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A variational-Green’s function approach to theoretical treatment and applications
of the capacitance of three-dimensional geometries
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A combined variational—Green’s function approach to the determination of the capacitance of various uscful three-
dimensional geometries is developed. This formalism leads to general. exact expressions for the capacitance. which can be
used with all gcometries provided the spatial distribution of the charge can be determined. In particular, the theory takes into
account the finite thickness and unequal arcas of the capacitor plates. Specific applications of the theory include circular
capacitors with disc and ring-shaped charged platc geometrics. Such geometrics are commonly encountered in cxperimental
set-ups for capacitive measurements of thin film thicknesses in the ficld of microelectronics. Numerical results indicate that
the values of thin film thicknesses calculated via simplified one-dimensional formulac for the capacitance may be incorrect by
more than 10%

Une approche a la détermination de la capacité de diverses géometries tridimensionnelles a été developpée, utilisant une
fonction de Green combinée a unc méthode variationnelle. Cette formulation conduit a des expressions générales et exactes
pour la capacité. Ces cxpressions peuvent étre utilisées quelle que soit la géométrie, pourvu que la distribution spatiale de la
charge puisse étre déterminée. En particulicr, la théoric ticnt compte de I'épaisseur finie et des superficies inégales des
armatures du condensateur. Des applications spéeifiques de la théorie comprennent des condensateurs circulaires avee des
armatures ¢n forme de disques ou d’anncaux. De telles géométrics sont communément utilisées a des fins expérimentales pour
des mesures capacitatives d’épaisscurs de couches minces dans le domaine de la microélectronique. Les résultats numériques
indiguent que ’erreur dans le calcul de '¢épaisseur de la couche mince, obtenue en utilisant des formules simplifiées

unidimensionnelles pour la capacité, peut étre supcricure 2 10%.
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1. Introduction

Accurate measurements of thin film thickness are
becoming more important in the field of micro-
electronics as device dimensions constantly decrease.
For some materials, such as polycrystalline silicon, the
electrostatic capacitance method may be the only tech-
nique available which will yield accurate mea-
surements. In this method, thickness calculations are
based on simple capacitance formulae. These are valid
strictly for two infinitely thin parallel plates of equal
area, separated by a dielectric slab. However, for very
thin film measurements the effects of the finite thick-
ness of the capacitor plates and the possibility of un-
equal plate areas ought to be taken into account, in
order to ensure the utmost possible accuracy of mea-
surement.

In this paper a formalism has been developed for the
capacitance of a dielectric medium between parallel
conducting plates of nonzero thickness and arbitrary
area ratios. It is based on a combination of the vari-
ational (1) and the Green’s function (2) methods. The
present work provides accurate, closed-form expres-
sions for the capacitance of three-dimenstonal geome-
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tries with various plate shapes and thin dielectrics.
Compared to other computational methods previously
applied to several geometries (3-8). the present tech-
nique has greater flexibility, more computational trac-
tability, and 1s less cumbersome. It is well suited for
application to experimental data derived from capaci-
tance measurements of thin dielectric films.

The variational method provides upper and lower
bounds on the value of the capacitance by means of trial
functions for the potential. If the trial function satisfies
Poisson’s equation and the boundary conditions within
the volume in question, the variational technique gives
the exact value for the capacitance. The space integral
of the Green’s function multiplied by the spatial charge
distribution does satisfy both the boundary conditions
and Poisson’s equation, so it can be considered as an
optimal trial function. An analytical approach of this
nature yields a general expression for the three-
dimensional electrostatic capacitance for all geome-
tries, with or without axial symmetry. This can easily
be implemented numerically with high accuracy and
convergence guaranteed by that of the well-behaved
Green’s function. Furthermore, knowledge of the
charge distributions for a given geometry gives closed-
form analytical expressions for the capacitance. Thus,
the general formalism was subsequently applied to ge-
ometries of interest to the experimentalist. Specific ap-
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FIG. 1. Cross section of a capacitor with annular plate
geometry.

plications investigated include (i) a ring of charge of
finite thickness; (i) a disc of finite thickness; and (iii)
an infinitely thin disc, all raised to a potential V, and
separated from a grounded plane by a dielectric slab,
Figs. 1-3. Each system was assumed to possess cylin-
drical symmetry, which is the case with a large number
of microelectronic configurations. Furthermore, axially
symmetric geometries were used in order to simplify
the computational task. The resulting mathematical ex-
pressions can be compared. in the appropriate limit(s).
to well known results for simpler geometries as a further
check of the validity of the theory. In the configurations
of Figs. 1-3 the radius a of the grounded plate was
assumed to be greater than, or equal to, the radius R of
the charged plate. The experimentally realistic condi-
tion that the grounded substrate thickness. 7. be several
orders of magnitude larger than those of the charged
plate and the dielectric was met by letting 1 — ==, This
approximation restricts the domain of the geometry to
the semi-infinite space z = 0. MKS units and cylin-
drical coordinates were used throughout the present
theoretical development.

2. Theory

(1) Capacitance of an arbitrary charge distribution
a(x): variational formulation
U[W], the total energy of the electric field created as
a result of the potential W(x) due to an arbitrary charge
distribution o(x) within a volume V. is given by the
expression (7):

(1.1] Uv]= % f a(x)V¥(x) d*x
y

The capacitance of the system whose charge distribu-
tion or(x) causes energy U[W] to be stored in the electric
field is (9):

[1.2]  C[¥) = Qi/2U[¥]

where Qy is the total amount of charge in the volume V.

