinitely large grounded conducting plane. The in-between space IS assumed to bc filled w ~ t h  a 
d~electric having dielectr~c constant E , .  T h ~ s  expression is dentical to that presented by Jackson (7) It was derived 
here as a limit of more general cons~derations. Equation [4.7] may be integrated in closed lorm w ~ t h  the aid of 
ref. 13, entry 3.9 15.4, uslng the exact charge distribut~on [3.17]. Thc result IS: 

4'TrEIR 
[4.8] C(R.d) = 

'Tr -- 
2 

cot-' (cl/R) - (c1/2R) In 
( 1  :{:;R)'I 

for el + R, cot-' (d/R) + 0, and In [(cl/R)?/(l + (cl/R)')] - 0. In this limit: 

[4.9] C(R.d) - ~ E , R  

in agreement with the exact capacitance value of an isolated charged disc in a dielectric of constant E , .  

(i.2) I f  the integrations of [4.4] are performed with the incorrect but popular assumption that u(p)  = constant, the 
resulting expression is: 

1 - exp (-2ko,,d) Jl(X,l,,R) ? 
[4.10] C- '  = I 
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Assuming further that (i) d 4 R and (ii) R = a ,  [4.10] reduces to: 

The orthonormality property of the complete set of functions used for the Green's function expansion yields the 
sum-rule: 

From [4.l 1] and [4.12] we obtain: 

which is the result expected for the capacitance between two plates of equal radii R, which are uniformly charged 
and separated by a distance d 4 R, so that charge accumulation at the edges will not affect the value of C. 

(ii. 1 )  If the charge density is assumed constant in the geometry of Fig. 1 ,  the capacitance of this configuration 
is given by [4.1] upon setting: 

[4.14] UF = as = a (independent of p,z) 

Then the integrations over p and z become trivial, and [4.1] reduces to the expression: 
I 

1 [415] C - I = (  
1 

" 1 + exp (-k,,,D) - exp [-k0,,(2d + Dl] - exp [-2k,,,(d + D)] 

2 n ~ ~ ~ ~ ~ ~  (R i - R :)) { CI( G,, J I  (ko,,(l) 

where: 

The equation [4.15] gives the capacitance of the structure of Fig. 1 with a uniformly charged annular upper plate. 
It does not reflect the true charge distribution; however, i t  has been included because i t  adds insight to the way 
the various geometric quantities of Fig. 1 contribute to the total capacitance of the system. 

(ii.2) Upon setting RI  = 0 in [4.15], the capacitance of the structure of Fig. 2 is obtained, assuming that the upper 
plate is uniformly charged: 

[4.17] C-I = 
1 + exp (-ko,,D) - exp [-k0,,(2(1 + D) - exp [-2k ,,,, ((1 + D)] 

G,, 
If we set D = 0 and e l  = EU in [4.17] we obtain [4.10], which corresponds to the two-dimensional, thin, uniformly 
charged disc geometry of Fig. 3. 

(ii.3) Upon setting a = R and (d/R), (D/R) 4 1, [4.17] reduces to: 

Using the sum-rule [4.12] in [4.18] yields: 

Defining: 
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and 

[4.l8] may be written in the form: 

The equation [4.22] shows that in the limit of two capacitor plates of equal areas, the measured capacitance is 
eauivalent to that of two capacitors connected in series In a medium with dielectric conuant given by twice the - 
effective constant E , , ~  One of these capacitors. C,,, has plate separation d,  and the other, C13,  hi^^ plate separation 
012 .  This latter separation may be understood by considering the symmetry of the geometry of the cylindrical 
upper plate, as well as the assumed uniform distribution of charge over its surface. The average position of the 
charge on the cylinder is given by: 

.-,!+I> 

[4.23] (s) = 
J,, xu dr - D - d + 7  Jy+ ')a dr  - 

i.e., (1) is symmetrically located in the equator of the cylinder. which acts as the effective position of the charge. 

(ii.4) If, instead of the two media with dielectric constants E,,, e l ,  one uniform medium is present with = q,, 
then the definition [4.16] gives: 

Equation [4.19] can then be written: 

Equation [4.24] shows that in the limit of a uniform dielectric medium the two series capacitors may be replaced 
by one with plate separation equal to the average charge position (x). as expected. 

