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Abstract A theoretical model for evaluating solid multilayered spherical solids
heated by a frequency-modulated light beam using the Green function method is
presented. The specific thermal-wave Green function corresponding to the composite
structure has been derived. The characteristics of the thermal-wave field with respect to
the thermophysical, geometrical, and measurement parameters are presented. Unlike
the quadrupole method, the Green function method is capable of evaluating thermal-
wave fields at any point of multilayered structures with arbitrary intensity distributions
of the incident laser beams. This study establishes applications of thermal-wave fields
in both cylindrical and spherical samples using the Green function method and is of
importance in characterizing radially inhomogeneous spherical solids.
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1 Introduction

Since their emergence in the 1970s, photothermal techniques have become very power-
ful tools for the thermophysical characterization and nondestructive evaluation (NDE)
of a wide variety of materials [ 1-5] because of their nondestructive and highly sensitive
nature. For decades, research in photothermal techniques has been restricted to sam-
ples with flat surfaces. Specifically, with the increasing applications of photothermal
radiometry (PTR) to the characterization of materials with curved surfaces, studies on
nonflat (e.g., cylindrical or spherical) solids [6—13] have been reported in recent years.
In this study, we present a generalized theoretical model of a multilayered spherical
structure using the Green function method. An analytical expression for the thermal-
wave field in such a multilayered spherical solid is given, and the characteristics of the
thermal-wave field with respect to the thermophysical, geometrical, and measurable
parameters of the spherical solid are discussed.

2 Theory

The thermal-wave field of a multilayered spherical solid sample with an outer radius
ry =bandinnerradii ry_1,rN_2,...,r1,(b=ry >rNy_1 > rNy_2> -+ >r|=a)
can be derived by means of the Green function method. The geometry and coordi-
nates of the boundary-value problem are shown in Fig. 1. The thermal conductivity
and thermal diffusivity of regions 1, 2,...,N are denoted by (k1, 1), (k2, &2),..., and
(kn, an), respectively. The harmonic thermal-wave equation for the material under
investigation in region N can be written as
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Fig. 1 Geometry and coordinates of a multilayered spherical sample
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where oy () = (iw/ay)/? = (14i)/w/2ay is the complex thermal wavenumber,
o is the angular modulation frequency of the laser beam, and Q (7, w) is the volume
thermal source at coordinates ¥ = (7, 8, ¢) inside the material. Based on the Green
function method, and considering no volume source (Q(7, w) = 0) and no incident
flux at the inner surface r = ry_1 (Fy—1 (75, w) = 0), the general solution for Eq. 1
can be expressed as [14]

T, w) = z—:j{ PGS, 0)GN FFS, w)dS, )
Sn

where dSp is the surface element and 7] stands for a surface tracing coordinate. The
homogeneous boundary conditions for the appropriate Green function and inhomo-
geneous boundary conditions for the temperature field, respectively, can be written as

ki - VG(N)(7‘70,w) rery = hy1 G [Fo, ) [rry, (3a)
kyii - VG (7 |7, @) |r—p = 0 (3b)

_kNﬁ . VT(F |;:Oa C()) |r=rN_1 = FN*](I_/’O’ C()) - hN*lT(F |707 Cl)) |r:rN—| (4a)
—kni - VT (7 |Fo, @) lr=p = FN(F [F0, ®) lr=p (4b)

where hy_; (W-m~2. K1) is the heat transfer coefficient at the inner surface Sy_1,
and Fy_; and Fy are the heat fluxes (W - m~2) imposed on the inner and outer sur-
faces, respectively. After some algebraic calculations, the appropriate Green function
to be used in Eq. 2 can be derived and written in the form,

G (Flro; ) =

oN i N;(0) Ny (60)

dray 5 Yi(rn) — Xi(ry-1)]
[ni(enro) — Yi(rn) jitenro)] [ni(enr) — X (rv—1) jilkenr)],
(rv—1 <r <o)

[ni(kenro) — Xi(ry — D) jilknro)l [ni(knr) — Yi(ry) j(enr)],
(ro <r =ryn)

(5)
where
[n)(knrn—1) — my—_1nj(knry—1)] nyj(KNTN)
Xi(rno1) = —4 . . Ny =-—= ()
Ljj(knry—1) —mn—1jilknry—1)] JienrN)
. [/ (kn—1rn—1) + nj(kKn—1PN—1)Y(N—1)...321]
N71 = . b
By, (n—ljilkn—1rny—1) +ni(ky—1rN—1)V(N=1)..321]
and By (v—1) = kn/kn—1 @)
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kj = io0; = —( —1),/w/2a;,(j = 1,2,...,N) are thermal wavenumbers.
s (N—1 (N—1) . .
VIN=1).321 = t%}v_l) sty U, and 1)) are elements of a matrix representing the

