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Abstract .  Photothermal depth profilometry is formulated as a nonlinear inverse scattering 
problem. Starting with the one-dimensional heat diffusion equation, we derive a mathe- 
matical model relating arbitrary variation in the depth-dependent thermal conductivity to 
observed thermal wavefields at the surface of a material sample. The form of the model 
is particularly convenient for incorporation into a nonlinear optimization framework for 
recovering the conductivity based on thermal wave data obtained at multiple frequencies. 
We develop an adaptive, multiscale algorithm for solving this highly ill-posed inverse 
problem. The algorithm is designed to produce an accurate, low-order representation of the 
thermal conductivity by automatically controlling the level of detail in the reconstruction. 
This control is designed to reflect both (1) the nature of the underlying physics, which says 
that scale should decrease with depth, and (2) the particular structure of the conductivity 
profile, which may require a sparse collection of fine-scale components to adequately 
represent significant features such as a layering structure. The approach is demonstrated 
in a variety of synthetic examples representative of nondestructive evaluation problems 
seen in the steel industry. 
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I. Introduction 

One of the most promising applications of photothermal nondestructive evaiuafion 
(NDE) technology is in the area of depth profilometry (DP) [5], [8]-[13]. This 
technique uses a modulated laser beam to induce thermal waves in a materiat 
sample with the resulting wavefield amplitude and phase measured at the surface. 
The experiment is repeated for a number of modulation frequencies yielding a 
spectrum of observations. Assuming that the structure varies only with depth, 
the problem is to convert the measured spectrum into a depth-varying profile of a 
relevant physical property such as thermal conductivity [8], thermal effusivity [9], 
or thermal diffusivity [ 11]-[ 13]. 

Considerable work has been done in developing physical models and algo- 
rithms based on these models for reconstructing profiles. All models reported in 
the literature are based on the one-dimensional heat diffusion equation (HDE). In 
much of this work, the material is considered to be composed of layers where the 
physical properties assume simple functional forms. For piecewise constant lay- 
ers, the HDE can be solved in terms of a recursively defined generalized reflection 
coefficient [5], [9]. In the limit of infinitesimally thin layers, the recursion con- 
verges to a nonlinear Ricatti equation. For finitely thick, piecewise linear layers, 
the solution is given via a different recursively defined reflection coefficient [8]. 

An alternate approach based on the notion of a thermal harmonic oscillator 
(THO) has been pioneered by Mandelis and collaborators [10], [12]. Making 
a Wentzel, Krarners, and Brillouin (WKB) approximation for variations of the 
thermal effusivity yields solutions to the HDE in terms of integrals of the thermal 
diffusivity. Using a particular functional form for this profile, analytic expressions 
have been reported for a semi-infinite medium and a finite-depth inhomogeneity 
backed by a semi-infinite substrate [11]. 

Each of these physical models has been used as the basis for an inversion 
algorithm. Under suitable approximations (most notably, ignoring the nonlinem" 
term), the Ricatti equation model reduces to a Laplace-transform-type relation- 
ship between the derivative of the log effusivity and the data [5], [9]. Tikhonov- 
regularized, linear inversion methods are then used to determine the log effusiv- 
ity [9]. The details of the inversion methods for the piecewise constant and THO 
models are different, but they both share a common structure in which the data are 
processed progressively from high to low modulation frequencies, The higher fre- 
quencies are used to estimate the profile structure in slices of the material closest 
to the surface, whereas the lower-frequency data provide information concerning 
the deeper variations. For the piecewise constant profile method, the width of 
these slices is determined a priori [8]. The THO method locally fits profiles of 
a predefined structure to slices whose widths are determined adaptively as the 
algorithm progresses [ 11], [ 13]. 

We pursue a different approach to the DP problem. Rather than considering 
solutions to the HDE for specific profiles or approximations to the physics, we 
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employ a numerical implementation of the HDE that allows for exact solutions (up 
to discretization error) for arbitrary profiles. In particular, it is not necessary to as- 
sume that the thermal conductivity is slowly varying. The price for this flexibility 
is increased computational complexity. Thus, we also introduce a highly efficient, 
nonlinear approximation to the exact solution. For the problem of interest in this 
paper, we show that this method, which is similar in nature to the extended Born 
approximation (EBA) [6], [19], is about 20 times faster than the exact model with 
a loss in accuracy close to machine precision. 

The use of this physical model allows us to formulate the profile reconstruc- 
tion process as a nonlinear inverse scattering problem in a highly lossy medium. 
Problems of this type are known to be ill posed in that small perturbations in 
the data can lead to large-amplitude, nonphysical artifacts in a reconstruction. To 
stabilize the inversion process, one typically uses a regularization procedure. Our 
previous efforts in this field have included the use of wavelet-based regularization 
techniques for two-dimensional, nonlinear inverse scattering problems [14], [15]. 
The use of wavelets was motivated by analysis which indicated that a given level 
of accuracy in a reconstruction required that the resolution in the estimated profile 
be space varying. The data and the physics supported fine-scale estimates in 
regions close to the detectors, whereas coarser-scale information could only be 
recovered further into the material sample. Representation of the unknown image 
using an orthonormal wavelet basis provided a convenient means of enforcing 
this variable resolution. Regularization was achieved in part by concentrating the 
information in the data on the recovery of a low-order representation of the un- 
known comprised of relatively few fine-scale wavelet coefficients supplemented 
by a small number of coarse-scale coefficients. 

