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Theory of Second Harmonic Thermal-Wave 
Generation: One-Dimensional Geometry 
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The analysis of the thermal-wave second harmonic generation induced by the 
time-modulated heating of the material with temperature-dependent heat 
capacity C(T) and thermal conductivity k(T) is presented. The developed theory 
describes nonmonotonic behavior of the second harmonic amplitude in a semi- 
infinite medium. An enhanced spatial resolution of nonlinear photothermal 
imaging in materials with dominant role of the k(T) temperature dependence 
(i.e., for I(1/k)(Ok/~T)] >> I(1/C)(OC/~T)I is predicted. 

KEY WORDS: modulated heating; photothermal imaging; second-harmonic 
generation; thermal wave. 

1. I N T R O D U C T I O N  

Over the past few years, various detection techniques [1-3] have been 
applied to the investigation of nonlinear phenomena in photothermal 
imaging. The results of the experiments [1-3] revealed the possibility of 
obtaining higher contrast by second harmonic detection than with the 
image at the fundamental frequency. These experimental facts stimulated 
interest in the theoretical examination of the second harmonic generation 
processes in thermal wave physics. 

The origin of the second harmonic excitations lies in the dependence 
of the thermophysical parameters of materials on temperature T [-1]. 
Reference 1 gives, however, only a qualitative description of signal genera- 
tion at 209, where co is the fundamental thermal-wave angular frequency 
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caused by thermal conductivity variations k = k(T). In Ref. 2 a model of 
nonlinear boundary thermal resistance has been developed. An attempt has 
already been made [4] to take into account bulk thermal nonlinearities, 
that is, the dependences of thermal conductivity k and heat capacity C on 
temperature not only at the interfaces, but also in the semiinfinite domain 
in which thermal waves are generated and propagate. The main conclusion 
concerning the increased depth resolution of the nonlinear photothermal 
microscope [4] is physically right. Nevertheless, the inexact formulation of 
the basic heat conduction equation used for the theoretical analysis renders 
the results of Ref. 4 not very useful in practice. The formulas derived 
therein cannot be used for the exact evaluation at the amplitude and phase 
at 2co or, most importantly, for deriving their spatial distributions. 

In this paper, we reexamine the second harmonic generation problem 
in semiinfinite half-spaces, with emphasis on the physical fundamentals of 
frequency mixing of highly damped waves. In particular, we present in 
detail the description of the 2~o temperature field distribution in space. 

2. MATHEMATICAL FORMALISM 

We start from the conventional form of the heat conduction equation 
in a medium with nonconstant thermophysical parameters E5, 6]: 

8T V C - ~ - -  �9 (kVT)= Q(r, t) (1) 

Here Q is the external heat source input per unit volume C = pCp, where 
p is the material density and Cp is the heat capacity per unit mass at 
constant pressure. The particular form of Eq. (1) has neglected the coupling 
between thermal and acoustic waves, i.e., the thermal conductivity k is con- 
sidered to be subsonic. Note that Eq. (1) differs from that used in Ref. 4, as 
we have considered the thermal energy per unit volume to be ~r CdT and 
not CT [4]. The boundary conditions at the interface S of adjacent 
materials are those of the continuity of heat flux and temperature: 

8T +o 
k~n o=0' Tl_+~ (2) 

where the coordinates _0  denote the values of physical quantities at 
opposite sides of the interface, while n is the unit normal to the interface. 

Let us suppose that external heating initiates an increase in temperature 
T1, relative to its initial value To, 

T= To+ T1, To = const. (3) 
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and that linear relationships 

C(T) ~- C(To) + -~(To) Tt - Co(1 + 81T1) (4a) 

k( r )  __ it(r0) + ?-~ (to) r l  - ko(1 + 62 r l /  (4b) 

adequately describe the behavior of heat capacity and thermal conductivity 
in the temperature interval of interest. Under the conditions of Eqs. (3) and 
(4), the problem described by Eqs. (1) and (2) transforms to 

Do ~ T, = -~oo Q(r, t ) -  62V2 Do-~tJ T21 (5a) 

with 

k o ~  n T1+~f2T21 =0, TI[ +~  (5b) 
0 

where Do = ko/Co is the thermal diffusivity. Note that both dependences 
C = C(T) and k = k(T) contribute to nonlinear terms in the heat conduc- 
tion equation, whereas only k = k(T) contributes to the nonlinearity in the 
boundary conditions. 

