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The theory of the photoacoustic-signal-source gencrauon upon hight absorption by a4 crystalline ~sohd s~ devedoped The
model examunes the physics of creation of a temperature- and nme-dependent distnibuted heat ~ource in the sample as a result
of electron-phonon interactions followed by vibranonal relasnation of the latuce The adisbiue Born-Oppenheimer (ABO)
approximation and stausucal thermal averages over phonon populations have been used to deseribe the rate of non-radiative
de-excitation processes The theory provides expressions for the non-radiative decay rate and for the sample haanng rate as
functions of sample temperature Debyve frequency. and energy level(s) of non-radustine stateds)

1. Introduction

Photoacoustic spectroscopy (PAS) of solid materials has recently emerged as a useful spectroscapic tool
for the investigation of low [1-4] and high [5] temperature phenomena. non-radiative processes [1.6-8]. and
studies of crystalline disorders such as defects and impurities 1n semiconductors [9.10]. In these applicatuions
it has been noticed almost invariably [2.3] that the expenmental data did not exhibit the simple
temperature dependence which was expected from the Rosencwaig—Gersho (RG) medel [11] Bechthold
and Campagna [3] qualitatively attributed such departures from the RG theoryv to the temperature
dependence of the velocity of sound in the coupling gas column. and to the temperature dependence of the
viscosity and density of the transmitting gas. These authors also speculated on the possibilitn of
contributions from the thermal properties of the sample to the temperature dependence of the photoacous-
tic signal. However, such contributions have not been considered in a theoretically nigorous fashion 1n the
photoacoustic literature.

It is evident that the mechanisms of the photon energy conversion to thermal erergy 1n the sohd’s
excited-state mamifold and the subsequent release of the heat into the sohd followed by heat conduction
processes will be responsible for the PAS signal origin. All informaton about the sohd-state physics of the
thermal response of the sohd to the incident radiation 1s included in the heat release rate which acts as the
heat source 1n the solid The magmitude, frequency response (frequency domain) or ume-des elopment (ume
domain), temperature, and position dependence in the material of the heat release rate are deternuned by
the excited-state energy levels, populations. and non-radiative transition rates [1]. The photoacoustic signal
as a function of the heating rate of the solid sample [11} carries valuable informauton about the
excited-state manifold and 1s sensitive only to the non-radiatne de-excuation channels and to the
subsequent heat conduction processes in the solid.

While the photoacoustic-signal generation due to heat conduction processes is relatively well understood
[11], no nigorous theoretical treatment of the heat-source generation which precedes thermal conduction in
a solid has been attempted 1n the photoacoustic literature. The theorencal imvestigation of the physical
processes which create the heat source responsible for the PAS signal from the sohd is of fundamental
importance to the interpretation of the signal in terms of such processes An understanding of factors
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contnbuting to the creation of a heat source in the solid 1s 1n turn crucial for assessing the relative
importance of sample-related contributions in the overall thermal processes which generate the photoacous-
tic effect 1n sohds A theoretical analysis of the non-radiative origins of PAS should provide a guide to
some experimental areas of current interest, such as the determination of the energy levels of non-radiative
states [9,10]; the study of defect states in crystalhne solids [12]; and the measurement of non-radiative
transition rates, lifetimes and quantum efficiencies.

In this work a single phonon-assisted optical-to-thermal energy conversion model is presented to
account for the heat-source creation 1 a crystalline solid as the result of non-radiative de-excitation
phenomena. It is subject to certain assumptions concerning the state of the optically excited solid and its
vibrational spectrum. as well as the photon-electron and electron—phonon coupling This sample heating
rate 1s determined as a statistically thermal average over phonon states and as a function of time-averaged
populations of the excited-state manifold of the sohd.