1

T T I

\
\
m

[\
(N S |
r

FiG. 2. Cross section of a capacitor with charged disc plate
of nonzero thickness.

FIG. 3. Cross section of a capacitor with thin charged
plate.

Its value can be found by summing up (integrating) the
discrete (continuous) charge distribution densities:

[13]  Qv=[ o dx

In [1.3] the distribution o(x) was assumed to be con-
tinuous. From [1.1]-[1.3] the electrostatic capacitance
C[W] due to the potential distribution W(x) can be writ-
ten:

(1.4]  (C[¥]D ™" = ([ oW dv/[f o(x) d'x]?

This can be viewed as a variational exptession for the
capacitance of a charge distribution o(x) in a volume V,
when the true potential function is not known. but it can
be replaced by a trial function W(x), which satisfies the
boundary conditions on the outer surface(s) of V. [1.4]
is a general expression for the electrostatic capacitance
and applies to all geometries. It provides upper (or
lower) bounds for the true capacitance. If W(x) is the
true potential function satistying Poisson’s equation
within V, then [1.4] gives the true capacitance of the
system.

(2) Potential distribution in the semi-infinite space
z=0
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Assuming that the dielectric thin films of the config-
urations in Figs. 1 -3 have a uniform dielectric constant
€, the potential fields in the positive z half-space are
described by the Poisson equation:

[2.1a] VW(x) = —a,(x)/€;; 0=s:=d
[2.16] VW(x) = —0a(x)/ €
subject to the following boundary conditions:
[2.2a] W(p.bz=0)=0

(2.20] Y(p,bz=L)=0

[2.2¢] WY(p=R,Ry,R d:z=d. d+ D)=V,

~

>

In [2.15] €, is the permittivity of free space and z ex-

[2.4] —W(x) :f Glxx" )V ¥ (x') d'x' +f [G(x.x")
v s

:f Gx,x"YV*W(x") d*'
v

tends throughout the region of space where charges
exist. o, and o, are the charge distributions in the di-
electric and in the vacuum, respectively. These remain
to be determined. The boundary conditions [2.2a,b]
impose the requirement that the Green’s function
G(x.x") obey Dirichlet boundary conditions at z, z’
=0, L

23] Glp.bz=0.Ljp'd' 2 =0.L) =0

In the {six) boundary conditions [2.2¢] the designations
p = R,, Ry and p = R refer to Fig. 1 and Figs. 2 and 3,
respectively.

Green’s theorem may be applied to the potential dis-
tributions of [2.1a,b] via the use of Green’s second
identity (7). The result is:

d

"o— "9 : :
Py Yix'y — W(x') oy Oxx )] dS

because the Dirichlet boundary condition [2.3] implies that G(x,x’) = 0 at all boundaries for x’ on the surface
§’. The potential distribution W(x') vanishes at z” = 0 and z' = L, so that the surface integrals in [2.4] are equal
to zero. d/an’ is the normal derivative at the surface §', directed outwards from inside the volume V'.

Form [2.1a.b] and the linearity of the V* operator, [2.4] becomes:

[2.5] WY(x) = elf Gx.xo(x") dx’ + elf Gx.x' Yo (x') d*x’
1y 0 Jyy

where V," and V,’ are defined as the space regions [0,d] and [d ], respectively.
For axially symmetric charge distributions about the z-axis the form of the Green's function G"'(x,x") valid for
a cylindrical region in the whole z = 0 half-space with the z = 0 plane grounded is (10):

1 i Jo(kop)olko,p") sinh (kg,z.) exp (—kg,z-)

[2.6] G"(xx")=—

LT

k()n J %(k()na)

where a is the radius of the dielectric layer, Figs. 1-3, and J,,(ky,p) is the Bessel function of integral order m. The
coefficients k, are related to the nth root, x,, of the function J, in the following manner:

[2.7]
The variables z.. and z. are defined as (7):

28] z.={m}(z.2")

k(lu = x()rl/a

Upon combining the expressions [2.5] and [2.6], the potential distribution in the z = 0 region can be written

in terms of the charge distributions o,(x) and o, (x):

2 i sinh (k(),,Z() exp (_k()uz‘))J(l(k()np)

Y(p,z) = —

2
€d” =

2.9 i
|: ] k()nJ I(k(luu)

P

+ —

- d
f p' dp’ f Julkoup"oi(p’.2") dz’
0 0

2
€od™ y=1

= V¥ (p,2) + ¥i(p,2)

2 - sinh (ky,z<) exp (ko,z-)o(ko,p) fx 0
k()u‘] ?(k()”(l) 0

'dp' f Ju(ku”pl)(rz(p”zl)dzl
d

In [2.9] the functional forms of o\(p’,z") and o(p’,z’) depend on the specific axially symmetric shape of the
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charged upper plate of the capacitor. Since the expression [2.9] satisfies both the boundary conditions [2.2] and
the Poisson’s equation [2.1] for all z = O, it can be inserted in the variational expression [1.4] to give the exact
value of the capacitance. The equation [ |.4] can be written in cylindrical coordinates as a function of the charge
density o:

L L oo 2 Wotp' 2 ]p' dp’ dz’
27( J:J:(r(p',z’)p’ dp' dz'T

[2.10] [C(o)] ' =

where:

U(pvz) = Ul(paz) + Ul(piz)
(3) Charge distributions for three charged plate geometries
(a) A ring of finite thickness
This upper plate geometry is shown in Fig. 1. The thickness of the right cylindrical ring is D, and the inner and
outer radii are R, and R,, respectively. It is assumed that the ring thickness is small in comparison with R;:

[3.1] D<R/ <R

The condition [3.1] is valid for common experimental configurations in microelectronics applications. Near the
edgesatz = dand z = d + D the charge density o(p) on each flat surface of the plate, and that on the cylindrical
side surface, os(z), become equal and approach that of the charged rectangular wedge (5). The charge in the
neighborhood of the wedge is given by (7):

[3.2] ow(x) = const. x x~

where x is the distance from the edge.

