
ChemlCJl Ph>ws 81 (1983) 145-197 
North-Holland Puhhchmg Cornpan) 

IS5 

THEORY OF SOLID-STATE PHOTOACOUSTIC-SIGNAL-SOURCE CENER-iTION 
VIA NON-RADIATIVE LATTICE PHONON-ASSISTED DE-EXCIT4TIONS 
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The theoF of :he phoIoJcousIlL-sl_enal-~~~urct: genLrJ:mn upon ll_rhI JhwrpIwn h\ .I ~r~~~.dhnc \ohd L. dctrl,ywd 7 he 
model cummes the phbslcs cf creatmn of a IemperJIurc- Jnd Ilmc-dLpendtnI dlsIr&uIed ~LJI ~wrcc m Ihe ~Jmplc J\ J r~w11 

of electron-phonon InIeracIions follourd by ~ihrJIlOnJl relJ\JIIon of the la~rkc The JdtJh IIIL brn-Oppcnhcmw (4HOb 
Jpprox.lmaIlon and SIJIISIIC~~ thermal J\erJgcb oxcr phonon populJImn\ hJ\e been uwd IO dtwr.hs Ihc rJk cri non-rJt!lJIl~c 
de-excitation processrs The Ihrtory proLIds\ e~prrsslonk for Ihe non-rJdlJIl\e decJ> rdIs Jnd for Ihc -Jmple hrJImp rJIc_ .I\ 
functtons of sJmplr IempcrJIure Debye frequcnc). Jnd energ Is\cl(s) of non-radlJu\L >IJI~I\) 

1. Introduction 

Photoacoustic spectroscopy (PAS) of solid materials has recent!> emerged ~5 a useful sprctroscoplc too! 
for the Investigation of low [l-4] and high [5] temperature phenomena. non-radlarI\c procsswb [1.6-S]. and 
studies of crystallme disorders such as defects and nnpurltles m semiconductors [9_10]. In rhese applications 
it has been noticed almost invariabl> [2.3] that the eupenmentai data did not s\h~h~t rhs \lmp!r’ 
temperature dependence which was expected from the Rosenc\\ al, O-Gersho (RG) model [ 1 I] Bcchthnld 
and Campagna [3] qualitatively attributed such departures from the RG theory to the temperature 
dependence of the velocity of sound m the couplm, 3 0 oas column. and to the temperature dependence of the 
vlscoslty and density of the transmitting 3 oas. These authors also speculated on rhs poss1b111I~ of 
contributions from the thermal properties of the sample to the temperature dependence of the photoacous- 
tic slgna!. However. such contributions have not been considered m d theorstlcd!!~ rigorous fashion m the 
photoacoustic hterature. 

It is evident that the mechanisms of the photon energ) conversion to thermal energ? m the sol~d‘s 
excited-state manifold and the subsequent release o. f the heat Into rhe sohd follo\\ed h\ hear conductInn 
processes will be responsible for the PAS signal origin. All informatlon about the s&d-s-tare phbslcs of rhe 
thermal response of the sohd to the incident radiation 1s mcluded in the hwt rele~sr rdtr which dcts ds the 
heat source m the solid The magmtude. frequency response (frequent> domam) or tune-de\e!opmsnt (rmle 
domain). temperature. and posItIon dependence in the materla! of the heat release rdte are dsrermmsd h> 
the excited-state energy le\e!s. populations. and non-radiative transition rates [ 11. The photoacoustic signal 
as a function of the heating rate of the solid sample [I l] carries \a!u~b!e informanon about rhs 
excited-state manifold and IS sensitive only to the non-radiawe de-ewlration channels and IO the 
subsequent heat conduction processes in the solid. 

While the photoacoustic-agnal generation due to heat conduction processes is relati\el) \\e!l understood 
[ 111, no rigorous theoretical treatment of the heat-source generation I\ hlch precedes thermal conductlon 111 

a solid has been attempred m the photoacoustic llteraturs. The theoretIca m\estIgdtIon of the ph>s~ca! 
processes which create the heat source responsible for the PAS signal from the sohd is of fund.unentd! 
importance to the Interpretation of the signal in terms of such processes An understandmg of factors 
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contrtbutmg to the creation of a heat source in the solid 1s m turn crucial for assessing the relatrve 
importance of sample-related contrtbuttons in the overall thermal processes which generate the photoacous- 
tic effect m solids A theoretical analysts of the non-radiative origins of PAS should provtde a guide to 
some experimental areas of current interest. such as the determination of the energy levels of non-radiative 
states [9.10]: the study of defect states in crystalhne solids [12]; and the measurement of non-radiative 
transttton rates. lifetimes and quantum efficiencies. 