It can be readily seen that for 

[61Tl1 ,~ 1, 162Tl1 <~ 1 (6) 

the problem of Eq. (5) can be examined by a stepwise successive 
approximation method. As a first step one can neglect the nonlinear terms 
associated with T~ ~in Eq. (5a): 

( W i g )  1 
Do ~ Zl = --~0 Q(r, t) (7a) 

with 

k o =0, Tll 2 ~  (7b) 

If the external forces are harmonicaly modulated at angular frequency co, 

Q(r, t) = Qo(r) + Q~(r, t) (8a) 

Q(r, t) = Qo(r) + Q~o(r, t) (8b) 
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then in the linear problem, Eq. (7), the contribution of the oscillating (To) 
temperature field and of that averaged over the fundamental modulation 
period (To1 < ( T 1 ) )  may be separated out: 

with 

and 

V 1 ~ ) 1 
D o  ~ Z ~  = - -  ~oo O~ (9a) 

ko-~To~ =0,  Toa[ + ~  (9b) 

V 1 ~3 ) 1 
D o ~  Tco= -koaco(r , t) (lOa) 

+0 

ko ~nn To~ = 0, Tcol +o ~ = 0 (10b) 
--0 

Note that Q0(r)= (Q(r ,  t)}. In the case of monochromatic optical excita- 
tion, the condition for thermal and acoustic decoupling is 

co "~ coo =- v2/Do (11) 

where v is the velocity of sound and co D is the characteristic frequency at 
which the thermal and acoustic wavenumbers become equal. 

As a second step, it is necessary to substitute the solution 
T1 = To1 + Tco of Eqs. (9) and (i0) into the nonlinear terms of Eq. (5a), 

2 co" that is, to consider T~ = T21 + 2Tol Tco + T 2 In the first approximation, 
the temperature field consists of the quasi-stationary (dc) part (co = 0) and 
the part oscillating at angular frequency co. The quadratic nonlinearity in 
Eq. (5a) will then be given by the frequency mixing contributions to the 
averaged field (0 + 0 --, 0, co - co ~ 0) and to the fundamental frequency 
( 0 _  co--, +co). It will also induce the generation of the second harmonic 
(co -]- co ~ 20)). 4 The description of the latter process may be separated out: 

= - - ( T ~ } )  (12a) r2co (~ 2V2 _ (~ 1 ._~.._ ~ ( T  2 2 

4 If the temperature dependences of C(T) and/or k(T) are considerably nonlinear around 
T -  ~ To, then higher than second harmonics will appear in the system even in the second 
approximation. This can be illustrated in the case (dC/~T)(To)=0 and/or (ak/OT)(To)=0, 
where the (c?2C/dT2)(To)#O and/or a2k/OT2(To)r may introduce third harmonic 
generation. 
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with 

1 ]+o 
ko-~n T2oo+-~ 62(T2--(T2}) =0, r2o~r_+~ (12b) 

--0 

Note that in the above approximations the second harmonic temperature 
field T2~ is not related to the average field To1. Therefore, the calculation 
of the averaged field To1 in Eq. (9) may be omitted. It should be solved 
only for the purpose of estimating the limits of validity of conditions (6) in 
the stepwise approximation for every concrete situation. 

Without loss of generality, one can assume that Qo~(r, t) has the form 
Qo~(r) cos cot. Then the solutions of the linear problems of Eqs. (10) and 
(12) can be presented as 

T~o = Re(T~oe -i(~ (13a) 

Rzo~ = Re( ~'2o)e -2it~ (13b) 

The following equations are valid for the complex amplitudes To~ and 7"2o~ 
of the harmonics: 

with 

and 

with 

1 
(V 2 _ p2) ] ,  = -- ok-- Q~ (14a) 

+0  

ko T~ =0, T + ~  (14b) 
--0 

( v 2  - -  2 P  2) T2co = - -  1 ( ~ 2 V 2  __ (~12P 2) ~ 2  (15a) 

