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Abstract. A new matrix-equation-ba~ed~theoretical computation method for detection of 
subsurface defects by thermal-wave tomographic imaging is presented. The method uses the 
measured scattered temperature field to solve the Helmholtz thermal pseudowave equation, 
by solving the equivalent integral equation. Numerical results are presented and compared 
with the ray optic Cdculation. The numerical calculations of the inverse problem were 
carried out using the Born approximation, however the theoretical technique is capable of 
handling the general tomographic inverse case without recourse to the Born approximation. 

1. Introduction 

Thermal-wave imaging as a method of detecting subsurface defects has been the 
subject of intensive.study in recent years [I-81. However, most of the research 
was either purely theoretical [3,4] or  experimental which used simple methods of 
reconstruction [S-71. 

Unlike electromagnetic or acoustic tomography, thermal-wave tomography suffers 
from the facts that propagation distances of the thermal wave are short, and the wave 
number is complex, which means that the wave is strongly damped and thus the sample 
cannot be rotated [5]. Therefore the regular tomographic reconstructions [9] are not 
applicable to the thermal wave problem. 

A one-dimensional ray-optic-based reconstruction technique was described previously 
[5] ,  and was quite successful in illustrating the principle for obtaining thermal diffusiv- 
ity images of spatial cross sections perpendicular to the photothermally excited surface 
(thermal-wave slice tomograms, analogous in their definition to acoustic/ultrasonic 
tomograms as described by Kak and Slaney [9]). However, using only ray-optic 
methods has many limitations, especially in highly dispersive wave fields; such as 
thermal waves. For this reason techniques familiar from x-ray cross sectional 
tomography, such as recovery of a ZD image from an over sampled I D  
projection, cannot be applied to thermal wave tomography with satisfactory image 
contrast, resolution and low distortion. Layer, time-slice, non-multiplexing techniques 
were described by Favro et al [7]. These workerswere able to reconstruct the shape of 
the subsurface inhomogeneities, but not to accurately determine their depth, using a 
technique akin to the one based on the photothermal impulse response method [IO]. 
Some work on backscattering of thermal waves is described in~[8]. Other imaging 
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methods are described in [ I ,  21. In this paper we describe a new rigorous reconstruction 
method based on the solution of the thermal Helmholtz pseudo-wave eciuation. We 
calculate Green's function for the equation and then using the Born approximation 
we reconstruct the thermal diffusivity of the examined sample. The method is further 
capable of solving the Helmholtz equation without the assumption of the Born 
approximation. However. a t  this stage of the research we shall present the simpler 
reconstructions using the Born approximation. 

0 Pudi and A Mundelis 

2. Mathematical background 

In the case of a harmonic photothermal excitation of a region of space, the temperature 
oscillation is found to obey the Helmholtz pseudowave equation [3,4]: 

[v' + l ' ( r ) ] ~ ( r )  = o (1) 

where 

a(.) is  the^ thermal diffusivity and w is the angular frequency of the modulation of 
the laser beam intensity, typically in the 1-1000Hz range for a thermal wave 
experiment. The actual value of w in a @en experimental case depends on ' the 
depth in the material to be probed. 151 represents the inverse of the RMS depth probed 
thermally by the technique (the so-called 'thermal diffusion length'). k(r) is the 
complex thermal wavenumber. In a metal such as aluminium typical values of 
lk[ = (27rf/cy)"' are 2.7-87.5Cm-' in .the above mentioned modulation frequency 
range (a = 0.82cm2s-' [ I  I]). For thermal i,nsulators this rang? of Ikl values increases 
substantially. In all physical cases, however, thermal-wave lkl values remain much 
lower than comparable acoustic (ultrasonic) or optical wavenumber ranges. It was 
found that to be consistent  with^ the, experimental results, the thermal excitation 
should be described by the law: T =  Toei"". This sign selection of the exponent 
is important here,, in c,ontrast with yhe conventional optical excitation, where the 
sign of the exponent is irrelevant due to the use of the second derivative with respect 
to time. , ,  