In this worh a smgle phonon-assisted opttcal-to-thermal energy conversion model is presented to 
account for the heat-source creation m a crystallme solid as the result of non-radiative de-excitation 
phenomena. It is SubJect to certain assumptions concerning the state of the optically excited solid and its 
vibrational spectrum, as well as the photon-electron and electron-phonon coupling This sample heating 
rate IS determined as a stattstically thermal average over phonon states and as a function of time-averaged 
populations of the excited-state mamfold of the sohd. 

2. Theory 

2 1. The non-radtartce transttton rate 

In the present work the dynamics of the crystalline lattice on which a (assumed) monochromatic light 
beam tmpmges will be treated m the harmonic approximation. The atomic (or molecular) states of the 
lattice wdl be assumed to be adequately describable by the adiabatic Born-Oppenheimer (ABO) approxi- 
mation [ 13- 151 In the ABO approxrmatron the nuclei are fixed at a single equihbnum position X, while the 
electron positions can be described by a set of independent coordmates r. The coupling term between 
electrons and the nuclear vrbrational manifold is ignored [16]. The wavefunctions for the entire solid are 
thus gtven as products of an electronic and a vtbrattonal wavefunction: 

G’ABO(X. f) =+(I. r)x(x). (1.1) 

Further, it is assumed that the Franck-Condon pnnciple is generally valid, so that the electronic 
transition matrix element does not depend on the nuclear positions. A very useful consequence of this 
principle is the complete separation of radiative and radiationless transition matnx elements. so that the 
former enters the expressions for transition rates simply in the form of a multrphcative constant which IS 
not directly measurable by the photoacousttc probe. 

Lastly, It is reasonable to assume that the phonon system can attain thermal equilibrium internally in 
times short compared to the shortest radiative transition time. This assumption 1s especially true for long 
wavelength phonons whtch have mode densities similar to those of the incident photons In this case the 
ratio of non-radtattve to radtative decay rates is on the order of (c*/c~)~ = lOi [17]; cg and cs are the 
speeds of light and sound, respectively, in a solid. As a consequence of fast thermahzation, the phonon bath 
can be characterized by a well-defined thermodynamic temperature Tat all times of experimental interest 

The processes considered here include optical absorption of photons of a fixed frequency, excitation of 
the atormc lattice system, de-excitation, and return to the ground state via radiative, non-radiative, 
photochenucal, etc. channels. In particular, we are interested in the non-radiative de-excitation process 
which involves emission of lattice phonons generating a heat source within the sample. 

We are considering a system containing nuclear ion cores of mass M with coordinates X, and electrons 
of mass m with coordinates r,. The subscripts designate the positions of the nth atomic nucleus and ith 
electron, respecttvely. The hamiltonian for this system is 

~,_,(q-x,) 
1 
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where V,_, and U,_, are the interactron potentials between two ion cores. and bet\\een ‘m electron and an 
ion core. respecttvely. 

At temperatures higher than 0 K, the vrbrational-amplitude increase of the lattice ion cores due to 
energy absorption by the phonon ensemble is small for light mtensittes typtcally used m photoacoustic 
experiments. Typtcal temperature rises of sample surfaces excited by conventronal arc-lamp so*urces. CL\ 
and pulsed lasers are on the order of lo-‘- lo- ’ “C [ 181. For AT +z To. the mean-square dtsplacement ratio 
of surface atoms is 

(_I’(T~ + iU-))/(_r’(T,)) = 1 + AT/T,. (1 3) 

for temperatures hrgher than the lattice Debye temperature. Eq. (1.3) indtcates that .tt (300 +- lo-‘) K the 
mean vtbration amplitude of a surface atom is (17’/T0)‘/’ = 2 X 10-l times larger th.m that at 300 K. and 

1.5 x lo-’ times larger than at 4 K 
The above argument shows that a normal coordinate perturbatton approach to the quantum-mechamcal 

operator(s) responsible for non-radiative transition matrtx elements is xxell Justrfrrd T+lor sxpansrons of 
the potential operators V,_, and U,_, can be obtained about the equthbrmm positron f?, of the ton cores 
The hamiltoman operator (1.2). is then separable into equthbrmm and perturbation parts .-he”’ and ‘k ‘. 
respectively: 

bgpO’= 
I 4 -g&f+ c V*_,(R,-R,) 1 . (1.5) 

I, - n>A 

%I’= c Anx-(U,-UUI.)+CB ,,,, au,,,_ (1.6) 
,I z I. I “I 

u =x - R, is the atomic displacement xector of the lath ion. 
1: the’harmonlc approximation. 