For the DP problem, we build on this work using an alternate multiscale repre- 
sentation of the unknown profile. Rather than an orthonormal basis of wavelets, 
we use a collection of spline functions possessing a natural multiscale structure. 
Specifically, coarse-scale elements can be expressed as linear combinations of 
finer-scale splines [18]. By surrendering the orthonormality property of wavelets, 
we have a more flexible method for modeling the unknown profile. 

As in [14], our inversion approach here is designed to produce a low-order 
reconstruction in which the distribution of fine-scale detail is determined in an 
automatic, controlled, and rational manner. However, the precise method for ac- 
complishing this is substantially different from our previous wavelet-related ef- 
forts. Starting with a coarse-scale set of functions, we iteratively refine the re- 
construction to (a) add detail and then (b) prune away unnecessary degrees of 
freedom to obtain a more streamlined description of the profile. The final estimate 
is comprised of functions at many scales whose spatial distribution is dictated 
adaptively by the data and the physical model. Like the results in, e.g., [11], we 
tend to see fine-scale detail close to the surface with coarser-scale elements used 
deeper into the material. However, our approach involves no decomposition of 
the material into slices (predefined or virtual). Unlike the techniques in [8], [11] 
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where low-frequency data play no role in the structure of the reconstruction near 
the surface, here the data from all frequencies impact the entire structure of  the 
estimated profile. 

In Section 4, we show that limiting the number of degrees of freedom in the 
reconstruction is useful for a number of reasons. First, the low dimensionality can 
lead to computational efficiencies. We demonstrate via numerical experiments 
that the adaptive algorithm can be substantially faster than a "brute-force', fine- 
scale reconstruction with little toss in accuracy. Additionally, our approach can 
lead to better reconstructions. As described in greater detail in Section 3.1, inver- 
sion requires the solution of a nonlinear optimization problem and is thus prone 
to convergence to local minima of an associated cost function. By constraining 
the reconstruction using our adaptive approach, we show that it is also possible 
to converge to a lower-cost point in solution space than is the case for a high- 
dimensional, fine-scale approach to inversion. Currently, we have observed these 
advantages through simulation. An area of work is the development of a more 
rigorous theory to understand the conditions where we might expect improved 
computational and/or reconstruction performance. 

The remainder of this paper is organized as follows. In Section 2, the physical 
model is developed. Our approach to reversion is provided in Section 3. Here 
we formulate the basic problem in an inverse scattering context, define the spline 
functions, and describe the details of the adaptive algorithm. In Section 4, we 
present examples of this method. Conclusions and future work are the subject of 
Section 5. 

2, Formulation of the depth profdometry problem 

2.1. Continuous formulation 

The DP problem of interest in this paper is the reconstruction of the thermal diffu- 
sivity profile based on observations of thermal waves obtained from illumination 
by a modulated laser source. The starting point is the one-dimensional HDE with 
boundary conditions stated as follows: 

d d 
~z K (z) -~z T (z) - icop (z)c(z) T (z) = 0 (1) 

d 1 
= - -K(Z) -~T(z )  = Z 0 (2) 

T(z)  = O, z --+ o~, (3) 

where x is the thermal conductivity, p the density, and c the specific heat. T(z)  is 
the thermal wavefield, co the angular modulation frequency, and Q the intensity 
of the laser light incident at the surface, which is taken to be at z = 0. An e i~ 
time dependence for the source and T is assumed. 
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To produce a form of the model useful in an inverse scattering context, we start 
by decomposing K(z) into the sum of a background component, gb(Z), and a per- 
turbation of arbitrary magnitude, xp(z). Generally, the background is taken to be a 
nominal profile such as a half-space as in [8], [12] or a well-characterized material 
sample backed by air [11]. The goal of the inverse problem is the reconstruction 
o f  lOp(Z). 3 Inserting K = Kb '1- Kp into (1), we write the overall model as 

(.~'b -}- .]Z'p ) T = V, (4) 

where we have defined the matrices of linear operators f'b and Up and the source 
vector v as 

- d  d [ -d  K . . d -  "~zKb(Z)-d'~ -- iwp(Z)C(Z)- ~ ptZ)Tz 
.~'b = bo U p =  [ 0 

boo 0 

The linear operator b0 enforces the boundary condition, (2), and boo imple- 
ments (3). 