(ii.5) In the geometry of Fig. 1, using a = R? and (dlR?). (D/RZ) @ 1 ,  [4.15] reduces to: 

In the limit of D = 0 ,  [4.25] gives the capacitance between two circular plates of radius R?, a distance d apart 
and when the upper plate has a circular hole of radius RI  in the middle and is charged uniformly: 

Act, (R 1 ) 
[4.26] C(D = 0 , ~ ~  = E") = €0- d 

where 
T r ( ~ t  - ~ i )  

In the limit R l  = 0 ,  it is easy to show that: Acsi(0) = T ~ R ;  = area of a disc of raclius R2 iiS expected 

4. Discussion 
Numerical computations of the expression [4.2] have been performed using the expressions for Q l ,  Q,, and Q, 

from the Appendices 1-111. It was found that the infinite sunlmation over tz could be approxin~ated adequately by 
using a trunkation at 17 4 400, so that the results varied with 11 by less than 0 .  I %. Rapid convergence was achieved 
using both the Taylor series and the asymptotic expansions in the appropriate limits for the Bessel and the modified 
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Bessel functions o f  the various orders: 

1 
, , , , , (x/2)'" I' (Taylor) 

i - 0 

(Asymptotic) 

Using a minimization routine to calculate the difference o f  the numerical values o f  the asymptotic and the Taylor 
expansions in the series [5 .  I ] ,  [5.2] it was found that the transition from the Taylor series to the asymptotic limit 
occurs at x,, = 4 ? 0 .  I for both J,,(.r) and I,,(K). The  ac t~~al  value o f  .r,, varies slightly with p .  The  values o f  both 
J,,(,r) and I,,(,r) are effectively independent o f  k for k 2 25. This was taken as the cu to f f  term li)r both series in 
all computer calculations. 

I 
I For the purposes o f  the charged ring calculations. the value o f  A,,,(.r), [ A .  121. was only required for s < I .  In 

this limit [ A .  121 may be expressetl in closed form as: 

Numerical results for an infinitely thin charged disc 
at a distance (1 above an infinite grounded plane are 
shown in Fig. 4 ( f rom  [4 .X]) .  As secn in Fig. 4t1, the 
capacitance o f  the system decreases with increasing (I. 
For values o f  (1 > I m m  the system is esscntially an 
isolated charged thin tlisc, and the capacitance saturates 
at the value XE,R. as expccted. F ig~~re  4h is a plot o f  the 
capacitance o f  the system as a function o f  the radius R 
o f  the charged disc. Although the R dependence o f  [4.8] 
is cornplicated. a monotonic increase o f  the capacitance 
due to the increased area o f  the upper plate is to be 
expected, provided that the area o f  the grountled plate 
is always larger than that o f  the charged platc. This 
condition is always satisfied in the limit in which [4.8] 
is valid, i .e . ,  ti + x. When  the grounded plate has a 
finite radius, the critical factor upon which the capaci- 
tance o f  the system depends is the spatial charge distri- 
bution on the charged upper plate. For an infinitely thin 
charged disc the charge tends to accumulate at the circu- 
lar rim, away from the center. This is indicated by the 
(integrable) infinity at p = R in the expression [3.17] 
for the charge density cr(p,z). This charge behavior 
causes fringing o f  the lines o f  force at locations close to,  
or at. the rim. I f  the areas o f  both plates are the same, 
all the lines o f  force must be distributed between points 

on the rim o f  the upper plate and corresponding points 
on the rim o f  the grounded plate. I f  the area o f  one o f  
the plates incrcases, the number o f  lines o f  force within 
an area equal to the projection o f  the smaller plate onto 
the larger one decreascs. as some o f  these lines arc 
distributed at locations outside the pro-jected area. This  
simple argument shows that when both plates have the 
same area all o f  the charge contributes to the value o f  
the capacitance. W h e n  unequal areas are involved some 
charge is distributed outside the region between the 
smaller plate and its projection onto the larger plate. 
This charge does not contribute as effectively to the 
value o f  the capacitance. It is therefore expccted that the 
capacitance o f  the configuration in Fig. 3 will decrease 
when the plate areas are unequal. Figure 5 is a plot o f  
the capacitance as a function o f  the grounded plate 
radius, ci. with the interplate distance cl as a pal-ameter. 
Both curves are normalized with respect to the value o f  
the capacitance for identical plates with radii equal to 
625 k m .  The  capacitance o f  the configuration with cl = 
0.01 k m  decreases rapitlly with increasing grounded 
plate radius and it saturates at ca. 85% o f  the initial 
value for n 2 625.05 k m .  For larger grounded plate 
radii no significant redistribution o f  the charge between 
the two plates will occur. Owing to the narrow gap 
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FIG. 4. ( ( I )  Capacitancc of an infinitcly thin disc vs. intcr- 
plate distancc with R = 625 Frn, C, = 1.725 X 10" F. and 
ti = .-/?. ( I > )  Capacitancc of an infinitely thin disc vs. charged 
date radius ( t i  = w). 