A,,=&,@,-RR,). 

where K,, has the units of the stiffness constant of an oscillator comprised of the 11 th and k th ion cores 
vrbratmg at a frequency a,,&. If we choose a Coulomb-type of ion-electron mteractron [ 191. then \\e can set 
in eq. (1.6): 

B,,,, = Ze’v, ( l/jr - R,,,I). Z is the nuclear charge 

As a consequence of the Fran&-Condon assumptron the actual functtonal form of I$,,, does not affect 
the non-radiative transition matnx element. The coordmate-operator functions u,, - uI when statisticall> 
averaged over phonon populations and summed up over ion core posrtions can be shown to ~anlsh. 
Therefore, the perturbation interactron hamiltonian of the system IS giLen from eq (1.6) in the simphfrcd 

form: 

where we assumed a one-electron system for convenience. The hamtltonian of eq. (1-S) IS no\\ treated as the 
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perturbdtton whtch brmgs about the non-radrative decay of the exctted state through the mteractton B,,, 
between the electronic and latttce coordmates at tempeatures higher than 0 K 

The trdnsttton rate of the opttcally prepared state (I) to some fmal state (F) 1s gtven by [20]: 

w, _ ,- = (‘~/fJ)lOJr. e,l’fk-‘In,. e,)l’S( E, - E, + ho,,-). (1.9) 

where IJ,(~z,-). e,(e,) are the mittal (final) vrbrattonal and electromc states. respectively_ Eq (1.9) also 
~liows for the possibthty of vibrattonal excitatton and decay without an electronrc transttron. depending on 
the perturbation hamiltonian .X’. 

Upon subsutuuon of the perturbation hamiltonian. eq (1.8). in eq. (1.9) we can write the transttton 
matrix element 

L?R,,- = (11~. e,-I~B,,;u,,,l~~,. e,). 
I,, 

(1.10) 

where u,,, IS a Schrodmger posrtton operator. The Franck-Condon prmctple and the adiabatic assumption 
permrt separation of the electromc and vibrational parts 

‘?RII- = ~(e~l~.,le,)~(~~~lumllll)- 
“1 

To simplify eq. (1.11) further, we are assuming that [ 191 

I4 -x IR,I- 

For Coulomb potentrals: 

(eFls&l) = ze’(eFlv(l/lr- RtpIl)lel)- 

(1.11) 

(1.12) 

(1.13) 

Under Coulomb condtttons, as well as for shorter-range potentials the electromc contribution contams a 
factorable multiphcatrve constant. and the transition matrtx element can be simphfted 

-?R ,f = (eFi/(r)lel>-C (rzFktlt11)Rji,2nl (1.14) 
“1 

f(f)=Ze*lQ*F(r)(vr) G,(r) d’r. r=lrl, R,,=lR,,,I; r-=cR ,,,. 

and II > 1 indicates the power of a potential function of shorter range than the Coulomb type The 
non-radiative transition rate, thus becomes 

W I-F= (2~r/tz)l(eFlf(r)lel)l’ c (1.15) 

+,,, is the angle between the vectors f and u,. In most experimental cases, we do not know the exact n-uttal 
state of the optrcally exerted system_ Therefore, we will average over the thermal equilibrium distributions 
of all phonon occupation levels in both the lmtial and the final states of the solid. We also take averages 
over ~0s~ I$,, = l/2 and over the arbitrary nuclear eqtulibrium positron vector magnitudes R,, = (R,,) = R. 
Indicating statistical thermal averages by ( &, we can wnte an expression for the average non-radiative 
transition rate from eq (1 15): 

(1.16) 



where now f’( r) IS a statistically averaged function of the equilibrium coordin.ites: f’( I ) =f( I )/It”‘: E,,,. 

E,,, are the energies of phonons present at the imtlal and final states of the system. such th.lt E,,, > E,,, : P,,, 
1s the probability distribution function of the mitral state. 