We manipulate (4) to obtain a solution of the HDE in the form 

T = (I + ~b .~p) - l~b l ) ,  (6) 

where ~b -- 5rb 1 is Green's operator for the boundary value problem (1)-(3) with 
K = Xb. Borrowing from the inverse scattering literature, the field computed with 
zp = 0 is termed the background field and is given as Tb ---- GbV. The scattered 
field Ts ---- T - Tb is then 

d d 
Ts = gb. f  pT = ~b--Z-Xp--;--T (7) 

az az 
-~ ~ba~p(I "-]" ~ b . ~ p ) - l ~ b  v, (8)  

where (7) follows from the definition of Up in (5), and (6) is used to obtain (8). 
The goal of the DP problem is to recover Xp from observations of Ts taken at 

z = 0 for multiple modulation frequencies. In preparation for a description of the 
inversion algorithm in Section 3, (7) indicates that Ts(O) can be written as a linear 
functional of top in which the functional explicitly depends on ~b and dT /dz .  
Because T (z) itself is dependent on/r the functional also implicitly depends on 
the thermal conductivity. Thus, letting y~ be the complex value datum taken at the 
kth frequency o)k, we write 

Yk = Ck(Kp)Kp, (9) 

where ck is the linear functional obtained from (7). In Section 3.2, we provide 

3 In theory, the specification ofK b (z) is somewhat arbitrary as the algorithm is designed to produce 
a rp such that rb + r p  is as accurate as possible. However, making rp "small" through as precise 
a description of K b as is possible does practically improve the convergence of the inversion. 
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an explicit formula for ck in the context of a discretized model. The data vector 
comprised of Yk for k = 1, 2 . . . . .  Ny is 

y = C(Kp)Kp (10) 

with C being the column vector of ck's. The DP problem of interest in this work 
then is the recovery of Kp from knowledge of y as welt as the HDE model 

2.2. Discretization 

To implement a solution to the DP problem requires a discretized form of the 
physical model. Here we use a standard first-order finite difference scheme for 
the HDE in (1)-(3). The field T(z) and the physical properties to(z), p(Z), and 
c(z) are sampled on a uniform grid of spacing h. First-order differentiation with 
regard to z then is represented using a bidiagonal matrix Dz, with 1 / h on the main 
diagonal and - I / h  on the first super diagonal. For the homogeneous Neumann 
boundary condition, (3), we set to zero the last element in the vector of sm, nples 
for the field T, where we ensure that the boundary is taken far enough from the 
surface so that numerical artifacts are negligible. 

To construct the discrete form of the ck in (9), consider the expression for Ts 
in (7). Under the discrete model, we have 

Ts,k = Gb,k Dz D(Kp ) Dz Tg (t  1) 

with Gb,k the matrix form of Green's operator for the kth frequency, Tk the vector 
of samples of the thermal field, and similarly for Kp and Ts,k. For a vector x, 
D(x) is the diagonal matrix whose (ii)th element is xi. After some tedious but 
elementary algebra, it is not hard to show that from (11) we can write the surface 
value of the scattered wavefield under the discretized model as 

Ts(z = 0) = Gb,k(1, :)79(Tk)Dz79(DzTk)Kp =-- Ck(Kp)gp (12) 

with Gb,k(1, :) being the first row of the matrix Gb. From (12) we conclude that 
the discrete representation for the linear functional ck (Kp) in (9) is the row vector 
Gb,k(1, :)79(Tk)DzT?(OzTk). 

The most cornputationally intensive part of this forward model is determination 
of the vector Tk. From (6), the discretized form of this calculation requires the 
solution of the linear system 

(I + Gb,kFp)Tl, = Gb,kV. (13) 

Because the inversion algorithm requires systems of this form to be solved hun- 
dreds, if not thousands, of times, there is significant motivation for seeking accu- 
rate approximations to the determination of Tk. The similarity of the DP problem 
to inverse electrical conductivity problems found in the geophysical community 
lead us to consider an EBA to (13). A detailed theoretical treatment of this method 
may be found in [6], [19]. The practical implementation of the EBA for our 
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problem amounts to replacing the full matrix I + Gb,kFp by only its diagonal 
elements, thereby greatly reducing the number of operations needed to determine 
Tk. In Section 4, we provide experimental verification of both the accuracy and 
efficiency of this method. 

3. A scale-adaptive algorithm for the DP problem 

We start by considering the fixed-scale solution to the DP problem in which we 
seek to recover Up directly from the data. The machinery developed here then 
forms the basis for the adaptive method developed later in this section. 

3.1. The fixed-scale solution 

As is typically done for an inverse problem of the type considered here [15], [16], 
[19], we use our discretized model to define the estimate of top as the solution to 
the following regularized least-squares cost function: 

~p = arg min II Y - C ( K p ) K p  II ~ + ~2 II Ozzp !1 pP. (14) 
grp 

The first term in (14) ensures that the estimate is consistent with the data. The 
second term plays the role of a regularizer and is used to help combat the ill 
posedness. By varying p in the range 1 to 2, one can control the smoothness in 
the reconstruction. For p = 2, one obtains a traditional smoothness regularizer. 
As p approaches 1, the regularizer is more encouraging of forming profiles that 
have edges or other sharp discontinuities as might be found in certain NDE appli- 
cations. With p = 1, one has a total variation (TV) regularization scheme [17], 
[20]. 