, )+o 
ko~n T2~ + ~ 62 7"~ =0, 7"2o~1 +~ = 0 (15b) 

0 

where p=x/-i(co/Do) ( R e p > 0 )  is the complex wavenumber of the 
thermal wave at the fundamental frequency; p =  ( 1 - i ) q  with the real 
wavenumber q = mx~x/-~ o being the inverse of the thermal wave penetra- 
tion depth ~q = 1/q, otherwise known as the thermal diffusion length. The 
derived boundary value problem, Eq. (15), forms the theoretical basis for 
the description of the 2(o temperature field. 
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Let us examine a semiinfinite opaque sample (z/> 0) heated by surface 
absorption of laser radiation. Then in the one-dimensional approximation, 
Eq. (14) transforms to 

(d2 ) _ p2 7"o~ = 0 (16a) 

wi th  

ko d 7"~o z=o = -I~o (16b) 

where I~, is the magnitude of the modulated part of the absorbed laser 
intensity. With the additional condition T,o(z~ m ) + 0 ,  Eq. (16) has the 
well-known solution: 

1"~,=----e -p~ (17) 
ko p 

Combining Eqs. (17) and (13a), one may obtain a complete description of 
the thermal wave, i.e., its amplitude A and phase ~b at the fundamental 
frequency 

/I~o\ 1 (cot qz-4)  (18a) To~ = - -  - -  cos -- ~ko) w/~q e-qz 

with 

/Io~\ 1 n qz (18b)  A~ (9~~ 4 

Note that both A~ and ~b,o vary monotonically with depth. Characteristic 
space scale for these variations is the thermal diffusion length #q. 

Substitution of Eq. (17) into Eq. (15) leads to 

~'2oJ ---- ~ (r -- 2(52) e-ZPZ (ff__~2 _ 2p2 ) 1 \KoJ (Io,'~ 2 (19a) 

subject to the boundary condition 

d _  1  zr2~ a2(z 121 koj p (19b) 
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It can be seen that bulk and surface sources of T2o~ on the right-hand side 
of Eqs. (19a) and (19b) depend on different combinations of 61 and 62. 
This fact initiates nontrivial interference phenomena in the second 
harmonic generation process. Before proceeding to the solution of Eqs. 
(19), we will briefly discuss one more potential mechanism for thermal 
wave second harmonic generation in the physical system under considera- 
tion. In the case of laser-induced heating, the sources Q(r, t) depend not 
only on the harmonically modulated laser intensity I(r, t) but also on 
material parameters characterizing the interaction of light with matter. In 
the simplest situation of linear absorption of laser radiation 

Q(r, t )=  (1 - R )  ~I(r, t) (20) 

where R is the reflection coefficient of light at the irradiated surface and 
is the optical absorption coefficient. If one takes into account the possible 
dependence of R and ct on temperature 

1--R(T)"~ I--R(To)+ --~(To) Z1=-(1-Ro)(l +63Tl), 163Tl1~1 

(21) 

and 

ct(T)~0~(To)+ ~--~(To) Y1=-Cto(1--64Tl),164T11~l (22) 

These dependences will induce the additional source of the thermal wave 
second harmonic: 

(1 - go)c% 
ko {63ET~o(O)I- (To(O) / ) ]  +64[T, oi- ( T o / ) ] }  (23) 

in the right-hand side of Eq. (12a). Here To~(0) denotes the fundamental 
frequency temperature component at the irradiated surface. Assuming 
I =  Io(1 + cos o~t) one will also obtain the additional term 

- [(1 - Ro)ctolo/2ko] [-63 ~'rn(0) + 6 4 Tee" ] (24) 

in the right-hand side of Eq. (15a). The action of the nonlinearity 
associated with the dependence of the optical absorption coefficient on 
temperature has been experimentally investigated [7]. In the case of 
surface absorption of the laser radiation, the corresponding second 
harmonic sources should be taken into account in the boundary conditions 
at the irradiated surface. The additional term in the right-hand side of 
Eq. (19b) may be presented in the form ( -63 /2)  x (Io~/ko)Z(1/p). For the 
sake of compactness, in the following, we neglect this nonlinearity assure- 
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ing 63 = 0. The role of the nonlinearity associated with the reflectivity 
dependence on temperature can be exactly described by the simple sub- 
stitution 62 -'~ 62--03 and 0,--* 01--263 in the solutions obtained below, 
starting from Eq. (25). 