The time-evolution of the perturbation hamlttomdn K can be conveniently mcorpor,ned 111 the 
transitlou rate formalism using correlation functions (the time-integral representatmn [71]) Thlc lead\ to .I 
Fourier-transform function whose tune dependence cdn then be handled I-+ Helwnhcrg oper.m>r a1~ehr.l 
for the phonon (boson) ensemble_ 

We Introduce the Fourier transform pair: 

and 

G(r)=/” e -‘r’(N’l_-F(~))Tdti. 
--Do 

(1 17A) 

(1 17b) 

Substituting eq. (1.16) into eq (1.17b) and making use of the completcne~~ props+ of the phonon 
eigenvector-operator set m Hitbert space 01~) and usm g statistical aLerages o\er phonon states 11, [21] \\e 
obtain. 

G(t)= (~/~‘)l(eFlf’(r)lel)l’ c (~,(Ok~,,(r)k 
1X1_, 

(1.1s) 

Insertion of eq. (1.18) into (1.17a) gives the time-Integral representduon of rhe statlstlc&> d\erJped 
non-radlatlve relaxation rate 

P’I-F(w)~= (I(e~I/‘(~)le,)l’/~A’)/_l_e’*’ c (U,(Ob,,,(r)hdr- 
*’ J 

(1 19) 

The expression (1.19) may be evaluated usin g \\ell-hnown expansions [21] for rhe operators u,, (I ) In ihh 
expansions, series of terms of operator products of the form a,~, and a; a; ha\ e not been mcluded 
because the time evolution of such products oscillates rapidI> 1 oiving an aLerage \Aue of zero m the nme ~ 
scale of oscillation of the products a,a: and a;a, [22.23]. The statlstlcal thermal .I\ rr,lgs of eq ( 1 1 Y) c.111 
be obtained using phonon number operator average: 

(ns(k))T= {exp[tiw,(/i)/kBT] - 1)-I_ (1 33) 

The three-dimensional thermally averaged non-radiative trdnsltlon rate can be obtdmed from eq ( 1.19) md 
the integral representation of the delta function. upon comertmg sums 0~ er phonon ~.L\e\ec1or3 X I0 
Integrals to facilitate computation: 

x &3dG,)>,+ 1]+-- 4G,)] + (~~,(G,)M+ -,- 4’31). (1.21) 

where G are reciprocal lattice vectors. and ey’. es” are lattice eigemectors correspondmg IO branch CL ,lI. 
respectively. 

In eq. (1.21). the first term in the curly brachets describes single-phonon emission ~hrlt the becond term 
describes phonon absorption. From the energy conserving delta function m eq. (1.16) and for G’ = G’,, . me 
see that for the first term in the curly brackets. 

~,~=o,(G,)=(E,,-E,,~)/fi>o or E,,>&- (1 21) 
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Thus is consistent with the de-excitatton assumption and indicates energy loss to the lattice through phonon 
emrssion The oppostte occurs for the second term, since w = w,r = - o,( G,). which results in E,,, -C E,_+. i.e. 
a htgher final state than the initially optically prepared state. This absorption term was introduced m the 
model through the coordinate vector expansions. Henceforth. it will be elimmated from this work. since we 
are consrdering the rate of non-radiative decay via phonon emrssion only. Under these condrtions. a more 
restrictive form of eq (1.21) will be employed: 

(~~,Z,(% )h-= (~rl(eFlf’(r)lel)1’/2~tM) 

X c c [e~‘(C,)e~r’(G,)/w,(cI)][(,I,o>7.+ 1]6[w,,--4G,)]. 
a./35 c, 

(1 23) 

where the symbol I 2 F mdrcates the transition from state E, to state E,. such that E, > E,. Eq. (1.23) 
shows thatlnon-zeco non-radiative decay rates are the result of the followmg energy selection rule for 
allowed transitions- Energy conversion from the excited state mto heat due to phonon emission during 
de-excttatron can occur only when the energy difference E,,, - En, is equal to a lattice vibrattonai energy 
ho,( G,). where w,( G,) IS a reciprocal lattrce frequency_ The selectron rule 

En;-- En, = Aq(G,). ( 1.24) 

IS a functron of the crystallographic structure of the solid sample This rule comprises a theoretrcal basrs for 
the expertmentally observed [lo] relattonshtp between photoacoustic signals and crystallographic nature of 
soled samples It is expected that eq. (1.24) ~111 be useful in photoacoustic mvestlgations of non-radlatlve 

states in sohds. 
It IS convenient to use the contmuous Debye model to obtam exphcit expresstons for (IV,,,}, m terms 

of measurable lattice quantities_ We assume a continuous distribution of rectprocal lattice vectors [24]: 

(1.25) 

where G,.,,,, corresponds to the cutoff frequency o,, of the lattice. Applymg the transformation (1.25) to the 
rate (1.23). and using the completeness property of the lattice elgenvectors, we obtam 

PI1F(~IF)h-= 
lo~~41(eFIf’(r)le,)l’ *IF 

MV’h-:, I- exp( -ho,F/k,T) ’ 
( 1.26) 

where we defined: 

ttw,, = hi’lk,,12/2M (1.27) 

and 

(1.28) 

Eq. (1.26) links the non-radtatrve transrtion probabihty from level (I) to level (F) to the Bose-Einstein 
drstributton (II(o,~))~ for a one-phonon process between levels (I) and (F). 