2. Theory
2 1. The non-radiative transition rate

In the present work the dynamics of the crystalline lattice on which a (assumed) monochromatic hight
beam 1mpinges will be treated 1n the harmonic approximation. The atomic (or molecular) states of the
lattice will be assumed to be adequately describable by the adiabatic Born-Oppenheimer (ABO) approxi-
mation [13-15] In the ABO approximation the nucle: are fixed at a single equilibrium position x, while the
electron posttions can be described by a set of independent coordinates r. The coupling term between
electrons and the nuclear vibrational manifold is ignored [16]. The wavefunctions for the entire solid are
thus given as products of an electronic and a vibranonal wavefunction:

Yasolx. r)=¢(x, r)x(x). (1.1)

Further, it is assumed that the Franck—Condon pnnciple is generally valid, so that the electronic
transition matnx element does not depend on the nuclear positions. A very useful consequence of this
principle is the complete separation of radiative and radiationless transition matrix elements. so that the
former enters the expressions for transition rates simply in the form of a multiphcative constant which 1s
not directly measurable by the photoacoustic probe.

Lastly, 1t is reasonable to assume that the phonon system can attain thermal equilibrium internally in
times short compared to the shortest radiative transition time. This assumption 1s especially true for long
wavelength phonons which have mode densites similar to those of the incident photons In this case the
ratio of non-radiative to radiative decay rates is on the order of (cp/c,)? = 10 [17]; ¢, and ¢, are the
speeds of light and sound, respectively, in a solid. As a consequence of fast thermalization, the phonon bath
can be characterized by a well-defined thermodynamic temperature T at all times of experimental interest

The processes considered here include optical absorption of photons of a fixed frequency, excitation of
the atomuc lattice system, de-excitation, and return to the ground state via radiative, non-radiative,
photochemacal, etc. channels. In particular, we are interested in the non-radiative de-excitation process
which involves emission of lattice phonons generating a heat source within the sample.

We are considering a system containing nuclear ion cores of mass M with coordinates x,, and electrons
of mass m with coordinates r,. The subscripts designate the positions of the nth atomic nucleus and ith
electron, respectively. The hamiltonian for this system is

= z V + Z Via(x, = xk)]



A Mandelis / Photoacoustic- signal - source generation 187

2 2,,, .+Z(|,l )+ZU (= x,)|. (1.2)

J>1

where V|_, and U,_, are the interaction potentials between two ion cores, and between an electron and an
ion core, respectively.

At temperatures higher than 0 K, the wvibrational-amplitude increase of the lattice ion cores due 1o
energy absorption by the phonon ensemble is small for light intensities typically used in photoacoustic
experiments. Typical temperature rises of sample surfaces excited by conventional arc-lamp sources. cw
and pulsed lasers are on the order of 1077-10"" °C [18]. For AT < T,,. the mean-square displacement ratio
of surface atoms is

T+ AT))/(x*(TH)) =1 + AT/T,. (13)

for temperatures higher than the latuce Debye temperature. Eq. (1.3) indicates that at (300 + 107 %) K the
mean vibration amphtude of a surface atom is (AT/T;)'/2 = 2 x 10~} times larger than that at 300 K. and
1.5 X 107 times larger than at 4 K

The above argument shows that a normal coordinate perturbation approach to the quantum-mechanical
operator(s) responsible for non-radiative transition matnx clements is well jusufied Taylor expansions of
the potenual operators ¥,_; and U,_; can be obtained about the equilibrium position R, of the 1on cores
The hamiltoman operator (1.2). is then separable into equilibrium and perturbation parts “®W**’ and "k ".
respectively:

He=2|- 2m .+Z(] |)+Z aln =R (14

1>y
-~ R’
1§°)=2[ -)MV + 2 ViR, RA)] (1.3)
n n>kh
‘JC,E Z Anl\.(u "A)‘*'Z nn u, (1'6)
n>h rm

u,=x,— R, is the atomic displacement vector of the nth ion.
In the harmonic approximation,

4 k=Knk(Rn_Rk)‘ (17)

where K, has the units of the stiffness constant of an oscillator comprised of the nth and kth ion cores

vibrating at a frequency w,,. If we choose a Coulomb-type of ien—electron interaction [19]. then we can set
in eq. (1.6):

B, =Ze’v,(1/lIr—R,|). Zis the nuclear charge.