The solution of Eq. (19) diminishing to zero as z --* oo has the form 

(/o,)  2 1 1 _ 202) e 2pz] (25/ 
= \ k o / /  2v/~p2I(O2-O1)e-'/$PZ+7(01 

According to Eq. (13b), the first term satisfies the dispersion relation of the 
thermal waves in the system considered: p(2eo)= ~/- i (2~o) /D o. For this 
reason it has been denoted the "free-propagating wave." The second term 
in Eq. (25) is not subject to the dispersion relation, as 2p(co) # p(2co). Both 
the frequency and the spatial periodicity of this term are controlled by the 
field of the sources. Therefore, this component has been named the "forced 
wave." The solution, Eq. (25), consists of the free-propagating second 
harmonic thermal-wave term with a complex wavenumber, p(2co)= 
V/-2p(co), and of the forced second harmonic wave with a wavenumber 
equal to 2p(o~). The relative amplitudes of these contributions to T2o, 
depend on the values of 61 and 02. For example, the forced mode 
disappears if (01/02)=2, when in accordance with Eq. (19a), there are 
no bulk sources of the second harmonic. The free-propagating mode 
disappears for (0i/62)= 1 as a result of compensation of the 2w-waves 
excited in the bulk and at the surface of the material. 

In the general case (01/02)r 1, 2 the solution, Eqs. (13) and (25), 
describes interference of free-propagating and forced 2e)-thermal waves: 

T2o~(z, t) = A2~o(z ) cos(2e)t + ~2oo) (26a) 

where 

A 2 ~ ( z )  = \ k o /  4 v / ~ q  - - - ~  e ~ q ~ [ ( a ~  - a~) 2 

- ~/2  (a~ - a2)(a~ - 2a~)e -~q~ cos(~qz) + ~ (6~ - 2a~)~e-~q~] ~/~ 

(26b) 
and 

O2~=-~-vZSqz-~sgn (01-02)-~(a1-262)e ~q~cos(~qz) 

[ sin/ q  1 (26c) 
+ tan-1 x/~(01 - 02) - (01 - 202)e -~qz cos(Aqz)J 
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In Eqs. (26b) and (26c) we have highlighted the dependence on Aq, which 
describes the influence of interference, caused by the difference in the 
wavenumbers of forced and free-propagating 2co-waves: 

Aq= 2q(co)-q(2co)-q(ZoJ)= x/-2(x~- l ) q(co ) (27) 

3. DISCUSSION 

The following important results may be obtained through the analysis 
of the second-harmonic thermal-wave field, Eq. (26). 

1. The amplitude of the 2co-wave at the irradiated surface can be 
expressed as 

11~lq'--X/2~21 (Ico'~2 1 
A2~(0) - 8 1 + x/2 \koJ q--7 (28) 

Now one can introduce the nonlinear parameter N characterizing the 
efficiency of the 2co-generation process at the surface, relative to the 
amplitude of the fundamental thermal wave, 

N = A2ro(0) 1 161 +,, /2621 (29) 
A2(0) 4 l + x / ~  

which can be useful for estimates of nonlinear effects. From our very rough 
estimates at room temperature, N ~  10 -5 K -1 in such simple metals as Au, 
Ag, and Cu; N ~  10 -4 in graphite and Fe; and N ~  5 x 10-3 in Si and Ge 
E8]. In the above-mentioned materials 02 < 0 while 61 > 0. In some steels 
and alloys, 62>0 even at room temperature [-8]. For instance, note that 
A2o~ oc I 2, in agreement with earlier experimental evidence [1 ], and that in 
the 1-D geometry under consideration Azc o (z  = 0) oc 1/CO. It can also be 
shown that the 2co-temperature field may vanish but only at the surface 
z = 0  and only for 6a/02= (61/~52)~r = - - ~ .  