The present formalism predicts a constant term, in addition to the temperature-dependent Bose-Ein- 
stein term. The origin of this term has been identified [24] as due to spontaneous phonon emission 
phenomena. Eq (1.26) can be expressed in the form 

(1.29) 



2 2 Exrted state d! nanm-s of heut-source gene) at1011 III a solrd 

Non-radiative de-excitations in an opttcally excited solid follo\\ed b> heart conductton processes dre 
responstble for the temperature rtse tn the solid which generates the photodcousttc s~gn~i Thr temperature 
profile T,( r. t) m the absorbing sample can be described by a hr.rt-drffusrnn equ.ttron [ 1 SX]. 

VLT,(+$xr.l)= -$$f(r.r). . . (7.1) 

where or. k, are the thermal dtffusrvity and thermal conductrvrt> of the sample. .tnd ff( r. I ) IS the total 
heating rate (erg cmm3 s-’ ) which acts as a time-dependent distributed hc,rt source In the present \\orb. 
H(r, t) is assumed to be a cosrnusoidal function of time at the modulatron frrqurnc> w,, of the mcrdent 
light beam An extension to time-domain excrtatrons IS stratghtforttard [l] 

The heating rate of the solid can be determined from consideratmn of all cnergb k\rls ( J. J ) to (from) 
which non-radiative transitlons occur. For the decay I s J (E, > E, ). the rRt rate of heat production IS [I]. 

dlz,,(r.r)/dt=(E,-E,)[~,(r.t);~,,,-~~,(’_f)~I;,,~. (2.7) 

where IV,, rV, are the instantaneous population densities of le~cls ( 1. J ) at ‘1 dsprh r m the wild m~msdla~cl\ 
after the optical excltatlon. The total rate of heat producuon m the sample 1s 

dH(r. r)/dr = c dlz,,( r,r)/dt=Zz E,,rV,(r.r)lV,,,: E,,=E,--E,>O. (2 3) 
I>J 1=-J 

Hunter et al. [27] have used the gas-phase equivalent expressrons to eq (73) to describe gas molecule 
de-excttattons following harmonic optical pumping and modulatton of the exctted stdtc popularrons. For .I 
frequency-domam solid-state photoacoustic experiment the ttmr dependence of the Ith escltsd state 
population will be the real part of the expression_ 

N,(r, f)=+IVjO’(r)[l +esp(io,r)]_ (2 4) 

The modulatton frequency oO is assumed to be much loe er than the rate of approach to thermod> namic 
equihbrium by the phonon populations. Murphy and Aamodt [ 11. Rosenc\\ atg and Htldum [ZS]. and PO\\ ell 
and co-workers 17,291 have apphed expressions similar to eq (Z-3) to the sruJ of rhe PAS slgnal from 

specific impurity systems whose excited-state manifolds were hno\\n. In general. holvsvsr. onlb statrsttcal 
thermal averages of all excited-state contributions to the sample heat source are me.mingful for the purpose 
of PAS signal analysis. Taking the thermal average of eq_ (Z 3). \\e can slprsss the e\pcrimentall> 
detectable heating rate &,, 

(2.6) 

The term w,, in the brackets is a constant and therefore It can be pulled out of the thermal aleragmg 
operation_ For a general K-level system iv, may be calculated from the dynannc equatton of level ( I ) [;O] 



and from eq (2 4) 

dN,(r. z)/dl= 
] 

c (R,,,),_,N, (r. t) 
,,I K 

] -N,(J-. ‘)[ ,~K(RJ,_*] 

= ftwONjo’(r) exp(iw,r). (2.7) 

(R”,)A--I is the nrth type of transttton rate (e.g. radtattve. non-radtative. mtersystem crossmg. etc.) from 
level (K ) to level (I )_ 

Defining the total relaxation ttme constant from level (I) as 

(2.S) 
we fmd 

Nj”(r)=r/ c (RJA_,h;o)(r) /(l +tw,_,r,) 
] nr K I 

(2 9) 