As a consequence of the Franck—Condon assumpuon the actual funcuonal form of B,, does not affect
the non-radiative transition matnx element. The coordinate-operator functions u, — u; when statistically
averaged over phonon populations and summed up over ion core positions can be shown to ranish.
Therefore, the perturbation interaction hamiltonian of the system 1s given from eq (1.6) in the simplified

form:

‘J('=ZBm.um’ (1~8)

where we assumed a one-electron system for convemence. The hamiltonian of eq. (1.8) 1s now treated as the



188 A Mandelis / Photoacousuc-signal-source generation

perturbation which brings about the non-radiative decay of the excited state through the interaction B,
between the electronic and lattice coordinates at tempeatures higher than 0 K

The transition rate of the optically prepared state (1) to some final state (F) 1s given by [20]:
W, _r=Qa/hB)np., eg|Wny. e NW8(Er — E, + hewyy). (1.9)

where n(ny), e, (eg) are the iniual (final) vibrational and electronic states. respectively. Eq (1.9) also
allows for the possibility of vibrational excitation and decay without an electronic transition, depending on
the perturbauon hamilionian K.

Upon substitution of the perturbation hamiltonian, eq (1.8). in eq. (1.9) we can write the transition
matrix element

:JR'II'= <"F" er'ZB,u'"».I"|~CI>~ (]‘10)

m

where u,, 1s a Schrodinger position operator. The Franck—Condon prninciple and the adiabatic assumption
pernut separation of the electronic and vibrational parts

9R-lr=Z‘,(‘?rle‘f’O'<"F|"m|"|>- (1.11)
To simplify eq. (1.11) further, we are assuming that [19]

Irl<|R,,|. (1.12)
For Coulomb potennals:

(eFIBmlel> = Zez<eF|V(l/|f—' RIHI)Iel>' (1']3)

Under Coulomb conditions, as well as for shorter-range potenuals the electronic contribution contains a
factorable multiphcative constant. and the transition matrix element can be simphfied

“)Eu = (ﬁrlf(")lﬁ)’i ("F'"n.f”l}R;’Z"v (1.14)

where

fir)=2Ze* [61(r)(Ur) ¢:(r) &r. r=Irl, R,=IR,l; r<R,,

and n> 1 indicates the power of a potential function of shorter range than the Coulomb type The
non-radiative transition rate, thus becomes

-

<"Flunx|nl>lcos \bnr 8(EF_EI+hwlF)' (1‘15)

W _.g= (ZW/'I)KeFIf(')Iel)lz Z Rlz,,

nt

¥, is the angle between the vectors f and u,,. In most experimental cases, we do not know the exact nitial
state of the opuically excited system. Therefore, we will average over the thermal equilibrium distributions
of all phonon occupation levels in both the mitial and the final states of the solid. We also take averages
over cos® y,, = 1 /2 and over the arbitrary nuclear equilibrium position vector magnitudes R,, = (R,,,) = R.

Indicaung statistical thermal averages by ( ),, we can write an expression for the average non-radiative
transiuon rate from eq (1 15):

(Wi_p(wie)dr= (W/h)KeFIf’(r)lex)Izan.Zl(nplZu".ln|>I28[hwu= - (En. - Enp)]~ (1.16)
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where now f'(r) 1s a statistically averaged function of the equilibrium coordinates: f(2)=f(1)/R™"™: E, .
E,, are the energies of phonons present at the imtial and final states of the system. such that £, > E,:P,
1s the probability distribution function of the iniual state.

The time-evolution of the perturbation hanultonian ' can be conveniently mcorporated m the
transition rate formalism using correlation functions (the time-integral representation [21]) This leads to a
Fourier-transform function whose time dependence can then be handled by Heisenberg operator algebra
for the phonon (boson) ensemble.

We introduce the Fourier transform pair:
1 20
Winp(e)r=5_ [ &'G(r)ds (117a)
and
o0
G(z)=f e YW, _p(0))rde. (1 17b)
— o0

Substituting eq. (1.16) into eq (1.17b) and making use of the completeness properiy of the phonon
eigenvector-operator set in Hilbert space {n#} and using statistical averages over phonon states 2, [21] we
obtain.