Furthermore, the charge density oe(p) must be a function of R? (5), where R is the outward radial distance
measured from the inner edge of the ring, Fig. 1: R, = R = R,. The R’ dependence is dictated by the requirement
that op(p) should be a minimum midway across the surface of the ring, due to the symmetric distribution of charge
expected with respect to the (idealized) right-angled outer and inner boundaries of the ring:’

d
[3.3] % ar(p) |p:%¢R|+R3) =0
Using a similar argument for the charged side surface of the ring (S). the charge density os(z) must be a function
of Z?, where Z is the upward distance measured from the lower edge of the ring. Fig. l: d = Z=<d + D. ay(2)
must have a minimum at the equator:’

9

[3'4] 9z os(2) |::(I+ D/ = 0

Suitable functional forms for oy and o, which satisfy the conditions [3.2]-[3.4] are:

51 o= 2 afi= (B -/

and

n=90

The important n = 0 term may be called the “‘fundamental’’ term in both radial and lateral charge distributions.
The remaining terms may be called *‘correction’” terms. This nomenclature has been used previously by Smythe
(5) in his treatment of the charge densities on the surfaces of charged right circular cylinders. Use of the condition
[3.1] shows that only the fundamental term n = 0 in [3.6] contributes significantly to the value of the charge
density anywhere on the side of the ring, and therefore it is the only term that will be kept in what follows.
Similarly, in his treatment of the numerical values of the coefficients of the radial charge density function o(p)

*In reality the right-angled boundaries of the conducting cylinder are not infinitely sharp. The finite radius of curvature would
add a correction term to the equations for ow(x). In the limit of the geometries of Figs. | and 2, i.c., for D > r,, this term
is negligible; r. is the radius of curvature of a rounded edge.
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for different (D/R,) ratios of the right charged cylinder, Smythe has shown that only the fundamental term is
important. The coefficients of the correction terms decrease rapidly, especially for D <€ R, values. Therefore, only
the fundamental term will be kept in [3.5] without loss of precision. The expressions [3.5] and [3.6] are then
simplified to:

¢

[3.7]  oulp) = — —
B/

and

[3.8] os(2) =

([~ 2 -er)

where: ¢, = Ay and ¢; = Bo(D/2R5) ™. In order that these fundamental terms match at the edges, 1t is necessary
to impose the requirements:

[3.9] lin& ogr(R, + €) = lin(]) ogr(R, — €) = lina os(D +d — €) = lim os(d + €)
e e e— e—0
Keeping terms of only first order in € <€ 1, we find:

2R, — R)TA
[3.10] ¢ = ¢ [—(—LD——Q}

Collecting terms yields the charge density on the cylindrical conducting ring in the symbolic form:
[H(p — R) = H(p — R)][3(z — d) + 8(z = d = D)]
(-[E-o/ER])
L HE = d — Hz—d - D& ~ R) +3p — Rz)]}

<ﬁﬂ>m<l - [(‘1 +g- Z>/(D/2)]z>m

In the expression [3.11] the function H is the Heaviside operator, defined as:
0; x<0
IR x>0

The actual value of ¢, in [3.11] is a function of the applied voltage V,. However, it is of no importance in the
calculation of the capacitance. The latter is given as the ratio of two expressions, both of which are proportional
to c:

(b) A disc of nonzero thickness

For this configuration the radial charge distribution equation [3.7] must be modified, in order to dispose of the
nonphysical charge density singularity along the z-axis at the pole. For this geometry o¢(p) on the two flat surfaces
must be a function of p* and have a minimum at the center, due to the symmetric charge distribution:

[3-1 l] o(p,z) = oplp) + os(z) = ¢ {

[3.12] Hx) = {

0
[313] 55 O-F(p) |p:0 = 0

An expression satisfying the condition [3.13] has been given by Smythe (5). Using the constraint:
[3.14] D <R

the functional form of the radial charge distribution can be derived in a manner entirely analogous to that used
to derive [3.7].

It is easy to verify that [3.8] is also valid in this case and gives the correct lateral charge distribution. Collecting
terms yields the charge density on the cylindrical conducting disc in the symbolic form:
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—~ Hp — RB(:z —d) + 8z — d — D)]
[1 = (/R*]"

H(p)
[3.15] a(p.2) = oelp) + os(z) = ¢\(Vy) {[ P

N (Hz ~ d) - (:—cI—D)S(p—R) }
13

(/2R (1 ~ [ (¢+2-: /(D/Z)}

(c) An infinitely thin disc
For a conducting disc with zero thickness [3.2] can be changed to (7):

[3.16] ow(x) = const. X x~'?

By combining the condition [3.16] with the radial condition [3.13], the charge distribution density may be written
in the symbolic form:

H(p) — Hlp — R)]d(z — d)
()’(p.Z) = ()'F(p’z) = CI(V()) {[ P o] ] }

(Ts(Z) = 0

The charge densities o(x) and o(x) in [2.1] and [2.9] can be defined in terms of ow(p) and a(z):

[3.18] 0(p.2) = 30:(0)

[3.19] oyp,2) = %op(p) + oy(2)

In [3.18] and [3.19] it is assumed that the charge density associated with the dielectric is that of the lower flat
surface of the upper conducting plate. The charge density associated with the vacuum is that of the upper flat
surface of the charged plate and of the cylindrical side surface.