2. It is evident that in the latter case (6,/62 = -xf2) ,  the maximum 
of the 2co-temperature distribution is localized under the surface. To 
examine the spatial distribution of the A2o,(z) in the general case, it is 
convenient to examine the Taylor expansion of Eq. (26b) near the surface, 
i.e., for qz ~ 1. 

A2~ 5 ]  2 1  
A2o,(z=O)- k ~+--~---772 (qz)- +~ (30) 

The requirement for positive slope of Eq. (30) yields the sufficient condition 
for achieving the A2o, maximum under the surface {with (d/dz)[A2o~(z)] I~:0 

840/14/2-11 
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> 0}31/32 < --X~" This, however, is not a necessary' condition for a sub- 
surface second-harmonic temperature maximum, nor can it be used to 
locate its position. Equation (30) only describes a local (i.e., not absolute) 
2~o-temperature minimum at 

1 (31/32) At- N ~  
(qZ)mi" -- 4 1 +X/-2 (31) 

The absolute minimum (i.e., zero) can be determined only from the exact 
equation, Eq. (26b), for the second-harmonic amplitude, as a result of its 
boundedness as z ~ .  Therefore, if 0 < ( 3 1 / 6 2 ) + x ~ . ~ 1 ,  the present 
theory predicts the local temperature minimum A2~o(Zmin)--A2~o(O)/x~ 
underneath the irradiated opaque surface and at a distance much smaller 
than the thermal diffusion length. 

3. The phase of the 2~o-wave at the irradiated surface can be 
expressed as 

~2~(O)=~sgn(bl+X~62)  (32) 

~b2~ differs from the phase of the fundamental wave. This conclusion is also 
supported by the experimental results presented in Ref. 2. Note that in 
deriving Eq. (32) from Eq. (26c), we have taken into account the 
impossibility of distinguishing, in practice, between the phase ~b2o~ and the 
phase ~b2~ _+ 2~. 

4. For the analysis of the phase spatial distribution of the second 
harmonic, it is convenient to separate out in the expression Eq. (26c) the 
phase of the free-propagating component 

~b2o~ = ~2o~ 1</<=2 + Ar (33) 

where ~)2~o(61 = 262)= (re/2)sgn(6,- 82 ) -  xfl2qz is a linear function of the 
distance from the surface. The phase ~b2o~ (61 = 262) of the free-propagating 
mode varies significantly only at distances on the order of the diffusion 
length/~q. All the effects caused by the interference of free and forced waves 
are contained in the remainder of Eq. (33), which depends on (Aq)z: 

7~ 7~ a e  (zlq)z A~2(o=-~--ssgn(1 - cos[(Aq)z]) 

( ae -(~q)~ sin[(Aq)z] 
+tan  l \ l _ a  e (zfq)Z cos[(Aq)z] j (34) 
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with 

1 (61--202) (35) 
a -  f~ (61-62) 

According to Eq. (34) in the quasi-critical regimes (0 < 61/62 + xf2 ~ 1), 
significant phase shifts of the order of 1t/2 take place just beneath the 
surface. This follows from the observation that, for these values of 
the parameter 61/62, the argument of the tan -1 in Eq. (34) may be 
represented in the form [(z/zr - 1 ] -1 ~ +oo as z ~ z~ + 0, where 

, /5-1 (01/62 +,/5) 
(qz)~ ~- ~ 1 + x/2 ~ 1 (36) 

Note that (qz)o ~ (qZ)min. So the proposed analytical description predicts 
steep phase variations at distances much shorter than the thermal wave 
penetration length in nonlinear materials. 

All the above-mentioned peculiarities of the A2o~ and ~b2o~ spatial 
distribution are confirmed by the normalized plots of the amplitude 
A2o,(qz) and the additional phase shift &b2o~(qz), presented in Figs. 1-3 for 
various values of the parameter 01/0z. 