G(1) = (a/m el £/(r)led* X (1, (0)-u,, (1)) (1.18)

m.y

Insertion of eq. (1.18) into (1.17a) gives the tume-integral representation of the stausucally averaged
non-radiative relaxation rate

Wip(@)yr= (Keel F(Peny/20) [ e (u,(0)ou, (1)) . (119)

—c m g

The expression (1.19) may be evaluated using well-known expansions [21] for the operators 1, (1) In thes
expansions, series of terms of operator products of the form ¢ ¢, and a7« have not been included
because the time evolution of such products oscillates rapidly giving an average value of zero in the nume

scale of oscillation of the products a,a} and a7 a, [22.23]. The stausucal thermal average of eq (1 19) can
be obtained using phonon number operator average:

(ny (k)= {exp he, (k) /kuT] -1} (120)

The three-dimensional thermally averaged non-radiative transition rate can be obtamed trom eq (1.19) and
the integral representation of the delta function. upon conierting sums over phonon wavevectors A o
imtegrals to facilitate computation:

(Wpe(0))r= (77<9Flf'(’)lel>l/2hfw) > X [05,‘)(61)‘-’;;”(61)/0-\(G,)]

afBs G,
X {[(n (G))r+118[w—w,(G)] + (n (G))rb[w T w (G)]}). (1.21)
where G are reciprocal lattice vectors, and e!'’, ef*’ are lattice eigemvectors corresponding to branch a. .
respectively.
In eq. (1.21), the first term in the curly brackets describes single-phonon enussion while the second term

describes phonon absorption. From the energy conserving delta funcuon i eq. (1.16) and for « = « ;. we
see that for the first term in the curly braclkets.

wr=0,(G)=(E, —E,)/h>0 or E,>E, . (122
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This is consistent with the de-excitation assumption and indicates energy loss to the lattice through phonon
emussion The oppostite occurs for the second term, since w = w,;r = —w,(G,), whichresultsin E, <E, .ie.
a higher final state than the initially opuically prepared state. This absorption term was introduced in the
model through the coordinate vector expansions. Henceforth, it will be eliminated from this work. since we
are considering the rate of non-radiative decay via phonon emussion only. Under these conditions, a more
restrictive form of eq (1.21) will be employed:

(W2 p(wp))r= (7iel £/(r)le) /2hM)
xY ) [e‘(x”(Gl)91(3”(61)/‘*’;(61)][(”:(Gl)>r+ I]B[wlF_ws(GI)]’ (123)

afBs G,

where the symbol 1 3 F indicates the transition from state E, to state Eg, such that E, > Ep. Eq. (1.23)
shows that non-zero non-radiative decay rates are the result of the following energy selection rule for
allowed transitions: Energy conversion from the excited state into heat due to phonon emission during
de-excitation can occur only when the energy difference E, — E,_ is equal to a lattice vibrational energy
ho (G,). where w,(G,) 1s a reciprocal lattice frequency. The selection rule

E,.~ E, =he,(G,). (1.24)

1s a funcuon of the crystallographic structure of the solid sample This rule comprises a theoretical basis for
the experimentally observed [10] relauonship between photoacoustic signals and crystallographic nature of
sohd samples It is expected that eq. (1.24) will be useful in photoacoustic investigations of non-radiative
states in sohds.

It 1s convenient to use the continuous Debye model to obtain explicit expressions for (W2 ¢), 1 terms
of measurable lattice quantities. We assume a continuous distribution of reciprocal lattice vectors [24]:

| S
2 Vfo 4G, (1.25)

where G, , corresponds to the cutoff frequency wp, of the lattice. Applying the transformation (1.25) to the
rate (1.23), and using the completeness property of the lattice eigenvectors, we obtain

_ 108774K9F|f'(’)|91>|2 WiF

(Wizp(wg))r= MV2ho, exp(—ha skl (1.26)
where we defined:

hoye = Rk el®/2M (1.27)
and

(n(@ip)yr= (n,(kie)dr=[exp(heoe/ksT) —1] 7" (1.28)

Eq. (1.26) links the non-radiative transition probability from level (I) to level (F) to the Bose—Einstein
distribution {n(w,g))+ for a one-phonon process between levels (1) and (F).