The regularization parameter ~. in (14) determines the relative importance of the 
two terms on ~p. As Z --+ 0, we demand that t~p just fit the data. As mentioned in 
Section 1, the resulting estimate tends to display high-frequency, large-amplitude 
artifacts. On the other hand, as L ~ oo, the data play a limited role in influencing 
~p and we obtain overly smooth estimates. Proper selection of this parameter is a 
nontrivial problem [1], [7]. In this paper, we set ~. by trial and error. 

To solve (14), we start by writing IIOzKpllpP = g(xp)rg(•p) with g the vector 

whose ith element is [Dzxp] p/2. Thus (14) is formulated as a nonlinear least- 
squares optimization problem: 

kp = arg rain e T (Kp)e(Kp) (15) 
top 

e(KP) = [Y -- C(Kp)gP " (16) 

Equation (15) is solved using the leastsq routine provided in MATLAB'S Opti- 
mization Toolbox. For a given Kp, this program requires the ability to evaluate the 
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right-hand side in (15) and a method for computing the Jacobian of the vector e 
in (16) with respect to each element of Kp. The cost evaluation is done using the 
equations developed in the previous section. We approximate the Jacobian J as 

J = ~ . (17) 
aKp 

After some straightforward calculus, it is not hard to show that 

~g = 2D(g)-p/279(sign(g))Dz 
OtCp 

with sign(g) the vector whose ith element is the signum ofgi. Note that in (17) we 
ignore the dependence of C on top. This is the primary motivation for formulating 
the physical problem in the manner of Section 2. This approximation is closely 
related to the Born iterative method [2] for problems in which the pc product 
in (1) is to be recovered rather than K. 

3.2. Adaptive multiscale inversion 

As discussed in Section 1, a key issue of interest in this paper is the determination 
of a low-order, multiscale representation for the vector ~cp as a means of reducing 
the complexity of the inversion process and improving the quality of the ultimate 
reconstruction by "appropriately" distributing fine-scale information. To achieve 
this, we constrain rp to live in the linear span of a set of vectors where we 
adaptively determine both the vectors and the required expansion coeff• 
Formally, we consider representation of top of the form 

Nb 
lop = E biai = Ba, (18) 

i=l 

where bi is the ith vector, ai the expansion coefficient, B the matrix whose ith 
column is bi, and a the vector of ai. Note that a is of length Nb. 

Using (18) and (15), the determination of ~p now reduces to the estimation of 
the ai via 

= arg mine T (Ba)e(Ba) = arg min ile(Ba)I12 2, (!9) 
a a 

where e(Ba) is (16) evaluated at the vector Xp = Ba. Letting N be the length of 
~cp, typically we have Nb << N so that (19) is a far smaller optimization problem 
than (15). In the remainder of this section, we describe the family of vectors used 
in our approach as well as the methods we have developed to adaptively determine 
those bi to include in t~t,. 

The bi vectors are sampled versions of a family of continuous functions that 
satisfy the following two-scale dilation equation [18]: 

Nk.1 

b(z) = E c~kb(Ez -- k). (20) 
k=0 
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in words, (20) says that the function b can be expressed as a linear combination of 
dilated and translated versions, b(2z - k), of itself. Although specification of the 
coefficients oti can lead to many functions that satisfy (20), including wavelets, 
here we are concerned with B-splines [18, Chap. 7.4]. For example, with oe0 = 
a l  = 1, the b(z) satisfying (20) is nothing more than thdbox function from z = 0 
to z = 1. Such zeroth-order splines form a basis for piecewise constant functions. 
With or0 = ot2 = 1 and cq = 2, we obtain a hat function, or first-order B-spline, 
which is piecewise linear. 

Here we employ piecewise quadratic B-splines generated using a0 = ~3 = 1 
and a l  = o~2 = 3. In Figure 1, we illustrate these functions on two spatial scales: a 
coarse scale at the top and a finer scale at the bottom. Note that the relative spacing 
of the spline functions is proportional to their width. Additionally, because these 
functions satisfy (20), wide functions on one scale can be expressed as linear 
combinations of narrow functions on the next scale. For example, the highlighted 
element shown at the top of Figure 1 can be decomposed via (20) in terms of 
the fine-scale functions in the bottom panel. For the quadratic spline case with 
Nk = 4, we represent the relationship among these functions using a graph as 
shown in Figure 2. The nodes in the graph represent the functions (or associated 
expansion coefficients), and the edges indicate the links from one scale to the 
next. 