From eqs. (2 4) and (2 9), we fmd the following expresston for the ume evolution of the average number 
denstty of states at level (I ): 

g,(r, r)=fh7;c”‘(r){[l +e~p(tw,r)]/(l + IO~T,)). (2.10) 

where 

@Yr) = c (R,,L,Nl”‘(~)/ c t&t),-,- (2.11) 
“Z A’ ,?I K 

Now. N,(r, 1) can be pulled out of the ( )r b rackets m eq. (2.6) and can be replaced by eq_ (2.10). since tt 
does not depend on thermal averaging, 

if_(r. r) = h[l + exp(iw,t)]CC [o,,Kto’(r)/(f + i~0r,)](~%:,J(~,,))7-- 
IzJ 

(2.12) 

Eq. (2 12) ts a general expression for the experimentally measurable heat-release rate in a frequency-domain 
photoacoustic experiment. Upon constderation of the expression (1.26) for the non-radtative decay rate, tt 
becomes apparent that fi=,, generally depends on T: the higher the temperature of the solid, the larger the 
thermally averaged (W), and the faster the heat release rate. The occurrence of larger non-radiative 
transitton rates at htgher temperatures (I.e. shorter non-radtative lifetimes) predicted by eq. (1.26) has been 
previously observed (e.g. Le Si Dang et al. [25]). Physically, the faster heat-release rate at higher 
temperatures is the result of the presence of a statistically larger number of lattice phonons due to the 
Bose-Emstein distribution at all energy levels. These phonons assist in carrying through the non-radiative 
transttions more efficiently than at low temperatures, thereby shortening the lifetime of the transition. In 
the next section, we shall constder some special cases of eq. (2.12) which are of interest to experimentahsts, 
namely heatmg rates of solids excited to a single and multiple energy level. and the productton of the 
photoacoustrc signal from a two-level solid at room temperature. 

2 3. Special cases and dtscusslon 

The equation for the distributron of the optical energy upon excttation of a solid by radiatton of 
wavelength h and intensity 1,(X, r, t) (W/cm’) 1s 

c(X)ro(k r, t)Nr, = N,(r, 1) c (Rm),-KY (3.1) 
mK 



where N, is the ground-state populatton. X, is the popukrtton of the (.tssumed) smgle level of excitdtton (I ). 
and a(X) is the absorptton cross sectron for transttions excited by hght of w.t~elrngth X n I\ gr\cn m terms 
of the optical absorptron coefficient p(X): 

e(X) = P(X)/&- (3 2) 

Eqs (3.1) and (3.2) give the following expression for the Alerage number dcnxit! of’ \t,ltes 

~“‘(~)=NW”(~.~)/ c (K,),-.. (3-3) 
,,I h 

where a consinusordal dependence on tune v.ds assumed for I,( h. J-_ I). I,, I\ usu.~ll~ (1 l] t.lhen to satrsf! the 
Beer-Lambert law 

4,(X. r)= I,(X) e~p[-~(~h-ll- (3.4) 

(i) We shall now examme the temperature dependence of k,, m the W@ .md multrple c\crtation 

cases. For optical excitatton to multiple levels. eq. (2.5) can he ~rttten u\mg eq. (I 26) for the non-r.rdtati\e 

transrtion rate 

(dH(r. I. T)/dr),=A[l +cxp(iwa~)]~[,~“‘(r)/(l ~iw,,~,))lQ,(7). 
I 

where 

A = ( IOS~T’/MVzwb)I(e,lf’(r)le,)l~. 

and 

(’ 5) 

(3-h) 

Q,(T)=C&/[l -ew(--hw,,/kJ)l- 
J 

(3.7) 

In order to calculate the summation in eq. (j-7). rt IS comement to \vork rn the contmuous Debbe limrt of 
lattice frequencies. Taking the density of modes 

g( w,) dw, = (l&r,z/o’o)w, dw, = Bwj dw, (3-S) 

(n is the number of atoms m the sohd) and transformin, 0 the sum of eq (3 7) into an mrsgral. x\e get: 

Q,(T) = B fw”w~wf, dw,/[l - exp( -hw,,/k,T)]. (3.9) 

where 

The term wf,/fl - exp( --trw,,/k,T)] in the integrand of eq. (3.9) and m surnm~tron of eq. (3-7) IS .I 
measure of the density of occupied states at temperature T LX hen spontaneous non-radratixe deco> 
processes are present in addition to Induced non-radiative transitions For optical upward transitions. the 

energy of the excited state (I) is usually much larger than tlwo due to the photon frequencies u hich are 

much hrgher than those of latttce phonons. Therefore. we \v 111 henceforth set CZ,, = w t, m cq (3.9). 
At low temperatures. 

