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Abstract In this study, a theoretical model is established for a wedge-like solid with
an open sector surrounded by walls of radius R of a cylindrical rod illuminated by a
modulated circular Gaussian incident beam by means of the Green’s function method
in cylindrical coordinates. An analytical expression for the thermal-wave field in such
a sample is presented. The theory is validated by reducing the arbitrary geometrical
structure of the wedge to simpler geometries. It is shown that the frequency dependence
of the thermal-wave field near the edge exhibits a large phase lag compared with that
at a location far from the edge. The theory provides a foundation for quantitatively
characterizing wedge-shaped industrial samples, such as metals with sintered edges,
using photothermal methods in a non-contact and non-destructive manner.
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1 Introduction

Laser-induced photothermal radiometry (PTR) has become a powerful tool for the ther-
mophysical characterization and non-destructive evaluation (NDE) of broad classes
of materials due to its non-destructive and highly sensitive nature. With increasing
applications of PTR to the characterization of materials with a curved surface, studies
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Fig. 1 Geometry and coordinates of a wedge-shaped solid

of the photothermal responses of these types of solids (e.g., cylindrical or spherical
samples) have been reported in recent years [1-8]. In this study, we establish a theoret-
ical model for a class of wedge-shaped structures with an open sector surrounded by
walls of arbitrary radius R of a cylindrical rod, and illuminated with a modulated cir-
cular Gaussian laser beam. The study is based on a generalization of the thermal-wave
Green’s function method in cylindrical coordinates. Based on the theoretical model,
the thermal-wave field of arbitrary wedge-shaped surfaces, i.e., wedges with arbitrary
opening angles between 0° and 360°, and the frequency response of any point on the
wall surfaces of the wedge can be obtained.

2 Theory

The geometry and coordinates of the considered wedge-shaped structure are shown
in Fig. 1. The Green’s function for the cylindrical sector of infinite height, radius
R, and opening angle 6, can be obtained by assuming a spatially impulsive thermal-
wave source located at (g, zo, ¢o) and homogeneous Neumann conditions along all
bounding surfaces. In cylindrical coordinates, the Green’s function satisfies [9]
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Using separation of variables with G(r, z, ¢ |7 ; w) = R(r) Z(z)®(¢), the boundary
conditions represent an insulating thermal-wave flux (homogeneous Neumann) on

the surface of the corner, located at ¢ = 0 and 6. As a result of extensive algebraic
calculations, the following Green’s function is obtained:
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where &, (w) = (Aﬁm + %")% J¢ () represents a Bessel function of the first kind
of fractional order x. Ay, is the m-th root of the Bessel function J,5 /9 (AR) which
satisfies

dJpjg(Ar)/dr |r=g =0 3)

For a laser beam incident on the surface ¢ = 0°, the thermal-wave field for an opaque
material (no volume source) such as a metal wedge is given by [9]

7o)V, T(7 ,w)]-dS,

T(F,w) = ai:'f [G(F|F @

Assuming an incident Gaussian laser beam centered at (pp, 0, 0), we can write the
boundary condition

ki - VT (r, 2,0 ) = —Fo exp { [(r —00)? + zz] /W2} (1 i ei“”) .6
where Fj is the optical flux at the surface (W - m~2). The thermal-wave field should

be the same when the detection point is very close to the corner (r — 0) with respect
to the discontinuity at the corner r = 0:

T(r,z,$; ®) |p=0.r=0 = T(r, 2, ¢; ®) |p=0.r=0 . (6)

It is further assumed that the incident laser beam does not straddle the corner at r = 0.
The final expression for the thermal-wave field is
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Fig.2 (al, a2) Thermal-wave fields (both amplitude and phase) on the surface ¢ = 0° at various distances
(r) from the edge of a & = 37/2 wedge; (bl, b2) thermal-wave fields on the surface ¢ = 0° of wedge-
shaped structures with various wedge angles 6; and (c1, c2) frequency dependence of the thermal-wave
field on the surface ¢ = 0° of a right edge (i.e., & = m/2) at various distances (r). GF Green’s function
method, MI method of images

It is seen that the thermal-wave field of a wedge under illumination by a Gaussian
light beam is a complex function of thermophysical parameters of the material as well
as geometrical factors of the solid. Detailed dependences of the thermal-wave field on
different parameters must be calculated using a numerical method.

3 Numerical Calculations

To validate the theory, we consider R to be large enough so as to ignore the influence
of the geometric discontinuity effects due to the presence of the edge (strictly true
for R — ©0). In addition, we use a uniform illumination beam (spot size W is large
compared to the thermal diffusion length). AISI 304 stainless steel is assumed to be
the material of the sample under investigation. The thermophysical parameters of AISI
304 stainless steel are k = 16.3W -m™' - K™!, & = 4.1 x 107°m? - s7![10]. The
amplitude and phase of the thermal-wave field on the ¢ = 0° surface of the wedge are
normalized to those of a flat AISI 304 stainless steel.
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Figure 2al and a2 shows the thermal-wave fields at various distances (r) from
the edge on the ¢ = 0° surface. The wedge angle is 6 = 3w /2. From this figure,
we can see that the effect of the corner on the thermal-wave field becomes stronger
as the detection point moves closer to the corner, as expected. If the detection point
is far away from the corner (i.e., r is large enough compared to the thermal diffu-
sion length), the thermal-wave field reduces to that of a semi-infinite flat sample, as
expected.

Different wedge angles will result in different thermal-wave distributions especially
near the corner discontinuity along the z- axis (r = 0 region). Figure 2b1 and b2 shows
the thermal-wave fields of structures with different wedge angles. The detection point
is located at ¢ = 0° and » = 1 mm. It is seen that when 6 = 7/2, i.e., the edge
is a right-angle vertical wall, the normalized thermal-wave field (both amplitude and
phase) coincides with that of a flat surface of a semi-infinite thickness. This result can
be validated by comparing the results with those evaluated using the method of images
[11], in which three imaging-point thermal sources are assumed to be symmetric to
the inner point thermal source along two vertical walls and the origin of the corner
to make homogeneous Neumann boundary conditions at the wall interfaces satisfied.
The overall Green’s function is a superposition of the four individual Green’s function
induced by those four point sources. Figure 2c1 and c2 shows the normalized amplitude
and phase of the thermal-wave field of the same solid with a vertical wall (6 = 7/2)
as that in Fig. 2bl and b2 based on the method of images and the comparison with
that obtained using the Green’s function method. In Fig. 2¢c1 and c2, r is the distance
from the corner to the detection point at the top surface, i.e., at surface ¢ = 0°. From
Fig. 2c1 and c2, it can be seen that both the amplitude and phase of these two theoretical
models overlap completely. This is also the case with a semi-infinite flat surface in
which the thermal-wave field has an invariable phase constant of /4. This result is
also the same as that obtained with the direct Green’s function method for solids with
a vertical edge [9].

4 Conclusions

In summary, we have developed an analytical expression for the thermal-wave field
of arbitrary wedge-shaped structures using the Green’s function method, following
the derivation of the thermal-wave Green’s function for adiabatic boundary condi-
tions in this geometry. The thermal-wave field in wedge-shaped solids with irradiat-
ing Gaussian laser beams of an arbitrary spot size was obtained. The photothermal
field model was validated theoretically by considering limiting cases of the wedge,
such as right vertical walls and flat surface structures, and also comparing the results
with well-known results from the method of images. This study offers a theoret-
ical basis for photothermal characterization of wedge-shaped solids of industrial
relevance.
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