In Fig. la, curve 1 represents the spatial distribution of a second 
harmonic amplitude typical of simple metals. For simple metals 31/62 = --1 
over wide temperature ranges. For example, 01/02 = -1 in A1 for 0 ~< T~< 
500~ in Zn for -50~ T~<350~ in Cu for 0~< T~< 103~ etc. [6]. 
One can readily see that there exists a local temperature minimum very 
close to the surface (Zmi,--~ 5 x lO-2#q.~klq), while the absolute 2co-tem- 
perature maximum occurs much deeper into the bulk (Zmax ~-0.6,Uq,-~ I%). 
Correspondingly, curve 1 in Fig. lb presents evidence of significant changes 
of the 2co-temperature field phase in simple metals just beneath the 
irradiated surface. 

Curve 2 in Fig. la represents the A2~ distribution for materials with 
dominant nonlinearity associated with the temperature dependence of the 
thermal conductivity ([621 >~> 1611 ). This situation is rather typical of semi- 
conductors [8]. The amplitude decreases by a factor of two within a 
distance ~0.2/[/q from the surface, that is, even faster than the amplitude 
of the forced wave. This feature is shown upon comparison of curves 2 and 
3 in Fig. la, the latter one representing the purely forced wave (0t/02 = 1). 
Therefore, in this special case, typical of semiconductors, one can expect 
even better spatial resolution of a nonlinear photothermal microscope than 
that predicted by the earlier theory [4]. This conclusion is further sup- 
ported by steeper phase variations in the case 161/021 ~ 1 than in the forced 
wave (01/02 = 1) as can be seen by comparison of the curves 2 and 3 in 
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1.0 (a) 

o,~ ) ~  

"~ 0"6 t ) i  0.4 

0.2 (I 

OOJ (3) 

0.0 0.2 0,4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2,0 

(b) 

~ ( 1 )  
(s) 
(4) 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 IA 1.6 1.8 2.0 
qz 

Fig. 1. Spatial distribution of (a) the normalized 
amplitude A tzW~max and (b) the phase shift of 
the forced propagating mode, A~b2o,, in Eq. (23), 
for the following values of the dimensionless non- 
linear parameter [ (1/C)( OC/OT) ]/[ (1/K)( 3K/OT) ] =- 
6 j 6 2 = - 1  (curve1), 0 (curve 2), 1 (curve 3), 
2 (curve 4), and __+ ~ (curve 5). 

Fig. lb. Another remarkable feature of curve 2, Fig. la, is the existence of 
a characteristic temperature plateau in the subsurface region 0.4 ~q~  
z~<0.8 #q. 

Curves 4 in Figs. la and b represent the amplitude and phase in the 
free-propagating 2co-wave. Finally, curves 5 are characteristic of materials 
dominated by the nonlinearity associated with the temperature dependence 
of the heat capacity (161] >> 162[). In this situation the characteristic spatial 
scale is of the order of the fundamental frequency penetration length. The 
2o>temperature field decays to its 50% level only at distances Z~pq 
(Fig. la, curve 5). The phase is also nearly constant at these distances, as 
the phase increase shown in Fig. lb (curve 5) is practically compensated by 
the diminution of phase in the free-propagating component, Eq. (33). The 
spatial resolution in this case is even lower than in the free propagating 
2aJ-wave; compare curves 4 and 5 in Fig. la. 
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a~ 

1.0 

0.8 

0 . 2  

0,0 

(4) 
f 

(5) 

(a) 

0.0 0.2 0.4 0.6 0.8 1.13 1,2 }.4 1.6 1.8 2,0 
qz 

t (5) 

0.0 9,2 0.4 0 6  0.8 ~..0 1.2 1 4  1.6 1.8 2.0 
qz 

Fig. 2. Same as in Figs. la and lb but for ,:51/62= -~/-2 (curve 1), -~ f2+0 .2  (curve 2), - 1  
(curve 3), -0.3 (curve 4), and 0 (curve 5). For these values of the nonlinear parameters there 
exists a local temperature minimum under the surface, in addition to the one at z --* oo. 