Q,(T) = B (““w;w;, dw, = fBw;w’,, 
JO 

(3-l 1) 



for WI x= a()_ Insertmg eq. (3.11) into eq (3.5) we fmd 

(dH(r, *, T)/WT.cho,,,~u =fABwL[l +exp(io,r)]C 
Ej’“‘(r)w; 

, 1+iwo7, - 
(3.12) 

Eq. (3.12) IS independent of temperature. In this hmrt the RG theory [1 l] of the photoacoustic effect is 
rigorously valid 

At high temperatures eq (3.7) gives 

for w, > or,. Now. eq. (3.5) yields 

(dN(r, I, T)/df)T~hW,,,XB=fABo:[l +e~p(k_,r)](kJ/~)~ 
*“‘( r)w, 

, 1+iw07,’ 

(3.13) 

(3.14) 

Eq (3 14) mdtcates that at hrgh temperatures. the heat-release rate IS proportional to Tin the continuous 
Debye approxtmation. 

If there are only two discrete energy levels IO) and II) m the solid and absorptron occurs due to the 0 -+ 1 

transition. eq (3.5) gives 

(dH(r_ I. T)/dr),=A%,(r. r){w&/[l - exp(--_m,,/k,T)]} 

=A~~“‘(r)[R,_,/(R,_,+~o,)][l +exp(iw,z)]{&/[l -exp(-Iinwlo/kBT)]}. (3.15) 

where R is the total transition rate At low temperatures. eq. (3.15) is independent of T and proportional to 
2 wr,,, whtle at high temperatures it IS linear in T and wu,_ These characteristics of the two-level solid are 

stmrlar to those obtained for the contmuous solid. 
(it) The theoretical development m this work has given a method for analyzmg the photoacoustic signal 

as a direct measure of the heating rate of the solid sample. Once the jjr,p(r. r. T) is known, a standard 
approach to the calculation of the PAS signal can be applied [ 11,261 vta the heat-diffusion equation. eq 
(2.1). The model presented here demonstrates the possibihty of a sample-related temperature-dependent 
heat source m the range of room/high temperatures and/or small photon energtes. especially in the 
Infrared, 1-e. for ttw, -Z k,T= 0.026 eV at T= 300 K, and for most phonon energies up to hw,. The 
Rosencwarg-Gersho explicit formahsm [ 1 l] hmges on assuming a heat source independent of T_ The 
present work shows that for the simple case of vibrationally harmonic solid and a single phonon 
de-excrtatron mechamsm, the lmear heat-drffusron equation (2.1) must be replaced in general by a 
non-hnear equation of the form 

v’T,(r, +-$+(r, r)=f(T,. r, I)- 
s 

(3.16) 

which in its general form can only be solved by special approximate methods [31]. Only at very low 
temperatures or m solids wrth large energy level spacings is the forcing function1 in eq. (3.16) independent 
of T, and the RG formalism strictly vahd. Under these circumstances, the apparent disagreement between 
temperature-dependent expenmental PAS data [2,3] and the T - ’ dependence predicted by the RG model is 
not surprising. For the usual one-dimensional sample geomet-ies [ 11,261 and assuming a two-level sohd at 
room temperature, eq. (3.16) can be written as 

$T,(x, I)-+$T(-x, r)= -A,ffeXp[-p(h)lxl][l +exp(io,r)]T,(x, I), 
5 

(3.17) 
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(3-1s) 

and q,rr is the effective quantum efftciency of the non-radiative transitron from Irlel 11) to level IO>: 

~~rr=Aka(w,O~,)/A(t + i+,T,). (3.19) 

A is given by eq. (3.6). 
Constdering only the AC component of eq (3.17) lxhich IS responsrble for the generation of the 

photoacoustic effect [ 1 I] we can write 

d”T(x)/dx” + {A,,, exp[ -/3]s]] -IW,,/(U,)T(_I) =O. 

where it was assumed 

T,(s, t) = T(s) exp(tw,t) 

(3.20) 

The general solution of eq. (3.20) can be expressed as follows: 

(3.21) 

where V, V are complex-valued constants. and 

a, = (io,/a,)“‘. (3.22) 

Eq. (3.21) reduces to the RG model expressron. eq. (4b) of ret [11] for temperature-mdspendent 
non-radiative transition rates. 