When the expressions for o, and o, from [3.18] [3.19]. [3.11], [3.15], and [3.17] are inserted in the integrand
of the W(p.z), [2.9], the potentials W, and W, satisfy for all three geometries the relationship:

d d
[3.20] € e WVi(p.2) ‘;:d =€ a9z Wi(p,z) |;~‘1
The equation [3.20] indicates that the continuity condition for the normal component of the displacement vector
D; = —¢VV, is valid outside the upper plate area. at the vacuum—dielectric interface, where the free charge

density is zero, as expected.

3. Special cases

Substitution of the expression [2.9] for the electrostatic potential into [2.10], using [3.18] and [3.19], gives a
general and exact expression for the capacitance of the configurations in Figs. [-3:

ULl vl ]
n=1

ko) (/\(ma)[J J {Ur(P ) + oz’ )}p dp’ dz’ }

[4.1]  [Clonoy)" = 5

m™wa-

X [J J {J()(koup’)[GF(pl) + O-S(Z’)] Sinh (k()nz,) exp [_k()n(d + D)]}p’ dp’ dz’]}
0 -0 .

This may be written more compactly in the form:

(42] C'=

ma .2, kouji(k(ma) [O/(R,R..D)]

e - [exp [—kou(d + D)]:l Os(ko,:R1.R>.D) Os(ko,iR|.R»,d D)
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where:

[4.3a] Qi = Jipdp Jy dz [os(p) + o4(2)]
_ [ c 1
[4.3b] Q.= fo pdp fo dLJ()(k(>,,P){2(€] +

[4.3¢] Qv = J, pdp Ji dz Jolkap) [ow(p) + o(2)] sinh (k)

The integrals [4.3] may be evaluated for each of the three geometries by using (a) [3.11] for the annular upper
plate; (b) [3.15] for the disc with nonzero thickness: and (¢) [3.17] for the infinitely thin disc. These evaluations
appear in the Appendices 1-II1.

A variety of interesting special cases will be investigated below:

(/) The expression obtained for the infinitely thin disc upon substitution of [C.1]-[C.3] into [4.2] and using
[3.17] is:

el )O'I:(p) + é(fs(:)w

0 Q

(’1 — eXp (_2/((),,{1)) [J:,RJU(/(()HP)(T(L)){) dp]l
k()/lj f(k()ua) [J:]R()‘(p)p dp:l2

} sin® (koR)

[4.4] [CaRd] = (__l_)

2e,mwa>

ne=

( | ) f\ [ 1 — eXp (—'2/\'(),,(1)

T
2ema’R? 2 k(,,,J,(/\nu”)

The following limits may be easily obtained from [4.4]

(i.1) In the limit of an infinitely large grounded conductor. ¢ — 2¢. In this limit the discrete variable k, becomes
continuous. The formalism developed so far using finite values of the radius ¢ may be carried over to the case
a — 2, upon transforming (7).

V2

[45) e

and

[tw

A l :
se] 2y —L f k dk
[ ] ar p= [‘II (k(),,(l)]_ 0]

Under the transformation rule [4.5] and [4.6], [4.4] becomes:

[fuRJo(kp)U( p)p dp]z}
[otpp do ]’

The expression [4.7] gives the capacitance of a flat, thin, circular disc of radius R located parallel to, and a distance
d above, an infinitely large grounded conducting plane. The in-between space is assumed to be filled with a
dielectric having dielectric constant €,. This expression is identical to that presented by Jackson (7). It was derived
here as a limit of more general considerations. Equation [4.7] may be integrated in closed form with the aid of
ref. 13, entry 3.915.4, using the exact charge distribution [3.17]. The result is:

41T€|R

] L[
4.7] [CR.D] ' = pro JU dk {[l — exp (—2kd)]

1+ (d/R)J)
ford > R, cot™ (d/R)— 0, and In [(d/R)*/(1 + (d/R)*)] ~ 0. In this limit:
[4.9] CR.d) ~ 8eR

_

5 cot™ (d/R) — (d/2R) In (

in agreement with the exact capacitance value of an isolated charged disc in a dielectric of constant ;.

(i.2) If the integrations of [4.4] are performed with the incorrect but popular assumption that ¢(p) = constant, the
resulting expression is:

[4.10] C"=( 2 )2

T
e @R,

[l — exp (—2k(,,,d)] {J,(/\'n,.R)‘}Z

kan Jl (k()lr‘I)
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Assuming further that (/) d < R and (if) R = a, [4.10] reduces to:

[4.11] C“z(ﬂ—jd];> > (k)

| n=1

The orthonormality property of the complete set of functions used for the Green’s function expansion yields the
sum-rule:

n=

[4.12] i (1/ky,)* = R*/4

From [4.11] and [4.12] we obtain:

R?_
[4.13] C = ¢ “7

which is the result expected for the capacitance between two plates of equal radii R, which are uniformly charged
and separated by a distance d <€ R, so that charge accumulation at the edges will not affect the value of C.