Considering the curves 2 and 5, both amplitude and phase, one can 
predict higher spatial resolution of nonlinear photothermal imaging in 
materials with I(1/k)(ak/0T)] >> I(1/C)(~C/0T)I. The physical explanation 
for this phenomenon comes from the analysis of the nonlinear sources in 
Eq. (12). In agreement with that equation, the C =  C(T) dependence always 
induces 2co-generation under modulated laser heating of the material. The 
primary reason is, indeed, the qualitative relation T2to "~ T~ ,  which 
efficiently increases spatial temperature gradients. At the same time, the 
k = k(T) dependence "generates" a second harmonic only in the regions of 
the spatial gradients of the fundamental temperature field. This is the physi- 
cal basis of this additional reason for which, in the 2og-temperature field, 
the relative spatial gradients are higher than in the fundamental field. This 
provides additionally enhanced spatial resolution and may be achnieved 
only if I(1/k)(Ok/~T)l >> I(1/C)(aC/~T)I, as shown in Fig. 1. To be precise, 
we point out here that the spatial distribution represented by curve 2, 
Fig. la, is the result of the interference of the 2~o-thermal waves excited in 
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1.0 (a) 

~ t 

a~ 

< ~ 0,4 

0.2 

0.0 
0.0 012 014 016 018 liO 112 I14 116 l'.S 2.0 

qz 

-7 

0 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
qz 

Fig. 3. Same as Figs. la and lb but for 61/62 = -x/2 (curve 1), - 4  (curve 2), - 10 (curve 3), 
and _+ co (curve 4). For these values of the nonlinear parameters the local 2m-temperature 
minimum is localized at the irradiated surface, while the absolute temperature maximum 
occurs in the bulk of the material 

the bulk and at the surface of the material. Thus it is important  for the 
enhanced spatial resolution that the k(T) dependence contribute both to 
the bulk and to the surface sources, while C(T) contribute only to the bulk. 

Figure 2 presents some cases of A2~ and A~2co spatial distributions for 
- N / 2 ~  ~1/~2~0, when there exists a local temperature minimum in the 
2co-temperature field under the surface, in addition to the one at z---} o0. 
Curve 1 describes the critical regime 61/62=-w/2 in which the 2o9- 
temperature field vanishes at the surface of the sample. The maximum 
temperature in this case is attained at z ~-0.6/gq (Fig. 2a, curve 1). The 
phase depends essentially linearly on distance: 

3~b2~(61=-x,/262)~--~+ 1 -  qz for qz<l (37) 

see Fig. 2b, curve 1. 
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Curves 1-4 in Fig. 2a demonstrate that the position of the temperature 
maximum beneath the surface does not vary considerably with deviation 
from the critical regime, i.e., with increasing 61/62. However, for 
61/~2~>-0.5, this maximum becomes only local (i.e., not absolute), 
whereas the absolute maximum of the 2c~-temperature profile occurs at the 
irradiated surface (curve 4). The local temperature maximum inside the 
material disappears only for [61/621 ~ 1, Fig. 2a, curve 5. Curves 2-5 in 
Fig. 2b give evidence of the smoothing of the 2co-phase spatial gradients 
with deviation from the critical regime. Figure 3 presents some cases of the 
A2~o and A~bz~o spatial distributions for ~1/~2 ~ - - ~ .  Curves 1-3 in Fig. 3a 
illustrate our theoretical predictions on the position of the absolute maxi- 
mum of the second harmonic thermal-wave field profile beneath the surface 
in these regimes. In agreement with Fig. 3a, the position of the maximum 
approaches the surface when 61/62 decreases. In the limit ~1/62 ~ -o% the 
curve maximum intersects the material surface~?ig. 3a, curve4). An 
important general feature of the regime 61/~2 ~< - x / 2  is the position of the 
local 2m-temperature minimum on the surface of the material. Curves 2-4 
in Fig. 3b ilustrate the smoothing of the phase spatial gradients with 
deviation from the critical combination of the parameters 61 and 62. 