11
recursive relation of thermal properties from layer 1 to layer N, which is similar to
that in the N-layer cylindrical case [10]. N; (8) = ,/ZITHPI (cos ), Pi(cosh) is a

Legendre polynomial. j;(z), j/(z) and nj(z), nj(z) are spherical Bessel functions of
the first- and second-order kind /, of a complex argument and their derivatives, respec-
tively. In our case, the incident flux prescribed at the outer surface can be written as

$Focosf, 0<0 <y, 0<g <2r

0, vy <O <m 0<¢<2m. ®)

Fn(rn,0, 9, 0) = [

After the integration of Eq. 2, the final thermal-wave field is

TG = 10 [[no(xm—Xo(rN_l)jo(KNr)] sin”
' dky | joenrm)[Yo(ry) — Xo(ry—]1 2
[ni(enr) — Xi(ry—1) j1(knr)]

Jikenrn)[Y1(ry) — X1(ry-1)]

o]

Z [ni(enr) — Xi(rv—1) ji(knr)]
Jienrn)Yi(ry) — Xi(ry-1)]

cosf (1 — cos’ W)

1=2
2l 4 1) sin ¢

——————-Pi(cosO)[siny P, + p/ 9
I—Di+2) 1(cos O)[sin ¥ Py(cos ) + cos i I(COSW)]} ©))
where Py, P/"denote Legendre polynomials and associated Legendre polynomials,
respectively.

3 Numerical Simulations

In all simulations, the amplitude and phase of the surface thermal-wave field are nor-
malized to the corresponding amplitude and phase of a homogeneous flat surface of
the same thermophysical properties with semi-infinite thickness (AISI 1018 steel).
The thermophysical parameters of AISI 1018 steel are k = 51.9 W . m~! . K71,
a=13.57 x 107%m? - s~ [15].

We assume that the radial depth profile of the thermal conductivity of an inhomo-
geneous sphere varies continuously along the radial direction [16]:

1+ Ae27\? 1— Jk/k
k(r) = ko tae ® , withA:—/O, (10)
1+ A k[ ko —e=QLo

where ko and k' represent the thermal conductivity of the outermost layer and inner-
most layer, respectively, Ly is the thickness of the inhomogeneous surface layer, and
exponent Q represents the thermal gradient. Figure 2a shows the assumed thermal-
conductivity profiles of two inhomogeneous spherical solids. Figure 2b1, b2 shows
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Fig. 2 (a) Assumed thermal-conductivity depth profiles of two inhomogeneous solid spheres with differ-
ent thermal gradients, Q (mm™1); (b1, b2) thermal-wave responses of two inhomogeneous spheres and
comparison with results obtained with the quadrupole method; (c1, c2) normalized amplitude and phase
at different azimuthal angles, 6; and (d1, d2) the normalized amplitude and phase of spherical solids with
various diameters at 6 = 0°

the thermal-wave responses of the two inhomogeneous spheres, diameters = 2 mm
with different Q, and the results obtained by the quadrupole method (line) [11] are
shown for comparison. Different depth profiles with different Q factors imply differ-
ent effective thicknesses of the inhomogeneous layer, which result in different peak
or valley positions in both amplitude and phase channels. The point where simulated
measurements are made is at 8 = 0°.
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As shown in Eq. 8, the thermal-wave field is also a sensitive function of the geomet-
rical and measurement parameters. Figures 2c1, ¢2 shows the normalized amplitude
and phase of a spherical solid (diameter = 2 mm) at different azimuthal angles 6.
Figure 2d1, d2 shows the normalized amplitude and phase of spherical solids with
different diameters (D) at & = 0°. In the simulation, the depth profile of the thermal
conductivity in Fig. 2a is used, with Q = 2000 mm~!. From Fig. 2c1, c2 it is seen that
under the same illumination and same geometrical diameter, the thermal-wave field is
very sensitive to the measurement angle 6, which suggests that precise alignment is
required for quantitative experiments. In Fig. 2d1, d2 it is seen that the thermal-wave
signal is more sensitive to frequencies in the middle or low ranges when the diameter
of the solid decreases.

4 Conclusions

We have developed a theoretical thermal-wave model that is suitable for character-
izing multilayered spherical solids using a laser beam with arbitrary intensity spatial
profile. Based on the Green function method, the thermal-wave field from a mul-
tilayered spherical solid was obtained. The thermal-wave dependencies on various
thermophysical and geometrical parameters were investigated. With the advantages
of the Green-function method regarding arbitrariness of the photothermal source spa-
tial profile and its ability to handle both homogeneous and inhomogeneous boundary
conditions, this model offers a general analytical tool for characterizing spherical
solids with photothermal techniques.
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