(ii.1) If the charge density is assumed constant in the geometry of Fig. 1, the capacitance of this configuration
is given by [4.1] upon setting:

[4.14] o = o5 = o (independent of p,z)
Then the integrations over p and z become trivial, and [4.1] reduces to the expression:

1 ) { i (1 + exp (—ko,D) — exp [—ky,(2d + D)] — exp [—2ky(d + D)]>
2meqa® (R; —RD/ L2 ko, J 1 (ko)

[4.15] C' = (

xmwmma—mh%mmﬂ

where:

1 1 1 1
216 S=0/(c )t e
[ ] €err (1/2) € €0> €
The equation [4.15] gives the capacitance of the structure of Fig. 1 with a uniformly charged annular upper plate.
It does not reflect the true charge distribution; however, it has been included because it adds insight to the way

the various geometric quantities of Fig. 1 contribute to the total capacitance of the system.

(ii.2) Upon setting R, = 0 in [4.15], the capacitance of the structure of Fig. 2 is obtained, assuming that the upper
plate is uniformly charged:

1 o /1 + exp (—ko,D) — exp [—ko(2d + D) — exp [—2ko(d + D))\ [/ 1(kouR)72
2 z ) o)
ki)n ‘Il(k()na)

If weset D = 0 and €, = €, in [4.17] we obtain [4.10], which corresponds to the two-dimensional, thin, uniformly
charged disc geometry of Fig. 3.

(ii.3) Upon setting a = R and (d/R), (D/R) < 1, [4.17] reduces to:

[4.17] C'=

2p2
2mea’R™ -

[4.18] C"=M£— > (ko)

€eff n=1
Using the sum-rute [4.12] in [4.18] yields:
[4.19] ¢ =24+D
47T€cffR-
Defining:
7R’

[4-20] Ca = (Ceyy) 4
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and

TR?

[421] CB = (ZELH) (D/z)

[4.18] may be written in the form:

1 1 1

(4.22] c-c G,
The equation [4.22] shows that in the limit of two capacitor plates of equal areas, the measured capacitance is
equivalent to that of two capacitors connected in series in a medium with dielectric constant given by twice the
effective constant €. One of these capacitors, C,, has plate separation , and the other, Cy, has plate separation
D/2. This latter separation may be understood by considering the symmetry of the geometry of the cylindrical
upper plate, as well as the assumed uniform distribution of charge over its surface. The average position of the

charge on the cylinder is given by:
d+ 1>

fd xo dx

d+ 1D
f agdx
d

i.e., (x) is symmetrically located in the equator of the cylinder, which acts as the effective position of the charge.

=d+

{4.23] =

[0

(it.4) If, instead of the two media with dielectric constants €, €,, one uniform medium is present with €, = €,
then the definition [4.16] gives:

1

€t = 560

Equation [4.19] can then be written:
R TR
((l + §>

Equation [4.24] shows that in the limit of a uniform dielectric medium the two series capacitors may be replaced
by one with plate separation equal to the average charge position (x), as expected.

[424] C=¢

(ii.5) In the geometry of Fig. I, using ¢ = R, and (d/R,), (D/R,) <1, [4.15] reduces to:
_ [ 2d + D ] i (L)z [l _ (&) J|(/\'0~R()T
n=1 Ko R,/ Ji(ky,R5).

TrEcIT(Ri _Rf)z
In the limit of D = 0, [4.25] gives the capacitance between two circular plates of radius R,, a distance d apart
and when the upper plate has a circular hole of radius R, in the middle and is charged uniformly:

Acﬂ'(R ])
d

[4.25] C'

[4.26] C(D =0,€ = €) = &

where
-R) )

Aw(R) = = s
- /\' n
4 z l: ! I)]
n=0 ’I\Un (Rv 7 l(k()uR )
In the limit R, = 0, it is easy to show that: A (0) = TrR5 = area of a disc of radius R, as expected.

4. Discussion

Numerical computations of the expression [4.2] have been performed using the expressions for Q,, Q,, and Qs
from the Appendices [-111. It was found that the infinite summation over n could be approximated adequately by
using a trunkation at n = 400, so that the results varied with n.by less than 0.1%. Rapid convergence was achieved
using both the Taylor series and the asymptotic expansions in the appropriate limits for the Bessel and the modified
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Bessel functions of the various orders:

..

(v (=1 % b p
A%I() m (/2" (Taylor)
[5.1] _/,’(4\') = <
V2/mx cos ("' B g/’ - %) (Asymptotic)
. Z
(< 1
2 WTGrETD WM (Taylon
5‘2 [,(.\') = l
[ ] l ) e’ (_l)A F(p-f—k-i—;)
' - (Asymptotic)
V2mx o (20 k!l‘(l)—k*—l)

2

Using a minimization routine to calculate the difference of the numerical values of the asymptotic and the Taylor
expansions in the series [5.1], [5.2] it was found that the transition from the Taylor series to the asymptotic limit
occurs at x, = 4 = 0.1 for both J,(x) and /,(x). The actual value of x, varies slightly with p. The values of both
J,(x) and I,(x) are effectively independent of & for k = 25. This was taken as the cutoff term for both series in

all computer calculations.

