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Abstract Equivalence of the normalized thermal-wave fields between curved and
flat surfaces under certain conditions is investigated based on theoretical models of
cylindrical, spherical, and flat solids with multilayer structures. The principle and the
physical mechanism of the elimination of the surface curvature effect from the overall
photothermal signal of the curvilinear solid are suggested. The effects of the relative
values of radii of curvature of the curvilinear solid, the thickness of the inhomogeneous
surface layer, and the measurement azimuthal angle on the validity of the equivalence
principle are discussed. Consistent experimental reconstructions of thermophysical
depth profiles of hardened cylindrical steel rods of various diameters are performed
and obtained based on both the curvilinear theory and the equivalent flat surface theory.

Keywords Curvilinear surface · Equivalence · Flat surface · Normalized
thermal-wave fields

1 Introduction

Laser-induced photothermal radiometry (PTR) is a powerful tool for the thermophys-
ical characterization of broad classes of materials [1] since the late 1980s. With the
increasing applications of PTR to materials characterization, recent studies have been
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extended to the evaluation of curvilinear samples. Mathematical models of cylindri-
cal and spherical samples have been developed using the Green function method and
the quadrupole method [2–7] for both homogeneous and multilayer structures. These
results established theoretical bases for characterizing cylindrical and spherical solids,
if all the geometrical and measurement parameters are precisely known. Recently, Liu
et al. [8,9] reported that the effect of the radius of curvature of cylindrical solids
can be eliminated or suppressed using a similarity normalization (SN) method. The
mechanism was explained using a simplified two-layer theoretical model or quadruple
method [4]. In this article, we present an investigation (both spherical and cylindri-
cal solids) of the methodology based on multilayer models using the Green function
method.

2 Theory

A case hardened steel (with a flat, cylindrical, spherical, or other curvilinear surface)
may be a typical inhomogeneous structure with an outer hardened layer in which
the radial thermophysical property (e.g., thermal conductivity and/or hardness) varies
continuously down to a homogeneous unhardened inner layer. To characterize these
types of solids, multilayer theoretical models must be developed and employed for
each type of curvature. Figure 1 shows the geometries and the coordinates of multilayer
cylindrical (Fig. 1a), spherical (Fig. 1b), and flat (Fig. 1c) structures. All three types
of solids are assumed to consist of N layers. The thermophysical properties of the i th
layer are labelled (ki , αi ), where ki and αi are the thermal conductivity and thermal
diffusivity, respectively. The curvilinear solids are illuminated with a uniform light
beam impinging on part of their surface subtending a sector of angle θ0 for a cylinder
and 2Ψ for a sphere (shown in Fig. 1a and b). The incident beam is intensity modulated
at frequency f . The thermal-wave fields of a multilayered cylindrical and spherical
solid sample with outer radius rN and inner radii rN−1, rN−2, . . . , r1(b = rN >

rN−1 > rN−2 > · · · > r1 = a) can be derived by the Green’s function method. For
cylindrical and flat solids, the thermal-wave fields in the outmost region can be found
in Refs. [6] and [10], respectively. For spherical samples, the thermal-wave field is
given by [7]

T (�r , ω) = F0

4kn

{
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sin2 ψ

2
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√
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Fig. 1 Geometry and coordinates of multilayer (a) cylinder, (b) sphere, and (c) flat structures. All three
samples are assumed to consist of N layers each

with
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, (2)

and βN ,N−1 = kN/kN−1. jl , nl , j ′l , n′
l are the complex-argument spherical Bessel

functions of order l of the first and second kinds, and their derivative, respectively.
Pl(cos θ) is a Legendre polynomial.

3 Numerical Calculation

We first assume a mathematical description of the inhomogeneous thermal conductiv-
ity/diffusivity depth profile in which the thermal parameter is a monotonic function
of depth, r , and saturates at a pre-determined depth to conform with the unhardened
bulk of the sample [9,10]:

k(r) = k0

(
1 +Δe−Qr

1 +Δ

)2

, with Δ = 1 − √
k′/k0√

k′/k0 − e−QL0
, (3)
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Fig. 2 (a) Amplitude and phase of thermal-wave field of the flat, cylindrical, and spherical solids with
various radii of curvature. Inset Thermal-conductivity depth profile of the common inhomogeneous surface
layer. (b) Normalized amplitude and phase of thermal-wave fields of cylindrical and spherical samples with
different radii of curvature and that of the corresponding flat sample. (c) Experimental results of cylindrical
rods with diameters of 4 mm, 10 mm, 16 mm, and the flat sample. (d) Comparison of the recovered thermal-
conductivity depth profile based on the cylindrical theoretical model (upper) and the flat theoretical model
(lower)