The present formalism predicts a constant term, in addition to the temperature-dependent Bose—Ein-
stein term. The origin of this term has been identified [24] as due to spontaneous phonon emission
phenomena. Eq (1.26) can be expressed in the form

(Wi2e(0))r= ChwlF(2[<n(wlF)>T+ 1/2] —(n(we)dr)
= C(2(E) — (E)1F)> (1.29)



A Mandelis / Photoacoustic- signal - source generation 191

where C 1s a constant, { E[¢) is the average energy of a lattice-vibrational mode at a radian frequency w,
and {E), <y 1s the energy consumed due to absorption of one phonon. The form of eq (1 29) 1s a result of
Qur Aassumpeon of wncoupéd armanic asa(atans W he sohd matoe.

22 Excted state dynamucs of heat-source generation m a solid

Non-radiative de-excitations in an optically excited solid followed by heat conduction processes are
responsible for the temperature rise 1n the solid which generates the photoacoustic signal The temperature
profile T (r. t) in the absorbing sample can be described by a heat-diffusion equation {18.26].

1 1 d

3 d
V“Tg(r.t)—a—ET\(r.I):——‘I'\j‘mH(r.I). (2.1)

where a ., k_ are the thermal diffusivity and thermal conductivity of the sample. and H(r. 1) 1s the total
heating rate (erg cm~> s~ ') which acts as a time-dependent distributed heat source In the present work.
H(r, 1) is assumed to be a cosinusoidal function of time at the modulauon frequency «,, of the incident
light beam An extension to time-domain excitations 1s straightforward [1]

The heating rate of the solid can be determined from considerauion of all energy levels (/. J) to (from)

which non-radiative transitions occur. For the decay 1= J (E, > E,). the et rate of heat production 1s [1].
ah,,(r.1)/dt=(E,— E;)[N,(r. )W, 2, — N, (r. )W, 2,]. (2.2

where N,, N, are the instantaneous population densiues of levels (/. /) at a depth rin the sohd immediately
after the optical excitation. The total rate of heat production 1n the sample 1s

dH(r.1t)/dr= 3 dh,,(r.1)/dt=2 3 E, N{(r.0)W,>,: E, =E,—E,>0.

1>J I>J

-~
tJ
(7Y

e

Hunter et al. {27] have used the gas-phase equivalent expressions to eq (2.3) to describe gas molecule
de-excitations following harmonic optical pumping and modulation of the excited state populations. For a
frequency-domain solid-state photoacoustic experiment the ume dependence of the fth excited state
population will be the real part of the expression.

Ny (r, 1) =iNO(r)[1 + expliog?)]- 29

The modulation frequency w, is assumed to be much lower than the rate of approach to thermodynamic
equihibrium by the phonon populations. Murphy and Aamodat [1]. Rosencwaig and Hildum [28]. and Powell
and co-workers [7,29] have applied expressions similar to eq (2.3) to the study of the PAS signal from
specific impurity systems whose excited-state manifolds were known. In general. however. only staustical
thermal averages of all excited-state contributions to the sample heat source are meaningful for the purpose
of PAS signal analysis. Taking the thermal average of eq. (2 3). we can evpress the experimenially
detectable heating rate A, ,

H. (r i) =(dH{r ) /did;=20( Y o, N(r ol ). (235)
1>J
Vsing the detiition of thenmmal averages (28] ve cea shaw that
Hexp=2h 2 (o N(r )W, 2, )7 (2.6)

I1>J

The term w;; in the brackets is a constant and therefore 1t can be pulled out of the thermal averaging
operation. For a general K-level system N; may be calculated from the dvnanmuc equation of level (1) [30]
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and from eq (24)

dN, (r. 1)/d1 = [ T (Ru) il (r. ,)] e z)[ > (R,,.)M]

m K m. K
=110, NP (r) exp(iwyt)- (2.7)

(R,,)x_, is the mth type of transition rate (e.g. radiative. non-radiative. intersystem crossing. etc.) from
level (K) to level (/).

