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A new self-normalized photoacoustic technique, using the Open Photoacoustic Cell
configuration, to carry out measurements of thermal diffusivity of materials is pre-
sented. This new methodology involves a linear fitting procedure of the photoacoustic
amplitude signal. To carry out the analysis one requires the ratio of signal amplitudes
from two samples of the same material and of different thicknesses. This rationing
procedure leads to the elimination of the usual requirement for instrumental transfer-
function normalization. The thermal diffusivity for three dental resins is measured with
this simple methodology and very good agreement is found with values for similar
materials reported by means of more complicated techniques.
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. INTRODUCTION

Photothermal techniques have found extensive applications in various areas
of science and engineering. Nowadays they are used in a wide range of
scientific disciplines to carry out studies of diverse properties of condensed
matter [1—3]. Among the main applications of these techniques, widely used
is the thermal characterization of substances, both in liquid and solid phases
[4—10]. In particular, the Open Photoacoustic Cell (OPC) configuration is
becoming increasingly popular [9—12].

In this article a new measurement methodology based on the OPC con-
figuration and using the photoacoustic signal amplitude as a function of the
modulation frequency is reported. A frequency scan is carried out in the
photothermally thick regime [13]. The procedure involves implicit signal
normalization by taking the ratio of the photoacoustic amplitude frequency
responses of two samples of different thickness. With this self-normalization
procedure the instrumental transfer function is eliminated. The new meth-
odology is applied to the measurement of the thermal diffusivity of three
dental resins.

Il. THEORY

In consideration of the optically opaque (surface-absorption) limit [13] it
can be shown that the complete photoacoustic signal in the OPC configu-
ration is given by the expression [11]

Y 1 2A Lo .
J 0,0 sinh (Loy) { + oy {COS (Los) 2 sinh (Loy) }} m

In this equation Y is a coefficient involving geometrical parameters, as well
as optical and thermal properties. The parameter A involves the linear
expansion coefficient ar, its magnitude determine the thermoelastic behav-
ior of the sample. L is the sample thickness, and o; = (1 +i)+\/(7f /), j=g,
s, is the complex thermal diffusion coefficient, where f is the optical-source
modulation frequency and a; is the thermal diffusivity of the j-th substance.
The letter g refers to the gas inside the photoacoustic chamber; s refers to the
optically absorbing sample.

Equation (1) is too complicated to be used for analytical purposes. More
useful are some approximations based on the value of the dimensionless
parameter x = (f/f.)"/%, where f, = /(cv;/7L?) is the critical frequency. This is
the frequency at which the thermal diffusion length s = |os|/4/2 is equal to
the thickness of the sample. Depending on the value of the parameter x, the
photothermal behavior of the sample lies between the thermally thin (x << 1)
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and the thermally thick regime (x >> 1). Furthermore, depending on the
thermal linear expansion coefficient and thickness of the sample (included in
the parameter 4 in Eq. (1)), a thermoelastic contribution may appear at high
modulation frequencies in the thermally thick regime [12]. If this contribution
can be separated out at higher frequencies, as is the case with our exper-
iments, it may be theoretically ignored. Then the OPC amplitude, Eq. (1), is
simplified substantially in the thermally thick regime [9—11]

e~/
f

Here, the coefficient ¢( /) contains the instrumental transfer function and
is independent of the samples thickness. The parameter « is defined as a=
L(n/a)'?. By taking the ratio of Eq. (2) with itself for two different
sample thicknesses L, L,, it is clear that the term ¢( /') is eliminated, yield-
ing the simpler expression

oPr6(f) = c(f)

(2)

6P}
R="116_ o BVI (3)
8Pk

The parameter B is defined as B=(L,— L,)(rr/as)"*. Tt is clear that the
thermal diffusivity of the sample can be obtained from knowledge of this
parameter. The measurement procedure involves rationing the photoacous-
tic amplitudes obtained in transmission experiments from two samples of
different thicknesses and plotting vs. the square root of the modulation
frequency, followed by the corresponding linear best-fit on a semi-log scale
to obtain the slope of the straight line.

lll. EXPERIMENTAL

The experimental set up is shown in Figure 1. It consisted of an infrared
laser diode source with a fiber-optic pigtail (Omnicrome Corporation, mod-
el OPC-A001-FC/100, 830nm), operating at 200mW. The photoacoustic
transmission configuration was realized by using the sample to cap (and
hermetically seal) the chamber of a commercial electret microphone with a
built-in pre-amplifier. The photoacoustic signal due to the front-surface-
generated thermal wave transmitted through the sample was obtained as a
function of the modulation frequency. It was then fed to a lock-in amplifier,
LIA (Stanford Research model SR830) for further amplification and
demodulation. The laser intensity was modulated by using the internal os-
cillator of the LIA to drive the laser power supply via a TTL communica-
tion port.
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FIGURE 1 Schematic representation of the OPC configuration experimental set-up
used for self-normalized thermal diffusivity measurements.