between the plates. the system with cr 2 625.05 p.111 

behaves like a charged disc above an infinite grounded 
plate, with a capacitance given by C4.81. Compi~ter 
simulations have shown that the geometric criterion for 
the capacitance to assume the limiting value of [4.8] is: 

where: 

The capacitance of the cl = 1 km configuration de- 
creases much more gradually with increasing lower 
plate radius. Due to the relatively large distance be- 
tween the two plates, the effect of the charge redis- 
tribution is not significant, unless relatively large lower 
plate areas are involved. As a result, the asymptotic 
value of ~ E , R  occurs for AR - 10 knl, in agreement 
with the criterion [5.4]. It is evident from Fig. 5 that an 
approxin~ately 15% reduction of the calculated value is 
the maximum correction to the capacitance required 
when the expression [4.13] is used for unequal area 

FIG. 5. Capacitance of an ~nfinitely thin disc vs. ground 
plate radius for R = 625 pni and tl = 0.01 prn (-), d = 
I prn (-.-.- 1. 

plates. This maximum correction is needed for mea- 
surements of thin oxide layers on the order of 
0.01 -0.1 km thickness. The sensitivity of the value of 
the capacitance to minute changes in plate radius can be 
understood mathematically from the fact that the elec- 
trostatic capacitance is an integral over the charge dis- 
tribution, which has a pole at p = R, i.e., at the edge 
of the plates. Small variations in the plate dimension(s) 
can change the value of the integral significantly, as 
most of the contribrltion is due to the inclusion of the 
point p = R in the active capacitor area. If the charge 
were distributed uniformly, [4.13] indicates that C , / C ,  
= (R,/R,))' = 1 for all R ,  5 1 .04Ro. As expected, the 
value for the capacitance is much less sensitive to sinall 
plate area differences in this case. 

The effect of a charged plate of finite thickness on the 
measured value of the capacitance has been described 
by [4.22] for the case of a uniform charge distribution. 
Figure 6a is a plot of the general case, using [4.2] and 
the charge distribution [3.1 I]. It may be observed that 
an increase from 0.  I to I pin in upper plate thickness 
D decreases the effective value of the capacitance by 
one order of magnitude. This occurs because con- 
tributions made by charges from thc upper surface of 
the top plate to the capacitance integral become less 
important with increasing thickness, i.e.. with in- 
creasing distance of this surface from the grounded 
plate. As the interplate distance d increases, the differ- 
ence in height between the upper and lower surfaces of 
the charged plate decreases in importance for the value 
of the capacitance. For values such that r l  r IOD, the 
charged plate behaves like an infinitely thin disc and the 
capacitance value approaches asymptotical!y that of an 
isolated disc. Figure 6b is a plot of the capacitance as 
a function of the charged plate thickness, with the 
grounded plate radius (1 as a parameter. For thin charged 
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FIG. 6. ( a )  Capacitance of a disc vs. interplate distance for 
n = R = 625 p m a n d D  = 0.1 pm(-),D = 1.0 pm 
(-.-.- ). (6) Capacitance of a disc above a finite ground 
plane for n = IOOR (-), n = 10R (-.-.- ) , a n d a  = R 
(-. .-. .-). 

plates the decrease in capacitance with increasing a is 
significant, as  expected for d 5 a (compare with 
Fig. 5). F o r a  S R the configuration of an infinitely thin 
charged disc above an infinite grounded plane is ap- 
proached and the curves become less sensitive to the 
value of a .  However. an increase in the thickness D 
brings about a reduction in the capacitance, as dis- 
cussed in connection with Fig. 6a. For D S d, only the 
charge in the lower flat surface and the adjacent cylin- 
drical sides contribute to the value of the capacitance. 
In this limit the capacitance is a function of the ground- 
ed plate radius only, and all three curves approach val- 
ues determined by the line-of-force distribution in the 
available grounded plate area. 