The PAS signal which 1s predicted using eq. (3.21) and eq. (15) of ref. [ 1 I]_ 1s larger than that predicted 
by the temperature-independent heat-source term of the RG model at all sohd tcmperdtures T, X+ fiti,,/kg_ 
owing to the contributions of the summattons multiplying the &r terms Quahtati\&. this behavior \\hich 
results from the modtftcatton of the RG theory 1s consistent with the gentler than T- ’ Ml-off of PAS signal 
(cc T-'1') observed by Kuhnert and Helbig [2] at room temperature_ Ho\\e\er. e\dct predtctions of the 
temperature behavior of the PAS signal cannot be obtained unless the e\act three-du-ncnsronal equation 
(3.16) IS numerically solved. Numerical solutions will be presented in d future pubhcatton. 

The present theory is rigorously valid for cases where the thermal disturbance of the solid due to 
non-radiatrve de-excitations from an optically excited level is both fast and small compared to the 
disturbance due to Its exposure to the ambient temperature bath. TUO- and more-phonon processes hale 
not been considered here and are assumed to have negligible effects m the radiationless transitton rate. In 
the special case of a single optically prepared state (I ). this work pro\rdes a generalizatton of spsciahzed 
heating rate expresstons denved previously (eqs (1) of ref. [36])_ This cdn be seen. If eq. (2 12) is written in 
the form 

&,(X. r, I. T) =tI,(h)p(X) e-d-P(h)lrl]{[l -I- ev(iq,z)]/(l + iq,T,)} c (q,,)TE,,. (3.23) 
41 J 

where (q,,)r 1s the thermally averaged absolute quantum efftciency of the non-radtatile transitton bet\\een 
levels (I) and (J), defmed by 

(%J)T’ (wl’>J)T/ c (Rn,),-,- (3.24) 
n1.K 



The summation is over all levels (K) to 1~ hlch any transition from level (I ) can occur. such that IIW,, > 0. 
The present theory accounts for the effects of the crystallographic structure of the lattice on the 

heat-source generation. via the selectlon rule. eq. (1.24) for allowed non-radiative transitions. 
The calculation of the Debye frequency of the sample from the PAS signal via eqs (3.5) and (3.21) is 

rather difficult due to the general lack of rehable absolute PAS amplitude data and the mdetermmacy of 
the electronic matrix element (e,lf’(r)je,). However. relatwe amphtude and phase data as functions of the 
temperature T should. in principle. give information about the energy gap tlw, between the excited state 
and the ground state to which it is coupled non-radiatively, as shown by eqs. (3.18)-(3 21). 

3. Conclusions 

A quantum-mechamcal theory of the creation of a heat source in a crystalhne solid upon optlcal 
excitation has been developed usmg a smgle-phonon coupling mechamsm to the wbratlonal spectrum of 
the sohd Explicit expressions for the non-radiative transition rate and the heat-release rate m the sohd 
were obtained These expresslons led to sohd temperature profiles quahtatlvely consistent with PAS trends 

m published experImenta data [2]. assummg a simple two-level solid The generality of the quantum-me- 
chanical normal-coordinate perturbation approach to non-radiative de-excitation employed m this work 
shows that the origin of the optlcally created heat source m a sohd 1s Independent of the photoacoustlc 
effect which ensues. as would be expected intuitively. Therefore, the heat-source-generanon theory may 
also be apphed to the study of calorlmetnc absorption spectroscopy [32] (CAS) and photothermal 
deflection spectroscopy [18] (PDS) It 1s particularly suited for the analysis of the PAS signal obtamed from 
a plezoelectrlc transducer, smce this techmque depends directly on the wbrational excltatlon energy of the 
solid resulting from the coupling of optical energy to the phonon spectrum of the lattice [33]. 

The present formalism may be extended m a straightforward manner to include contributions to the 
heating rate of a solid with lattice defects by redefmltlon of the interaction hamiltonian of eq. (1.8) in terms 
of local strain operators 1211. Other non-radiative processes which have been investigated experimentally 
with photoacoustics and are amenable to extensions/modifications of the present theory include de-excita- 
tlons of ions [6.7] and molecules [34] m host crystal matrices and solutions; defect states [9,10.12]; and 
electron-phonon interactlons [35] in semiconductors Temperature-dependent phase transitlons [36]. photo- 
voltalc energy conversion [37], laser annealing PAS studies [38]. and photoacoustlc detection of magnetic 

phenomena (e-g electron paramagnetic resonance (EPR) [39]) could also be examined theorettcally with the 
present approach using appropriate hamiltonian operators 
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