IV. RESULTS AND DISCUSSION

The methodology was applied to the measurement of the thermal diffusivity
of three dental resins (Tab. 1). The resin samples were prepared in a disk form
(1 cm in diameter) with thicknesses between 80 to 200 pm (Tab. 1). To satisfy
the surface absorption condition, a piece of aluminum foil (17 um-thick) was
attached with thermal paste to the various specimens. The thermal thickness
of the foil was thus negligible compared to the sample thicknesses. Figure 2
shows typical signal amplitudes for the studied dental resins. Figure 3 shows
the graph of the ratio of the two amplitudes (thick sample: numerator; thin
sample: denominator) on a semi-log scale as function of the square root of
modulation frequency for one of the resins. The decreasing ratio in the low-
frequency portion of this graph is due to the fact that both samples are
thermally thick and the thermal-wave attenuation rate of the photoacoustic
signal amplitude from the thick solid is faster than that of the thin solid. This
makes the amplitude ratio decrease. This behavior is followed by the
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TABLE 1 Thermal diffusivities for three dental resins, measured by using the
presented methodology and the corresponding values for three similar dental resins

reported in the literature

Dental resin Thickness AL=L,—L, o
(Commercial name) em (x 1072 em (x 1072) enls (x 1072)
3M L;=1.39+0.04

L,=1.87+0.05 0.48 +0.09 0.45 £+ 0.09
Degufill H L;=0.86+0.03

L,=1.70 + 0.05 0.84 +0.08 0.34 +0.06
Degufill (Auto) L,;=0.90 £ 0.05

L,=1.70 + 0.03 0.80 & 0.08 0.09 +0.07
Bonfill - - 0.12 +0.02 [15]
Adaptic 0.68 +0.03 [15]

Prisma-Fil Dentsply -

0.50 + 0.02 [16]

0.0067

0.0025

0.0009

Amplitude (V)

T T T T

0.0003
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FIGURE 2 Typical photoacoustic signal amplitude for the resins used in this work.
Circles correspond to a Degufill (auto) sample resin (0.0090 cm thickness); squares

correspond to another Degufill sample (0.0170 cm thickness).

thermoelastic domination of the signal at high modulation frequencies [14].
Here the oscillatory thermal expansion of the thin sample is proportionally
smaller than that of the thick sample (AL;oc L;). As a result, the acoustic
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FIGURE 3 Photoacoustic signal amplitudes ratio for the Degufill (auto) resins
samples of Figure 2. The linear behavior in the thermally thick regime is delimited by
two vertical lines. The continuous straight line is the best fit to Eq. (3) within this
region.

vibration amplitude in the photoacoustic chamber is stronger for the thick
sample and the ratio reverses its direction. The turning point of the curve in
Figure 3 can be used, in principle, to determine the coefficient of thermal
expansion of the material constituting the two samples.

The linear behavior in the thermally thick region is as predicted from Eq.
(3). The superposed straight-line represents the theoretical best fit to the
same equation. The results of the analysis are summarized in the Table 1. A
comparison of the thermal diffusivity values measured in this work with
corresponding values reported in the literature [15, 16] for similar dental
resins reveals good agreement (see Tab. 1). The simplicity of the presented
technique is evident as is compared with the methodologies used to obtain
the values reported in Refs. [15] and [16]. One of this methodologies (Ref.
[15]) involves measurements of the temperature evolution on a rectangular
prism molded specimen, with a thermocouple embedded in it as immersed in
a thermal bath. The other methodology (Ref. [16]) is a photoacoustic
technique using the phase delay signal and involves a complicate normal-
ization procedure to eliminate the other mechanism taken place together
with the thermal diffusion mechanism. It is worth to say that all of the
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described methodologies has 2 digits of precision, however the precision of
the presented methodology can be improved by suppressing the thermo-
elastic contribution. For to do this a compromise with the sample’s thick-
ness is required.

V. CONCLUSIONS

We have presented a new methodology for measuring the thermal diffusivity
of solid materials by using the OPC configuration. This new methodology
involves a self-normalization procedure by virtue of which the instrumental
transfer function is eliminated. This characteristic represents the major
accuracy advantage and simplicity of the analysis over other photoacoustic
techniques based on the OPC configuration. In principle, the technique is
applicable to all opaque solid materials, provided one is working in the
purely thermally thick frequency regime with no thermoelastic overlaps.
Two samples of the same material of different thicknesses are needed in
order to implement the technique. The extended use of dental resins for
restoration and the rapid development of new dental materials make it
important to implement simple new methodologies to characterize critical
thermal loads in dental practice. Our new methodology appears to be suit-
able for simple, rapid characterization of dental materials. Toward this goal
a detailed statistical study is necessary in order to define the precision and
accuracy of this new methodology.
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