Defining the total relaxation time constant from level (7) as

TIE[ > (Rm)l—-l\]_l‘ (2.8)
m K
we find
N (r) =T,[ > (Rn,)h_,N;‘“(r)]/(l +1a07,) (29)
m K

From egs. (24) and (2 9), we find the following eapression for the time evolution of the average number
density of states at level (1):

Ny(r.1)= %K’_,‘O’(r)([l + e\p(lwol)]/(l + 10477 )} (2.10)
where
NO(ry= X (R kN (r)/ X (R k- (2.11)
m K m K

Now, N,(r, t) can be pulled out of the { ), brackets in eq. (2.6) and can be replaced by eq. (2.10). since 1t
does not depend on thermal averaging,

H . (r.1)=h[1 +exp(icot)] )1:; [, N O(r) /(1 +iwem ) W2, (@) r- (2.12)
>

Eq. (2 12) 1s a general expression for the experimentally measurable heat-release rate in a frequency-domain
photoacoustic experiment. Upon consideration of the expression (1.26) for the non-radiative decay rate, 1t
becomes apparent that He,‘p generally depends on T the higher the temperature of the solid, the larger the
thermally averaged (W ), and the faster the heat release rate. The occurrence of larger non-radiative
transition rates at higher temperatures (1.e. shorter non-radiative lifetimes) predicted by eg. (1.26) has been
previously observed (e.g. Le Si Dang et al. [25]). Physically, the faster heat-release rate at higher
temperatures is the result of the presence of a statistically larger number of lattice phonons due to the
Bose—FEinstein distribution at all energy levels. These phonons assist in carrying through the non-radiative
transitions more efficiently than at low temperatures, thereby shortening the lifetime of the transition. In
the next section, we shall consider some special cases of eq. (2.12) which are of nterest to experimentalists,
namely heating rates of sohds excited to a single and multiple energy level, and the production of the
photoacoustic signal from a two-level solid at room temperature.

2 3. Special cases and discussion

The equation for the distribution of the optical energy upon excitation of a solid by radiation of
wavelength A and intensity Io(A, r, 1) (W/cm?) 1s

(M) Io(X, r, t) No=N,(r, 1) Z (Ry) -k (3.1)
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where N, is the ground-state population. N, is the population of the (assumed) single level of excitauon (/).
and o(X) is the absorption cross section for transitions excited by hght of wavelength A 615 given in terms
of the optical absorption coefficient 8(A):

o(A)=B(A)/Ny- (32)
Egs (3.1) and (3.2) give the following expression for the average number density of states
N ()= BN Io(A.r)/ 2 (R,) - (3.3)
m A

where a consinusoidal dependence on time was assumed for J,(A. r. 7). 1, 15 usually {11] taken to sausfy the
Beer—Lambert law

Io(A.r)=I,(A) exp[ = B(M)irl]. (3.4)

(i) We shall now examne the temperature dependence of Hup in the sngle and muluple excitation

cases. For optical excitation to multiple levels, eq. (2.5) can be written using eq. (1 26) for the non-radiative
transition rate

(dH(r,1, T)/dry;=A[1 + exp(iwgr)] Zl; [N (r) /(1 i) ]@(T). (3 5)
where

A= (1087"/ MV} ) el £(r)le)I (3.6)
and

Q,(T)=§lwfj/[1 — exp(—hey, [k T)].- (3.7)

In order to calculate the summation in eq. (3.7). 1t 1s convenient to work n the conunuous Debye limit of
lattice frequencies. Taking the density of modes

g(w,) dw, = (187n/w} ) w} dw, = Bwj dw, (3.8)
(n is the number of atoms 1n the solid) and transforming the sum of eq (3 7) 1nto an mtegral. we get:

0,(T) =B [ “wjui, duy/[1 = exp(— heoyy/kuT )] (3.9)
where

Wy=(w )\ =97 @ <wp: (3.10)

=Wp; W; 2 Wp.

The term w?,/[1 — exp(—hw,,/kgT)] in the integrand of eq. (3.9) and 1in summauon of eq. (3.7) 1s a
measure of the density of occupied states at temperature 7 when spontaneous non-radiative decay
processes are present in addition to induced non-radiative transitions For optical upward transitions. the
energy of the excited state (I) is usually much larger than he,, due to the photon frequencies which are
much higher than those of lattice phonons. Therefore. we will henceforth set w( =, 1n eq (3.9).