4. CRITIQUE OF THE STEPWISE APPROXIMATION METHOD 

In this section we point out that the limits of validity of the obtained 
1-D solutions Eqs. (18) and (26) are broader than the restriction indicated 
by inequalities (6). Experimentally, obtaining the 1-D response of the 
fundamental frequency thermal wave implies that the characteristic dimen- 
sion ro of the laser spot at the irradiated surface is much larger than the 
thermal wave penetration length, r0 >> #q. This leads to the requirement 
that spatial variations of the quasi-stationary (dc) temperature field T01 
also take place at distances of the order of r0 >> #q in all directions. Conse- 
quently, the description of the fundamental and second harmonic thermal 
wave fields, Eqs. (10) and (12), respectively, as waves propagating in 
spatially homogeneous media is always valid under the 1-D approximation. 
The following consideration, however, must be taken into account: if T01 
does not satisfy the condition (6), then (a) the characteristic averaged tem- 
perature in the irradiated region should be found from the solution of the 
nonlinearized but stationary Eq. (1), with time-averaged sources Q(r, t ) - ,  
(Q(r, t ))  = Qo(r), and (b) the values C(To) and k(To) of heat capacity and 
thermal conductivity, respectively, used in calculating the averaged field 
To1 = (T1),  Eq. (9), should be replaced in Eqs. (5), (7), and (10) and 
subsequent equations by the laser-heating-enhanced values C(T) and k(T) 
in Eqs. (4) in calculations of the new increased averaged temperature field 
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(T) .  As a result, only the amplitude of the thermal wave at the fundamen- 
tal frequency controls the limits of validity of the stepwise successive 
approximation method in the 1-D geometry. This is achieved through 
inequalities (6) with the values of 61 and 62 corrected, in agreement with 
the possible shift of the average temperature. Note that the dependence of 
the characteristic values of k and C on the new average temperature in the 
solutions Eqs. (18) and (26) induces an additional dependence of the 
second harmonic field, as well as the fundamental frequency temperature 
field, on laser intensity. 

5. CONCLUSIONS 

In developing the theoretical foundations of nonlinear photothermal 
imaging, we have proposed a mathematical formalism to describe second 
harmonic thermal-wave excitation, caused by the dependence of the 
material thermal conductivity and heat capacity on temperature. We have 
applied the stepwise successive approximation method for the evaluation of 
the spatial distribution of the second harmonic temperature field, generated 
by modulated laser action on the surface of a semiinfinite material. The 
analysis of the results obtained reveals the crucial dependence of the 
2co-thermal-wave spatial behavior on the value of the nonlinear parameter 
6j./~2= [(1/C)(OC/OT)]/[(1/k)(Ok/t3T)], which characterizes the relative 
role of the dependences of heat capacity C = C(T) and thermal conduc- 
tivity k = k(T) on the 2o~-temperature field generation process. 

It has been demonstrated that for some values of the parameter 61/62 
the shape of the 2co-thermal-wave amplitude spatial distribution may be 
rather unusual. In particular, the absolute temperature maximum may be 
localized beneath the irradiated surface or there may exist a local 
temperature minimum besides the one at infinity. In other words, the 
distribution of the second harmonic amplitude may be nonmonotonic in 
space. The trends of the variations of the T2~ field with the parameter fil/62 
in the entire region - ~  <61/6z< ~ are described in Figs. 1-3. The 
present work describes phenomena for which there already exists some 
preliminary experimental evidence El-3]. It is hoped that more of the 
predicted nonlinear features may be detected with some of the already 
existing experimental schemes, e.g., by the "mirage" effect in transparent 
materials [9]. 

In practice, the most important among our theoretical results is the 
prediction of the enhanced spatial resolution of nonlinear photothermal 
imaging in materials with I(1/k)(~k/t3T)l >> I(1/C)(~3C/t3T)I, particularly in 
semiconductors. The physical origin of this effect is related to the fact that 
any nonlinearity associated with the dependence of the thermal conduc- 
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tivity on temperature k = k(T)  acts only in the regions of  temperature field 
gradients, both  in the bulk and on the surface of the material. To confirm 
the experimental feasibility of our  prediction of enhanced spatial resolution 
of nonl inear  pho to thermal  depth profiling, it will be necessary to derive the 
dependence of the 2~- tempera ture  field on the fundamental  modula t ion  
frequency in spatially inhomogeneous  media (for example, in a thin film on 
a substrate of a different material). Such an investigation of  the second 
harmonic  of the thermal-wave excitation in the simplest layered structures 
is now in progress. The final results will appear  in a for thcoming publi- 
cation. 
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