We make use of the nonlinear least-squares formulation of Section 3.1 and the 
functions defined above to obtain a reconstruction of Kp using the algorithm out- 
lined in Figure 3. We start with a low-order, coarse-scale collection of quadratic 
B-splines. With these bi, we estimate a set of expansion coefficients to get a 
rough ~p. The remainder of the algorithm is a loop where the current collection 
of vectors is alternately refined, and then unneeded detail is pruned away. The 
goal is to provide sufficient flexibility to add arbitrary detail to ~p, followed by 
a stage in which we determine which, if any, degrees of freedom associated with 
this detail were warranted. Those not needed are removed. Although one might 
consider many methods for this task, here we detail an approach that we have 
found to work well, at least for the DP problem. 

In the refinement stage, we replace all bi in our representation of ~p by their 
finer-scale children. 4 This allows for the recovery of finer-scale information at 
the expense of a higher-order representation. Once the new collection of vectors 
is constructed, we solve for a new vector of expansion coefficients to produce a 
finer-scale estimate of Kp. Although this requires the solution of a new nonlinear 
least-squares problem, the coarse-scale estimate is used to initialize the finer-scale 
reconstruction procedure to speed convergence. Specifically, the ai for each child 
is initialized using the average of the previously generated parent estimates. From 
Figure 2, assume that vectors 3-8 had just been replaced by 9-22. Then, e.g., the 
initial valUes for a13 and a14 would both be a4+a'5 2 

4 Obviously, those bi already at the finest scale are not refined. 
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Figure 1. Examples of quadratic B-spline functions on two spatial scales. 

After  refining the estimate, we next  remove unnecessary detail. The goal here 

is to reduce the  complexi ty  of  the model  by 

(i) Coarsening, replacing fine-scale children with their parents in regions 

where  such detail is not  warranted 
(ii) Pruning, removing  from the representation vectors that contribute little to 
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Figure  2. Graphical representation of the quadratic multiscale B-spline vectors. Nodes on one 
horizontal level represent vectors or their associated expansion coefficients at a given scale. Links 
from one node to the next indicate cross-scale dependencies induced by the underlying two-scale 
dilation equation, (20), with N k = 4. Coarse scales are at the top; finer scales at the bottom. 

Coarsening is done in a sequence of steps in which limited detail is removed at 
each stage until we can no longer represent the current estimate of Kp to within 
some predetermined tolerance. A similar procedure is carried out for pruning 
except that we remove from the estimate in a one-by-one manner vectors whose 
associated expansion coefficients are small. The result is a lower-order model that 
is a "small" perturbation of the previously computed optimal estimate. 

As illustrated in Figure 4, we begin coarsening by looking for all collections 
of vectors in our current B matrix which represent a complete set of children for 
a given parent. For example, in Figure 2, vectors 13-16 are a complete set of 
children for 5. For each such children-parent set, we consider a new collection of 
vectors obtained by replacing those fine-scale children with all of their coarse- 
scale parents, keeping the remaining members of the current collection the same. 
Again, referring to Figure 2, suppose that the current B matrix was comprised of 
vectors 9-22. One set of vectors considered by the pruning process would be 9-  
12, 4-6, and 17-22. Here 13-16 are removed and replaced by all relevant parents, 
in this case 4, 5, and 6. Another possible configuration is 9, 10, 3-5, and 15-22, 
where 11-14 are replaced by 3-5. 

This replacement strategy yields some finite number of possible sets of vectors 
for representing Kp with each set having fewer members than the current one. To 
determine which, if any, collection is selected, we project t~p onto the linear span 
of the vectors in each set. Let Bi be the matrix constructed from one such coarse 
set of vectors. The projection Kp,i is  computed as  Kp,i = BiB?i~.p, where B/t is 
the pseudo-inverse of Bi [4, p. 243]. 5 As explained in the Appendix, to evaluate 
the utility of Kp,i, it is useful to compare a weighted error ilJ(Kp - Kp,i)ll 2 tO 
a threshold, where J is given in (17) and is evaluated at t~p. If the minimum 
weighted error over all i is less than the threshold, we replace the fine-scale 
collection with the new, coarsened set; otherwise we stop. If we do not stop, 
then the pruning process is repeated. Specifically, if Bi. denotes the selected set, 
we replace children in Bi* by parents, again using the relative norm criteria just 

5 Because we allow B i to contain B-spline vectors at multiple scales and arbitrary dyadic shifts, 
it is possible that elements of  Bj will be linearly dependent, hence the need to use a pseudo- 
inverse. Both theoretically and practically, this linear dependence causes no difficulty for the 
algorithm in this paper. 
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Basic Inversion Algorithm 
INITIALIZE 

B := coarse set of B-spline functions 
"ff := argmin a Ile(Ba)l[~ 
~p : = L , ~  

done := false 
LOOP 

while (done = =  false) 
FIRST REFINE 
Bfine : =  refine(B) 
aAfine :--= a rg  min a jle(Byinea)I1~ 
gp,fine := Bfin~fine 
F := Ile(Bfine~fffine)ll 2 
J := Jacobian of e evaluated at ~p 