For the purposes of the charged ring calculations, the value of A,,(x), [A.12], was only required for x < [. In

this limit [A.12] may be expressed in closed form as:

. I'(k n m+ l)
[5 ’%] A (\') = _1_ F(7/3) i (_I)A 2 (\./'))lklm
L3 m\- 2 -~ P k![‘(m+k+ I) . m 7 X/ 2
- I (k + 3+ 6>

Numerical results for an infinitely thin charged disc
at a distance ¢ above an infinite grounded plane are
shown in Fig. 4 (from [4.8]). As seen in Fig. 4a, the
capacitance of the system decreases with increasing «.
For values of ¢ > | mm the system is essentially an
isolated charged thin disc, and the capacitance saturates
at the value 8¢ R, as expected. Figure 44 is a plot of the
capacitance of the system as a function of the radius R
of the charged disc. Although the R dependence of [4.8]
is complicated, a monotonic increase of the capacitance
due to the increased area of the upper plate is to be
expected, provided that the area of the grounded plate
is always larger than that of the charged plate. This
condition is always satisfied in the limit in which [4.8]
is valid, i.e., @ — =. When the grounded plate has a
finite radius, the critical factor upon which the capaci-
tance of the system depends is the spatial charge distri-
bution on the charged upper plate. For an infinitely thin
charged disc the charge tends to accumulate at the circu-
lar rim, away from the center. This is indicated by the
(integrable) infinity at p = R in the expression [3.17]
for the charge density o(p,z). This charge behavior
causes fringing of the lines of force at locations close to,
or at, the rim. If the areas of both plates are the same,
all the lines of force must be distributed between points

on the rim of the upper plate and corresponding points
on the rim of the grounded plate. If the area of one of
the plates increases, the number of lines of force within
an area equal to the projection of the smaller plate onto
the larger one decreascs, as some of these lines are
distributed at locations outside the projected area. This
simple argument shows that when both plates have the
same area all of the charge contributes to the value of
the capacitance. When unequal areas are involved some
charge is distributed outside the region between the
smaller plate and its projection onto the larger plate.
This charge does not contribute as effectively to the
value of the capacitance. It is therefore expected that the
capacitance of the configuration in Fig. 3 will decrease
when the plate areas are unequal. Figure 5 is a plot of
the capacitance as a function of the grounded plate
radius, a, with the interplate distance d as a parameter.
Both curves are normalized with respect to the value of
the capacitance for identical plates with radii equal to
625 pm. The capacitance of the configuration with ¢ =
0.01 pm decreases rapidly with increasing grounded
plate radius and it saturates at ca. 85% of the initial
value for ¢ = 625.05 wm. For larger grounded plate
radii no significant redistribution of the charge between
the two plates will occur. Owing to the narrow gap
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FIG. 4. (a) Capacitance of an infinitely thin disc vs. inter-
plate distance with R = 625 pum, C.. = 1.725 x 10" F. and
a = . (b) Capacitance of an infinitely thin disc vs. charged
plate radius (a = ).

between the plates, the system with ¢ = 625.05 pm
behaves like a charged disc above an infinite grounded
plate, with a capacitance given by [4.8]. Computer
simulations have shown that the geometric criterion for
the capacitance to assume the limiting value of [4.8] is:

[5.4] AR ~ 10d
where:
AR = |a = R|

The capacitance of the d = 1 pwm configuration de-
creases much more gradually with increasing lower
plate radius. Due to the relatively large distance be-
tween the two plates, the effect of the charge redis-
tribution is not significant, unless relatively large lower
plate areas are involved. As a result, the asymptotic
value of 8€,R occurs for AR ~ 10 wm, in agreement
with the criterion [5.4]. It is evident from Fig. 5 that an
approximately 15% reduction of the calculated value is
the maximum correction to the capacitance required
when the expression [4.13] is used for unequal area

RELATIVE CAPACITANCE (C/Co}

0.8 | 1 1 t S
625.00 625.05 62510 82515 625.20

&lym)

FIG. 5. Capacitance of an infinitely thin disc vs. ground
plate radius for R = 625 pm and ¢ = 0.01 pm (—), d =
I pm (—-——1).

plates. This maximum correction is needed for mea-
surements of thin oxide layers on the order of
0.01-0.1 pm thickness. The sensitivity of the value of
the capacitance to minute changes in plate radius can be
understood mathematically from the fact that the elec-
trostatic capacitance is an integral over the charge dis-
tribution, which has a pole at p = R, i.e., at the edge
of the plates. Small variations in the plate dimension(s)
can change the value of the integral significantly, as
most of the contribution is due to the inclusion of the
point p = R in the active capacitor area. If the charge
were distributed uniformly, [4.13] indicates that C,/C,
= (R;/Ry)> = 1 for all R, = 1.04R,. As expected, the
value for the capacitance is much less sensitive to small
plate area differences in this case.

The effect of a charged plate of finite thickness on the
measured value of the capacitance has been described
by [4.22] for the case of a uniform charge distribution.
Figure 6a is a plot of the general case, using [4.2] and
the charge distribution [3.11]. It may be observed that
an increase from 0.1 to | pm in upper plate thickness
D decreases the effective value of the capacitance by
one order of magnitude. This occurs because con-
tributions made by charges from thc upper surface of
the top plate to the capacitance integral become less
important with increasing thickness, i.e., with in-
creasing distance of this surface from the grounded
plate. As the interplate distance 4 increases, the differ-
ence in height between the upper and lower surfaces of
the charged plate decreases in importance for the value
of the capacitance. For values such that ¢ = 10D, the
charged plate behaves like an infinitely thin disc and the
capacitance value approaches asymptotically that of an
isolated disc. Figure 6b is a plot of the capacitance as
a function of the charged plate thickness, with the
grounded plate radius a as a parameter. For thin charged
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FIG. 6. (a) Capacitance of a disc vs. interplate distance for

a=R =625 pmand D = 0.1 pm ( ), D = 1.0 pm
(—+—-—). (b) Capacitance of a disc above a finite ground
plane for a = 100R ( ), a = I0R (—+—-— ),anda = R

(v e ).

plates the decrease in capacitance with increasing a is
significant, as expected for d = a (compare with
Fig. 5). For a > R the configuration of an infinitely thin
charged disc above an infinite grounded plane is ap-
proached and the curves become less sensitive to the
value of a. However, an increase in the thickness D
brings about a reduction in the capacitance, as dis-
cussed in connection with Fig. 6a. For D > d, only the
charge in the lower flat surface and the adjacent cylin-
drical sides contribute to the value of the capacitance.
In this limit the capacitance is a function of the ground-
ed plate radius only, and all three curves approach val-
ues determined by the line-of-force distribution in the
available grounded plate area.