where k0 and k′ represent the thermal conductivity of the outermost and innermost
layers, respectively, L0 is the total thickness of the inhomogeneous surface layer (i.e.,
rN − r1), and the exponent Q represents the thermal gradient coefficient (mm−1).
Figure 2a shows the radius-of-curvature effect for various cylindrical and spherical
samples on the thermal-wave signal frequency dependence and the comparison with
that from the flat solid, where all the solids are assumed to have the same thermal-
conductivity depth profile (shown in the inset). The depth profile was assumed with
values k0 = 36.05 W · m−1 · K−1, α0 = 9.43 × 10−6 m2 · s−1 at the surface, and
k′ = 51.9 W · m−1 · K−1, α′ = 13.57 × 10−6 m2 · s−1 at depth L0 (AISI1018 steel is
assumed [11]). The thickness of the inhomogeneous layer L0 is assumed to be 1 mm.
The exponent Q is 4500 mm−1. In Fig. 2a, the amplitudes and phases are normalized
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by those of a semi-infinite flat homogeneous AISI1018 steel sample [12]. Cylinders
and spheres with diameters D = 10 mm, 20 mm, 30 mm, and 40 mm and the cor-
responding inhomogeneous flat solids were investigated. The azimuthal angle ϕ was
fixed at 90◦ and 0◦ for cylinders and spheres, respectively, Fig. 1. The incident beam
subtends an angle of 180◦. Figure 2a clearly shows the sensitivity of the thermal-wave
signals on the radii of curvature of the solids. Figure 2b shows the results of curvature
elimination based on the homogeneous and multilayer cylindrical and spherical mod-
els. Parameters (depth profile of thermal conductivity, radius of curvature, azimuthal
angle) of the sample were exactly the same as those in Fig. 2a. The normalization was
performed using a multilayered solid (cylinder or sphere) normalization with respect
to the corresponding homogeneous counterparts with the same outer diameter. The
thermophysical parameters of these homogeneous solids as well as those of the central
region of the inhomogeneous solids were assumed to be unhardened AISI1018 steel.
It is seen in Fig. 2b that the normalized amplitudes of solids with different diameters,
including the flat solid, essentially coincide in the entire frequency range, which indi-
cates that radius-of-curvature effects can be eliminated from the photothermal signal
using the aforementioned normalization process. It should be noted that a residual
memory of the curvature effect can be seen in the phase channel of Fig. 2b and c
especially for small radii of the curvature in the low frequency range of <5 Hz. The
significance of curvature elimination is that the curvilinear solid can be characterized
using the current simple techniques existing for flat solids.

Experiments were performed to demonstrate the equivalence of the normalized
thermal-wave signals between the flat surface and the curvilinear surfaces. Two sets of
cylindrical AISI 1020 steel samples were machined with diameters of 4 mm, 10 mm,
and 16 mm. One set of samples underwent a case hardening (carburizing) process
as a batch, to ensure the same case depth profile, while the other set of samples
was kept unhardened (reference). The thermophysical properties of AISI 1020 steel
used in the depth profile reconstructions were: k′ = 50.63 W · m−1 · K−1, α′ =
13.77 × 10−6 m2 · s−1. The experimental measurements were performed at the north-
pole point of the curved surface of the cylindrical rods, i.e., 90◦ azimuthal angle
was adopted. The PTR signal of flat solids was obtained by measuring the bottom
(flat) surface of a 16 mm diameter cylindrical sample. It is seen from Fig. 2c that
normalized amplitudes and phases obtained from curvilinear samples with various
diameters overlap with the corresponding flat solid, albeit with some discrepancies at
the low frequency range, especially for small diameters.

The experimental data were fitted using two different theoretical models and the
reconstructed depth profiles of the thermal conductivity are shown in Fig. 2d. The
detailed best-fit parameters are: L0 = 0.95 mm, 0.98 mm, 1.02 mm, and 1.08 mm; Q =
4805 mm−1, 3475 mm−1, 3666 mm−1, and 3975 mm−1; and k1 = 15.6 W · m−1 ·
K−1, 15.9 W ·m−1 ·K−1, 15.8 W·m−1 ·K−1, and 15.3 W·m−1 ·K−1 for cylinders with
diameters of 4 mm, 10 mm, 16 mm, and flat sample, respectively, using the rectilinear
model, and L0 = 1.05 mm, 1.15 mm, and 1.07 mm, Q = 3100 mm−1, 3160 mm−1,
and 3580 mm−1 using the cylindrical model for cylinders with diameters of 4 mm,
10 mm, and 16 mm, respectively. It is seen that the reconstructed depth profiles of the
thermal conductivity with various diameters all approximately coincide with that of the
flat solid no matter which theoretical model is used for reconstruction. This is consistent
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with the theoretical demonstration and indicates that a curvilinear cylindrical depth
profile can be characterized using the algorithm for a flat solid.

4 Conclusions

In summary, we have demonstrated that curvilinear solids can be characterized using
a rectilinear theoretical model for flat solids on the basis of the SN. This is significant
in that it enables the application of photothermal depth profilometric techniques, and
PTR in particular, to inhomogeneous solids of cylindrical and spherical geometry.
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