NEXT COARSEN 
Bcoarse := coarsen(B fine, Kp, fine, F, J, threshold) 

FINALLY PRUNE 
Bprune :--'-- prune( Bcoarse, ~Cp, fine, F, J, threshold) 
a~prune : =  a r g m i n a  He(Bprunea)]t 2 
fOp,prune :~-- Bprune~'ffprune 

CHECK TO SEE IF WE ARE DONE 
^ 2 ^ 2 if ll;:p - g p , p r u n e  II 2 / II~Cp tl 2 > threshold 

B : =  Bprune 
Kp :"~ Kp,prune 

else 
done := true 

end if 
end while 

Figure 3. Pseudo-code for inversion algorithm. 

described, If  the minimum error still is not too small, Bi* is replaced by a new, 
smaller set, and the process continues. 

To perform pruning, we start by removing from the final set of vectors produced 
by coarsening that vector whose lai] is smallest. As is done in pruning, we look 
at the weighted error between t~p and its projection onto the remaining vectors. If  
this error exceeds a threshold, then we stop; otherwise, the procedure continues 
using the expansion coefficients associated with this projection. 
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Coarsening Algorithm 
B := coarsen(Bin, kp, F, J, threshold) 
INITIALIZE 
B := Bin 
done := false 
LOOP while (done = =  false) 

for i = 1, 2 . . . .  number of ways to generate coarsened versions of B 
Bi := ith valid coarsened version of B 

Kp,i : :  BiBti~cp 
error/ := IIJ(;cp,i- ~p)ll~ 
if mini error/ < 2F  threshold 

i* := argmini error/ 
B:=Bi* 

else 
done := true 

end if 
end for 

end while 

Figure 4. Pseudo-code for coarsening algorithm. 

After pruning is finished, we pass the new collection of expansion vectors into 
the nonlinear least-squares solver to obtain the best estimate of the conductivity 
using this coarsened set. Again, another optimization is performed. As described 
in the previous paragraphs, however, the pruning process yields a low-order col- 
lection of vectors which still supports an accurate approximation of ~p. Thus, it 
is reasonable to assume that the set of optimal expansion coefficients should be 
close to the coefficients obtained by projecting t~p onto the coarse set. Throughout 
our numerical experiments, we have found that initializing in this way does in fact 
lead to rapid convergence of the nonlinear least-squares routine for this stage of 
the algorithm. 

This refinement-pruning loop is continued until the relative difference of the 
two-norm between estimates produced at the end of two successive pruning stages 
is below some threshold. We note that this approach does not guarantee a mono- 
tonic decrease in the cost function as we change the vectors in B. Indeed, the 
optimal Xp obtained after a coarsening-pruning step can have a higher cost than 
the previous t~p comprised of a larger number of expansion vectors. However, as 
examined in the Appendix, the weighted error criteria for accepting a coarsened 
or pruned collection of vectors is constructed in a way to limit the resulting rise 
in cost. Thus, although the cost may increase, we ensure that this increase is 
bounded. 
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4. Examples 

Here we consider the performance of our inversion approach on a variety of 
profiles. The background is meant to model case-hardened steel as in [8] so 
Kb = 0.45 W cm -1 K -1, p = 7.7 g cm -3, and c = 0.48 J g-J K -~. In all 
cases, depth profiles are constructed for z between 0 and 400 ,t~m from the surface 
based on thermal wave data from 16 logarithmically spaced frequencies m the 
range 10 to 10,000 s -1 . The signal-to-noise ratio on Ts is taken to be 30 dB. 

Over the 400-/xm range of interest, we discretize the forward model on a g i d  
of 256 equally spaced points corresponding to an interpoint spacing of about 
1.57 /xm. All data vectors are generated using the exact, discretized forward 
model while the inversion algorithm makes use of the EBA-type model described 
at the end of Section 2.2. For all examples, E, the tolerance parameters used 
in the coarsening and pruning stages, was 0.5 x 10 -4. The threshold used to 
terminate the refinement-pruning loop was 5%. In all cases, )~ = 1 (this value was 
determined by trial and error), and the reconstruction algorithms were initialized 
with zero for the perturbation. Finally, there were a total of five scales worth of 
B-spline functions that could be used in the construction of ~e" 

A Monte-Carlo analysis was used to evaluate the EBA to the true scattering 
model. We started by generating 100 random Kp profiles via 

17 

gP = 2 aibi, 
i=1 

where the bi are a collection of "mid-scale" B-splines shown in Figure 5a, and 
the ai were taken to be zero-mean, independent Gaussian random variables with 
standard deviation 20. 6 The goal here was to produce profiles that were not merely 
small perturbations on the background. Some samples are shown in Figure 5b. 
For each profile, we solved the forward problem using the exact method and 
the EBA. Over the 100 trials, the average relative error between the exact and 
approximate data vectors was about t0 -13 while the EBA required about 18 times 
fewer floating-point operations than the exact model. Thus, for the problems of 
interest here, the EBA represents a highly efficient, essentially exact solver for the 
HDE. 