When the charged plate has the ring shape of Fig. 1,
the capacitance is expected to decrease for values of the
inner radius R, close to that of the outer radius R,
because the total charged area decreases. Figure 7 is a
plot of [4.2] with Q; values from Appendix I, having the

o
T

Capacitance (pF)

o ! ¢ L L 1 1
1078 1077 1076 1079 1am4 1073
Rylmj

FiG. 7. Capacitance of an annulus above a finite ground
plane witha = 625 um, d = 0.1 pm, and D = 1 pm. ( )
is for a = Ry, (—+-—-—) for a = 100R,.

grounded plate radius a as a parameter. The value of the
capacitance is essentially independent of R, for values
of Ry = 0.1R,. A rapid decrease in the value of C(R|,
R,) is observed for R, > 200 pm and it results in C =
0 for R, = R,. Figure 7 indicates that the difference in
the values of C between the ¢ = R, and the ¢« = 100R,
configurations is smaller than that between the re-
spective configurations of a charged disc with @ = R
and a = 100R, Fig. 6b. This is the result of charge
accumulation at the inner edges of the ring, which con-
tributes significantly to the value of the capacitance, as
opposed to contributions from the relatively charge-
depleted disc center. This inner charge accumulation is
Jjust as important to the determination of the capacitance
value as the outer edge charge distribution. Therefore,
small differences between the radii ¢ and R, are not so
important in determining C for the ring structure as
differences between a and R are for the disc. In mathe-
matical terms, the annular structure charge distribution
has two poles at p = R, and p = R», whereas the disc
has only one at p = R. The integrals for C depend on
contributions from these poles. In the disc case the
capacitance is sensitive to plate radius values in the
range a ~ R, while in the annular case the large added
contribution from the p = R, pole decreases the sensi-
tivity of the C value dependence to contributions from
the a ~ R, pole.

5. Conclusions

The present variational—Green’s function formalism
for the determination of the capacitance of complex
three-dimensional geometries has been shown to give
general and exact expressions for the capacitance, re-
gardless of the specific geometrical parameters. Use of
physically realistic charge distributions yielded closed
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form expressions for geometries of interest to the ex-
perimentalist. It was shown that C is sensitive to the
thickness and other dimensions of the capacitor plates,
as well as to the spatial charge distribution. Numerical
calculations indicated that care must be taken in
interpreting capacitance measurements when using sim-

plified formulae such as [4.13],

which might give

inaccuracies greater than 10%.
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Evaluation of the integrals Q,, Qa, Q, for the charged annulus

Ho =

Using the expression {3.11], the definition of the Heaviside operator, and the properties of the delta function

J7p dp f dz [ow(p) + os(2)]

we can write:

p dp

Using obvious transformations Q, becomes:

[A2] 0 =¢ {(Ri — R} [ cos

Using ref. 11, entry 3.421.2, we find:
w2 [F(2/3)]2
A3 f Bxde = ——=—
[A.3] ) cos'” x L a3
Therefore:
I'e/3)r R
(A4l QR D) = e ) s

R3
[A5] O.=c e + ) fR

V2T (4/3)

From [3.11] we can write:

" xdx + [2R, -

Z_RI

[A1] Qi=e 2 f ({1 [BIE )/

RODY (R, + Ry [ cos

pJo(ko,p) dp

,)ﬂ‘“) ’

d D
X (R + Rz)f

(Z(RZD— R|))1/3

e enr)

U x dx

e

= R) + (R + R)[2R, — RHD]"}

(i) Q> = f p dp f dz Jo(ko.p) {%(Gl_l + GSI)O'F(D) + EJIUS(:)}
0 0

e

- T

d+D
X [R lJO(kUuRI) + RZJ()(k()nRZ):] f

EJI <2(R2D_ Rl))m

dz

ez -3fonlT
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Transforming @ gives:

[A6] 0s=c {(e,' +e) [(R 7 RT,) f {J{AHR : R2> : <R2 ; RIM} d\}

4 (L ="

(I _ '\.Z)I 3

e nr | {H( )= (B b ]

=1

/2
+ 561 [Z(Rz - RI)D2]| ! [RI‘]U(I((MRI) + R.Jy (k\)nRZ)] f cos'" x (L\‘}
0

Using the identity (12):

E3

[A.7]  Jolx + ) = JJe(y) + 2 20 (= 1" 0000

m=t

we can write:

R [ e R e A B (N e D el

- R + R, " /R, — R
+ Z Jm I:k(m (_Iz——>} ‘]Ill [ k()n <-:T—I_> X ]

m=]

where the identities:

[A.9]  Jo(—x) = Jo(x)

and:

[A.10] J,(—x) = (=1)"J,(x)

were also used in deriving the expression [A.8]. It may be observed that:
1 Jo(Ax) dx
=

due to the oddness of the integrand; therefore, the expression [A.6] becomes:

R — R, R, + R 1 J(,[k(,,, (@)\
[A.11] Q.= C|{(€|_] + GJI) |:( ) I’> J()[’\'()H( : 2 2” f“ (1 _‘-:\_3)]3

2 P R, + R3” fl Jm[k(m (@) \} d.\‘:]
0

+ (Ri - B)S e J,,,[ko,,< 5 T

o [re/3r }

dx

[

0 STran PR T RIDTT [RukaR) + Redu(koR)]

The integrals in [A.11] may not be expressed in closed form. Using the definition:
P Ju(Ax) dx
o (1 —xH"»°

Then the integral > may be written compactly:

[A.12] A,(N) = m=0
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[A13] Qutho: RuRoD) = e (3[4 1) ki = R ([ kol “ ) [ w5

€) €y’ 2 2
3 R, + Rl Rl - R [F(z/:;)]z
028 BB L

X [(Ry = RODT[R\Jy(ko,R)) + RZJU(/((,,,Rg)]}
Upon setting ky, = 0 and €, = €, = 1 in [A.13], the expected limit:
0.(0;R,,R.,D) = Oy(R|, Ry, D)
is obtained.
(iii) Qs = [, o dp [, dzJo(kep) {oe(p) + o4(2)} sinh (ko)

The explicit form of O is:

. . . . £ pJo(kyp) dp
[A~|4] 0, = ¢ {(Smh (ky,d) + sinh [kou(([ + D)]) fR] { HR‘ + R, R, — R\ ]2
L= 2 ‘p)/< 2 ﬂ }
2R, — R\ dvb sinh (ky,z) dz
+ (_“T)‘—“]‘) [RIJ()(k()uRI) + RZJ()(kUnRZ)] f D - R
a {1 - Hd +7—z)/(D/2)1 }

The radial integral above has been worked out in the evaluation of Q>. The second integral may be transformed
as follows:

[A.15] I(ky:d,D)

i

J" HD sinh (kg,z) dz

2Y 173
Y —[((/Jr%—z)/m/z)] |
1

D i I .
=3 D exp {ko,,(a’ + 5)] ‘[) exp (— ik"”D cos 6) sin"* 0 do

1
- ZD exp [—k(,,,(a’ +

Slw]

§

)] fﬂ exp (%k(,,,D cos 9) sin' 6 do
0

= 0o [1ala )] - o [l + )V (hp) “rem ()
(ref. 13, entry 3.915.4)

‘\/_
= 7’” r(2/3) (4/k()y;D)l/6D sinh [ktm(([ + %)] 1|r’(v(k()nD/2)

where I, is the modified Bessel function of the (1/6)th order.
Upon using the expressions [A.11] and [A.15], O: may be written in the form:

N H 2 k) R + R7
[A.16] QulkowsRi,R2 d.D) = ¢ {(smh (ko) + sinh [ky(d + D)])((Rg - R (Jo[k”" (_.‘.—)]

Al 2l (B35 (BT))

me=d
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Vo \
+ _2_r (2/3) (4/k0/|D)“6 [2(R2 - RI)DZ]U} I:RIJ()(kUnRI) + RZJ()(kUHRZ)][I/G(k()nD/z) Slnh [k(m<d + %)]}
Here Ay, A,, have been defined in [A.12].

Appendix 11
Evaluation of the integrals Q,, Q,, Q; for a disc with nonzero thickness

(i) Using the expression [3.15], the definition of the Heaviside operator, and the properties of the Dirac delta
function, @, can be written as:

<[—[<(l+——z/(D/2)] N

Using results from Appendix I it can be shown that:

3rR? | [T@2/3)F
. ,D — + 24 1/3
[B2] Q.R.D) { T+ rar 2R R}
) - pJo(ko,p) dp S 2R\
iy Q= ¢ {(Q] ) f T j (U TR + € I <3) RJo(ko,R)

X L {1 _.[(d+%i22>/(0/2)]2}m}

[r<2/3)]2) (2RD?)'"?
2¥3T°(4/3) €

Performing the required integrations gives:

R4
2

2k0u

(B3] OthikD) = e {123 (L + 1) (£ skamr + ( Riu(kunR) |

(iii)

R Pju(kuup) dp

B4 3= C hknl'+hk”[+D
[ ] 0: CI{(Sln (koud) Sin [0 (¢ )]) \ [1 — (p/R)z]m

IR\ drD sinh (ky,z) dz
+ () Rusra) | ” }

’ SRS SRV

From results in Appendix 1, the above expression becomes:

4\
[B-S] Or(ky,; R, d,D) = Clr(2/3) {2<2f 2) Jaslko, R) (sinh (ky,d) + sinh [kou((/ + D)])

On

Va 4 e
2 . D
+ 2 (2RD_)I/] R <k0,,D> Slnh [k()rl <d + 7)] JU(kOnR) [I/()(k()nD/z)}

Appendix 111

Evaluation of the integrals Q,, Q,, Qs for the infinitelv thin disc
Using the expression [3.17] and proceeding as in the Appendices [ and II, O, can be written:

_ [ p dp _ e
[Cl] Q1 = (y J;) [1 _ (p/R)3]1/3 - C]R
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Also:
0, = cl(el + € D) J Jo(ko,.p)p dp ,
(- (p/R) ]1/7

Similarly:

R Jolk
0= cvsin o || 1
0 -

, Isin (ke,R)T .
[C3] QOskusRd) = R [T;i’_—)] sinh (kg,d)
- On
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