At low temperatures,

W 5 5 > 3 -~
QI(T)::B./(; wywy; dw, = 3Bwjep, (3.11)
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for w, > wp. Inserting eq. (3.11) into eq (3.5), we find

]vl(())(r)wi

(dH(r,t, T) /1) ¢y, 1, = 3ABwL[ 1+ explicgr)] 3 e - (3.12)
I 0

Eq. (3.12) 1s independent of temperature. In this hmit the RG theory [11] of the photoacoustic effect is
rigorously valid

At high temperatures eq (3.7) gives
0(T)= B(kar/h)jo“’“wfwu de, = $Bw} (koT/h)w,. (3.13)
for w, > wp. Now. eq. (3.5) yields

N (r)e,

- . .14
1+ 10,7 (3.14)

(dH(r, 1, T)/d’>r»hul,/ku=%ABw:)[l + cxp(iwot)](kBT/h)Z

Eq (3 14) indicates that at high temperatures. the heat-release rate 1s proportional to T in the continuous
Debye approximation.

If there are only two discrete energy levels [0) and |1) 1n the solid and absorption occurs due to the 0 — 1
transition, eq (3.5) gives

(dH(r.1. T)/d1>r=44]v;('- ’)(“ﬁo/[] - ehp(_hwlo/kBT)])
= AN (r)[Ro 1/ (R _o+105)][1 + exp(rwor) {0/ 1 — exp(— e o /kyT)]}. (3.15)

where R 1s the total transition rate At low temperatures. eq. (3.15) is independent of T and proportional to
w?,, while at high temperatures it s linear in 7 and w,,. These characteristics of the two-level solid are
stmilar to those obtained for the continuous solid.

(i1) The theoretical development 1n this work has given a method for analyzing the photoacoustic signal
as a direct measure of the heating rate of the solid sample. Once the H,, (r.:. T) is known, a standard
approach to the calculation of the PAS signal can be apphed [11,26] via the heat-diffusion equation, eq
(2.1). The model presented here demonstrates the possibility of a sample-related temperature-dependent
heat source 1n the range of room/high temperatures and/or small photon energies, especially in the
infrared, 1e. for hwp <kzT=0.026 ¢V at T=300 K, and for most phonon energies up to hwg. The
Rosencwaig—Gersho explicit formalism [11] hinges on assuming a heat source independent of 7. The
present work shows that for the simple case of vibrationally harmonic solid and a single phonon

de-excrtauon mechamism, the linear heat-diffusion equation (2.1) must be replaced in general by 2
non-hnear equation of the form

VI (r 1) — e e T, 1) = (T r ). (3.16)

which 1 its general form can only be solved by special approximate methods [31]. Only at very low
temperatures or 1n solids with large energy level spacings is the forcing function f in €q. (3.16) independent
of T, and the RG formalism strictly valid. Under these circurr stances, the apparent disagreement between
temperature-dependent expenmental PAS data [2,3] and the T ~! dependence predicted by the RG model is
not surprising. For the usual one-dimensional sample geomet-ies [11,26] and assuming a two-level solid at
room temperature, €q. (3.16) can be written as

2

ax3

T(x,1) —a{—aa—,n(x, 1) = — A exp[ — B(AMx[][1 + exp(icor)] (%, 1), (3.17)
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where

Ac[fE[B(}\)IO(}\)/qu]nc”’ (3.18)
and 7, is the effective quantum efficiency of the non-radiative transition from level {1) to level {0):
Nerr = Ak g(@40m) /R (1 +iwgT)). (3.19)

A is given by eq. (3.6).

Considering only the AC component of eq (3.17) which 1s responsible for the generation of the
photoacoustic effect [11] we can write

d*T(x)/dx* + {A.qr expl = BIx(] — 1600/} T(1) = 0. (3.20)
where it was assumed
T.(x, 1) = T(x) exp(1eot)
The general solution of eq. (3.20) can be expressed as follows:

e—nﬂx

T(x)=U|1+ (Ac“-/B)"gl mj] exp(o.x)
kel e—nBt ,
+V l+(A¢rr/B)n§lm] exp(—ox). (3.21)

where U, V are complex-valued constants, and
e 1,2 -
o, = (“’-’o/as) - (3‘22)

Eq. (3.21) reduces to the RG model expression. eq. (4b) of ref. [11] for temperature-independent
non-radiative transition rates.