When the charged plate has the ring shape of Fig. 1, 
the capacitance is expected to decrease for values of the 
inner radius R ,  close to that of the outer radius R2, 
because the total charged area decreases. Figure 7 is a 
plot of [4.2] with Q; values from Appendix I, having the 

FIG. 7. Capacitance of an annulus above a finite ground 
plane with a  = 625 pm, d = 0. I pm, and D = 1 pm. (----) 
is for a  = R2; (-.--- ) for n = IOORz. 

grounded plate radius a as a parameter. The value of the 
capacitance is essentially independent of R l  for values 
of R l  5 0 .  IR,. A rapid decrease in the value of C ( R l ,  
R,) is observed for R l  > 200 p,m and it results in C = 
0 for R l  = R,. Figure 7 indicates that the difference in 
the values of C between the a = R, and the a = 100R2 
configurations is smaller than that between the re- 
spective configurations of a charged disc with n = R 
and a = 100R, Fig. 60. This is the result of charge 
accumulation at the inner edges of the ring, which con- 
tributes significantly to the value of the capacitance. as 
opposed to contributions from the relatively charge- 
depleted disc center. This inner charge accumulation is 
just as important to the determination of the capacitance 
value as  the outer edge charge distribution. Therefore, 
small differences between the radii a and R? are not so 
important in determining C for the ring structure as 
differences between a and R are for the disc. In mathe- 
matical terms, the annular structure charge distribution 
has two poles at p = R l  and p = R,, whereas the disc 
has only one at p = R. The integrals for C depend on 
contributions from these poles. In the disc case the 
capacitance is sensitive to plate radius values in the 
range a - R ,  while in the annular case the large added 
contribution from the p = R ,  pole decreases the sensi- 
tivity of the C value dependence to contributions fro111 
the a - R, pole. 

5. Conclusions 
The present variational-Green's function formalism 

for the determination of the capacitance of complex 
three-dimensional geometries has been shown to give 
general and exact expressions for the capacitance, re- 
gardless of the specific geometrical parameters. Use of 
physically realistic charge distributions yielded closed 



form expressions for geometries of interest to the ex- 
perimentalist. It was shown that C is sensitive to the 
th~ckness and other dimensions of the capacitor plates, 
as well as to the spatial charge distribution. Numerical 
calculat~ons indicated that care must be taken in 
interpreting capacitance measurements when using sim- 
plified formulae such as [4.13], which might glve 
inaccuracies greater than 10%. 
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Appendix I 
Evaluatiorz of the integrals Ql, Q?, Ql ,for the charged arzrf~rl~rs 

(i) Ql  = S;P dp i Ixdz  [ u ~ P )  + uS(z)l 
Using the expression [3.1 I], the definition of the Heaviside operator. and the properties of the delta function 

we can write: 

Using obvious transformations Ql becomes: 

Using ref. l I ,  entry 3.421.2, we find: 

[A. 31 rZcos I/' x dx = [ r (2 /3) I2  
Il 21flr(4/3) 

Therefore: 

From [3. l  I ]  we can write: 
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Transforming Q2 gives: 

Using the identity (12): 

[ ~ . 7 ]  J , ~ ( x  + x )  = Jo(.Y) Jo (y )  + 2 C ( -  I )"'J,,,(,v)J,,,(x) 
,)I = I 

we can write: 

R l + R 2  R - R  R I  + Rz R, - R l  
[A. 81 J(]  {b,,, - (y 1 .v ] } = JII  [kil,, (T) 1 JO [ k ~ , !  (Y) -Y 1 

I 

I where the identities: 

I LA.91 J , ] ( - s )  = J o ( s )  

and: 

I were also used in deriving the expression [A.8]. I t  may be observed that: 

due to the oddness of the integrand; therefore. the expression [A.6] becomes: 

- ,  [ r ( 2 / 3 ) l z  
+ 

2?"1.(4/3) 
[2(R? - RI ) D 2 ] "  [RI Ju(ko,,RI) + R? Jo(ko,,Rz)] 

The integrals in [A. I I ]  may not be expressed in closed form. Using the definition: 

i I J,,,( A x )  d s  
[A. I?] A,,,(A) = m 2 0  

o ( I  - x ~ ) ~ ' ~ '  

Then the integral Q z  may be written compactly: 



Upon setting k,,,, = 0 and e l  = eil = 1 in [A. 131, the expected limit: 

Q?(O; Rl, R2,D) = Ql(R1, R2,D) 

is obtained. 