We start by examining the performance of our approach for a profile with a 
layer-like inclusion shown as the solid line in Figure 6a. q'o gauge the average 
performance in the presence of noise, in this and the next example, we performed 
the inversion 10 times for 10 different realizations of the additive disturbance~ In 
Figure 6a the dashed line is a plot of the average reconstruction for the adaptive 
method, and the results of inverting using the finest-scale grid of 256 points 
are given by the dashed-dotted line. Here we set p = 1.1 in (14) to obtain an 
edge-preserving type of regularization. In practice, it would be necessary to also 

6 To keep x positive, we set to zero any values of Xp < 45, where 45 is the background thermal 

conductivity. 



MULTISCALE ADAPTIVE INVERSE SCATTERING 353 

1 i 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 50 100 150 200 250 300 350 400 

Depth, z [/zm] 

(a) B-splines used to evaluate EBA 

50 

4O 

30 

20 

10 

0 

-10  

-20  

-30  

-40  

-50  
0 50 

I 

, , , f I I I 

100 150 200 250 300 350 400 
Depth, z [/zm] 

(b) Sample Xp profiles 

Figure 5. In (a) we plot the B-spline vectors used to generate profiles for the testing of the EBA. A 
few samples of the resulting profiles are shown in (b). 
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develop a method for choosing this quantity; however, for the sake of simplicity, 
as with )., we assume that p is known a priori. 

Figure 6a shows that, on average, the results of using the adaptive approach 
are comparable to those of a fixed, fine-scale inversion. For the adaptive method, 
the peak value of the reconstruction is slightly closer to that of the true profiIe. 
However, for the fixed-scale method, the average reconstruction is slightly flatter 
over the region of the layer. The average mean-square error between the two 
methods differed by about 1% with the fine scale ease having the smaller average 
error. 

As stated in Section 1, one of the potential advantages of the adaptive method 
over a fixed-scale inversion is computational. To explore this issue, we "instru- 
mented" the leastsq procedure to collect statistics of the inversion process. For 
one of the 10 runs in Figures 6b and c, we plot the value of the cost function 
and the value of the estimation error, [l/Cp - ~ptl 2, against the number of times 
the inversion routine made a call to evaluate the cost. Because cost evaluation 
requires the evaluation of the HDE model, which is the most computationa!ly 
intensive step in the process, the number of times the cost function is called is a 
valid measure of the complexity of the inversion procedure. Also, for the adaptive 
approach, the plot displays the cost and error for all refinement-pruning stages 
of the algorithm and thus is an accurate portrayal of the complexity of the entire 
routine. 

We observe from Figures 6b and c that the adaptive method converges at a faster 
rate than the fixed-scale method. Thus, although the two methods converge essen- 
tially to the same profile, by constraining the inversion, we get closer to the final 
result faster. We note that this behavior was true in general for all 10 runs. More- 
over, because the adaptive approach required fewer unknowns, for this problem, 
significantly fewer floating-point operations were needed. The average number 
of unknowns in the final reconstruction over the 10 runs was about 19 for the 
adaptive approach versus 256 for the fine-scale method. Reduction in the size 
of the inverse problem translated into a floating-point count that was about 2.70 
times smaller for the adaptive method than for the fixed scale-inversion. Thus, for 
this problem, the adaptive method produces essentially the same reconstruction 
as a fixed-scale technique at a significantly reduced level of complexity. 

In addition to this quantitative advantage, the adaptive inversion also yields 
interesting qualitative results. By examining which vectors are used in the re- 
construction, we see that the adaptive approach placed limited detail precisely 
where it belongs in a reconstruction using fewer, coarser-scale vectors where xp 
varies more slowly. Indeed, Figure 6a indicates that for both fixed and adaptive 
inversions, the edge closer to the surface is recovered more accurately than the 
edge deeper into the medium. For the same run used to produce the graphs in 
Figure 6, we show in Figure 7a the individual vectors that contribute to the final 
adaptive reconstruction. We see in particular that most of the fine-scale detail is 
distributed near the two edges with wider, coarser-scale vectors used for much of 
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Figure 6. Reconstruction performance and convergence behavior for adaptive method and fixed, 
finest-scale approach for a layer-like profile. In (a), the average reconstruction taken over 10 noise 
realizations at 30 dB is compared to the true profile. For one of these runs, (b) and (c) demonstrate the 
improved convergence behavior typically exhibited by the adaptive method. 
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the remainder of the reconstruction. This point is further highlighted in Figure 7b, 
where we plot as a function of depth, the finest scale in the reconstruction. Specif- 
ically, at each point z, there may be a number of vectors whose support includes 
this point. Figure 7b then shows the scale of the finest vector having support at 
each position. Larger numbers imply finer scale, and for these examples, there are 
five scales of B-splines which may be used. 