The PAS signal which 1s predicted using eq. (3.21) and eq. (15) of ref. {11]. is larger than that predicted
by the temperature-independent heat-source term of the RG model at all sohid temperatures T, > hw /K.
owing to the contributions of the summations multiplying the A, terms Qualitativels. this behavior which
results from the modification of the RG theory 1s consistent with the gentler than 77 fall-off of PAS signal
(e T~1/2) observed by Kuhnert and Helbig [2] at room temperature. However. exact predictions of the
temperature behavior of the PAS signal cannot be obtained unless the exact three-dimensional equation
(3.16) 1s numerically solved. Numerical solutions will be presented in a future publication.

The present theory is rigorously valid for cases where the thermal disturbance of the sohd due 1o
non-radiative de-excitations from an optically excited level is both fast and small compared to the
disturbance due to its exposure to the ambient temperature bath. Two- and more-phonon processes have
not been considered here and are assumed to have negligible effects 1n the radiationless transiton rate. In
the special case of a single optically prepared state (7). this work provides a generalization of specialized

heating rate expressions denved previously (eqs (1) of ref. [26]). This can be seen. if eq. (2 12) is written in
the form

chp(kv r. 1. T)=3I(XA)B(A) C‘P['_B(}\)l"l]([l + cxp(iwoz)]/(l +iwy7 )} Z {MsdrE. (3.23)
allJg

where (n,,)+1s the thermally averaged absolute quantum efficiency of the non-radiative transition between
levels (7) and (J), defined by

(dr= W20/ ZK(Rm)J—-A- (3.29)
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The summation is over all levels (K') to which any transition from level (1) can occur, such that hw,; > 0.

The present theory accounts for the effects of the crystallographic structure of the lattice on the
heat-source generation, via the selection rule. eq. (1.24) for allowed non-radiative transitions.

The calculation of the Debye frequency of the sample from the PAS signal via eqs (3.5) and (3.21) is
rather difficult due to the general lack of reliable absolute PAS amplitude data and the indeterminacy of
the electronic matrix element (e} f'(r)le,;)>. However. relative amphtude and phase data as functions of the
temperature T should, in principle. give information about the energy gap hw, between the excited state
and the ground state to which it is coupled non-radiatively, as shown by egs. (3.18)-(3 21).

3. Conclusions

A quantum-mechanical theory of the creation of a heat source in a crystalline solid upon optical
excitation has been developed using a single-phonon coupling mechanmism to the vibrational spectrum of
the solid Eaplicit expressions for the non-radiative transition rate and the heat-release rate 1in the sohd
were obtained These expressions led to solid temperature profiles quahtatively consistent with PAS trends
in published experimental data [2]. assuming a simple two-level solid The generality of the quantum-me-
chanical normal-coordinate perturbation approach to non-radiative de-excitation employed mn this work
shows that the ongin of the optically created heat source 1n a solid 1s independent of the photoacoustic
effect which ensues, as would be expected intuitively. Therefore, the heat-source-generation theory may
also be appled to the study of calonmetric absorption spectroscopy [32] (CAS) and photothermal
deflection spectroscopy [18] (PDS) It 1s particularly suited for the analysis of the PAS signal obtained from
a piezoelectric transducer, since this techmque depends directly on the vibrational excitation energy of the
solid resulting from the coupling of optical energy to the phonon spectrum of the lattice [33].

The present formalism may be extended 1n a straightforward manner to include contributions to the
heauing rate of a solid with lattice defects by redefimition of the interaction hamiltonian of eq. (1.8) in terms
of local strain operators [21]. Other non-radiative processes which have been 1nvestigated experimentally
with photoacoustics and are amenable to extensions/modifications of the present theory include de-excita-
tions of 1ons [6,7] and molecules [34] 1n host crystal matnces and solutions; defect states [9,10,12]; and
electron—phonon interactions [35] in semiconductors Temperature-dependent phase transitions [36]. photo-
voltaic energy conversion {37], laser annealing PAS studies [38]. and photoacoustic detection of magnetic
phenomena (e.g electron paramagnetic resonance (EPR) [39]) could also be examined theoretically with the
present approach using appropriate hamiltonian operators
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