(iii) Q3 = ilY-p dp i jzdz ~ ~ ( k , ) , , ~ )  + ns(z)) sinh (kc,,,:) 

The explicit form of Q3 is: 

pJo(ki,,,p) dp 
(sinh (k,j,,d) + sinh [k,,,,(d + Dl]) 

+ (2(R2; Rl) )17 sinh (k,,,,z) dr 
[RJo(ko,,RI) + R? Ji,(II,,,,Rz)] 

The radial integral above has been worked out in the evaluation of Q2. The second integral may be transformed 
as follows: 

sinh (k,,,,z) dz 
[A. 151 I(k,,,,; (1, D )  = 

{ I  - [((I + 4 - z)/(012)]'/113 

= a D exp [ h , ( i l  + 411 [: exp ( -  $P,,,D - cos H )  sin1 ' H 

1 D " 
- ;D exp [-k,,,(d + i)] 1 exp (f k , , , , ~  cos H )  s in1'  t, C I O  - 0 

k D 
= a D {exp [k,,..(d + 4)] - exp [-kO,,(d + ;)]I G( j$)1°172/3) I , ,  (q) 

(ref. 13, entry 3.915.4) 

G 
= r (2 /3 )  (4/kihD)It6D sinh [k,,,,(d + I ,  ,(k,,,D/Z) 

where 11,(, is the modified Bessel function of the (1/6)th order. 
Upon using the expressions [A. 1 I ]  and [A. 151, Q7 may be written in the form: 

R + R 2  
[A. 161 Qi(ki,,;R~. R,, d.  D) = cl {(sinh (k,,,(0 + sinh [k,,(d + D)]) ((R: - ~ i )  (J,,[k,,,, (+)I - 
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v% 
+ r ( 2 / 3 )  ( 4 / k , ,D)""2 (R~  - RI)D'I"' [ R I J O ( ~ , , R ~ )  + R. Jo(k,l, ,Rd] I l l i . (kl l , ,D/2~ sinh [k, , , (d + e) ] }  

Here A,), A,,, have been defined in [A. 121. 

Appendix I1 
Evcrluatiorz of the integrals Q I ,  Q 2 ,  Q 3  for cr disc with rzorzzero thickrzess 

( i )  Using the expression [3.15],  the definition of the Heaviside operator, and the properties of the Dirac delta 
function, Q l  can be written as: 

[ B .  ] Q = ( 2  iR d z  

( I  - [(el + 4 - z ) , / ( D / ~ ) ] ' ) " '  

Using results from Appendix 1 it can be shown that: 

Performing the required integrations gives: 

(sinh (ko,,ci) + sinh [ko,,(cl + D ) ] )  

,I k [I sinh (k , , , ,~ )  dz 
+ (%)"'R J , , ( ~ ~ ~ , , R )  

1 - [(rl  + 4 - Z ) , / ( D / ~ ) ] ' } ' ' '  

From results in Appendix 1, the above expression becomes: 
~4 113 

LB.51 Q,(k, . ;R,d.D) = c 1 r ( 2 / 3 )  { 2 ( 7 )  J? / i (k , .R)  (sinh (kIl,,cl) + sinh [ko,,(ci + D ) ] )  
2ko,,- 

v% + - 2 (2RD')Il3R ( L ) l l i .  sinh [k,,,, (rl + q)]  J,(k,,,R) 1 ~ ~ ~ ( k , ~ , , ~ / 2 ) }  
ko,B 

Appendix 111 

Eval~lcrtion of the integrcrls Q l ,  Q z ,  Q3 for the irlfinitely thin disc 

Using the expression [3.17] and proceeding as in the Appendices 1 and 11, Q l  can be written: 



Also: 

s in  (ko,,R) 
[C3] Q. (k ( , , , ;R .d )  = CI R' [ ko,,R ] sinh ( k , t d )  