Typically, for a diffusive inverse problem of the type considered here, physical 
intuition dictates that the level of detail decrease as a function of increasing depth 
due to the heavy damping of the thermal waves. Although this may be true in gen- 
eral, it also ignores the fact that one may want limited fine-scale detail to support 
the reconstruction of important sharp features (e.g., edges) that may be present in 
the profile. The results in Figure 7 demonstrate that the algorithm described in this 
paper is capable of adapting the detail in the reconstruction in a way that reflects 
both the underlying physics as well as the structure of the particular profile. The 
general trend is a decrease in resolution as a function of depth; however, we see an 
increase in the level of detail specifically in the neighborhood of the edge: Thus, to 
obtain the sharper profile, the algorithm automatically chooses to distributesome 
fine-scale degrees of freedom near the feature of import. 

In Figures 8 and 9, we examine the results of the method represented in this 
paper for a smoother profile. For this analysis, we set p = 2 in (14) to obtain a 
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more standard smoothness type of regularizer. The results here indicate a different 
advantage the adaptive method may have with respect to a fixed, fine-scale inver- 
sion. Figure 8 shows that over the 10 runs used to evaluate the performance of 
the algorithm, on average the fixed-scale approach converges to a far from global 
minimum of the cost function. Alternatively, by constraining the search space, the 
adaptive inversion routine essentially settles into a lower-cost local minimum that 
is also of much lower error. The convergence curves for one of the runs shown 
in Figures 8b and c provide filrther evidence of this behavior. For this problem, 
despite the fact that the adaptive approach uses on average about 11 vectors. 
approximately t6% more floating-point operations are required versus the finest- 
scale inversion. Thus, in contrast to the first example, here we see a slightly higher 
computational cost producing a significantly improved reconstruction. 

Finally, in Figure 9, the constituent components of the one of the 10 final 
reconstructions are displayed. We see here that the absence of an edge or other 
sharp feature in Xp has resulted in coarser-scale vectors being used here relative 
to those in Figure 7. Generally, the trend is one of decreasing resolution as a 
function of depth. 

5. Conclusions and future work 

We have described an inverse scattering type of approach to the photothermaI 
depth profilometry problem. Using the HDE as the basic physical model, a mea- 
surement model is derived based on a decomposition of the thermal conductivity 
into the sum of a background component and an arbitrary-sized perturbation. The 
physical model is cast in a form appropriate for use in a regularized, iterative 
inversion scheme. We have presented an accurate, low-complexity approximation 
to the exact HDE model having the form of an EBA. 

We have introduced and explored the performance of an inversion technique 
designed to focus the information in the data on a small number of carefully 
selected degrees of freedom. Specifically, we have made use of multiscale, B- 
spline functions to construct an adaptive algorithm in which the presence of fine- 
scale detail in the reconstruction is carefully controlled. The algorithm is based on 
an iterative loop in which the current set of vectors is first refined, to allow more 
detail, and subsequently pruned, to remove unwarranted degrees of freedom. The 
utility of this approach has been demonstrated on a number of simulated examples 
representative of applications of this technology to the nondestructive evaluation 
of case-hardened steel. We plan on testing this method on experimental data in 
the near future. 

In comparing the adaptive method to a fixed, fine-scale inversion, we have seen 
two types of behavior. For one problem, the two approaches produced essentially 
the same reconstruction, but the computational cost of the adaptive method was 
far smaller than that of the fixed-scale technique. Alternatively, fo r  a second 
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problem, the adaptive method was shown to converge to a far lower cost of the 
optimization function; however, the price paid for this improved performance was 
about a 20% increase in complexity. One important objective in the future is to 
develop a theoretical understanding of the circumstances (classes of profiles, noise 
conditions, sensing system parameters, etc.) under which one might expect one of 
these two types of performance. 
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Appendix 

Because the basis coarsening and pruning steps remove degrees of freedom from 
the representation of ~?p, it is possible that the value of the cost function will rise 
after these procedures. The objective of this appendix is to derive a method for 
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accepting a coarsened or pruned set of  vectors that guarantees that the relative 
rise in cost is no larger than some predefined threshold. 

Referring to (15), we define F(xp) as eT(xp)e(Xp), Let us assume that we have 
a fine-scale estimate tp, that we wish to coarsen. Because ~p is by definition 
a solution to the nonlinear least-squares optimization problem for some Bi a 
second-order Taylor expansion of F about ~?p yields 

F(~p + 3) ,~ F(s + 1/28TH8, (21) 

where H is the Hessian of the cost function. Because 8 is small, the Hessian is 
well approximated by j T j  [3] with J the Jacobian of e evaluated at ~?p. Thus, 
after some algebra, we write the relative change in cost due to a perturbation 8 
from ~p as 

f(s q- ~) -- f(~p) llJSII 2 
,~ (22) 

F(;cp) 2F(t~p)" 

From Section 3.2, 8 = ~p - K p , i ,  Thus, to ensure that the relative change in the 
cost rises by at most E, we require that I[J(~p -/~p,i)]] 2 < 2eF(~p). 
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