Upon defining [4] 

l : [> ( r )  - 11 k E R  
{ 0  . r g ' R  

F(r )  = (3) 

the starting equation for the thermal-wave tomographic problem is the diffusion 
(Helmholtz pseudowave) equation which takes the form ~[3] 

(v' t i ; jT ( r )  = -P(rjT(rj. (4) 

In  equation (3) we defined 

u(r) [a0/c4r)]'l' ( 5 )  
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and 

eo is the diffusivity of the homogeneous (reference) region surrounding the object 
region R. The AC (therma1:wave) temperature field at angular frequency w,~i.e. the 
solution of equation (4) satisfies 'in three dimensions [SI, 

~ ( r )  = Ti(?) + S J S ~ o ( r ~ p ) ~ ( p ) ~ ( p ) d ~ p  (7) 

where T ( r )  represents the entire thermal-wave field (incident and scattered) oscillating 
a t f =  w/27r. the integration is carried over the spatial object region R. In this work we 
assume that the region R is a slice in ?D space [41. Moreover. we assume that R is 
rectangular where the thermal excitation is on one side of the region ( y  = 0), and 
the detection is on the other side ( y  = 1 = yf (figure 1)). 

If the thermal-wave field T ( x , y  = yr) is measured. and if 

T ( r )  = T;(r) + T,(r)  (8) 
then using equation (4) we obtain 

'L, !I 
T(X.Yf)  = s, Jb Go[r(~,~f~lPlP(S~rl)l~[P(S,rl)l~~(S~ll)idSdl7 (9)  

Go is the Greens function for the region R ,  with the property 

Go(r l~ )  Go(lr- PI).  .(IO) 
Relation (10) is justified if the distance between the boundary S which encloses the 
spatial region R and the thermal-wave source point p and/or the observation point r ,  
is not small compared with the magnitude of p and/or I [12]. 

The conventional techniques used in electromagnetic or acoustic tomography 
for solving integral equations of the type of equation (9) are by Fourier transform 
methods 191. Usually one obtains the one-dimensional Fourier transform of T,  for 
every position of the exciting laser, and by using the Fourier slice theorem [9] it is 
possible to obtain a map of the inhomogeneity of the object. When thermal waves 
are involved we have complex wavenumber. short paths of propagation of the 
waves leading to the extreme near field approximation [3], and the requirement for a 
generalized two-dimensional spatial Laplace transform inversion [4]. a non-trivial 
task. Furthermore the fact that the movements of the laser and the detector aperture 
are limited to straight lines make it necessary to utilize other methods for ,solving 
equation (9). The ultrasonic experimental geometry in [I31 is similar to the one 
described in figure 1. However the method described in [13] uses only real values for 
io in order to avoid inversion of Laplace transforms, a situation which is unavoidable 
with thermal waves. 

3. The computational method for the inverse problem 

The proposed technique is based on a special method ofdiscretization of equation (8). 
The edge of the sampled region ( y  = y,) is divided into YI' intervals, and in the 
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Figure 1. Geometry for synthetic aperature photothermal-wave diffraction tomography using scanning thin 
film pyroelectric detection. For each position of the laser beam waist on the line y = 0, the metal pin detector 
measures the thermal-wave field characteristics (amplitude and phase) d ~ n g  the back surface y = I line. 

we choose n2 points. The idea to use nz points in the boundary is essential for obtaining 
a square matrix. The .n" comes from the fact that the integral in equation (12) below is 
a double integral, which will be discretized in equation (14). 

Now. for 1 5 j 5 n2, equation (9) assumes the following form 
Y VI 

W A X &  = jx, lo G o [ ~ ( ~ A ~ , Y I ) ~ P ( E , ~ ) I T [ ~ ( E , ~ ) ~  dEda (12) 

We order the grid points in R, (kA[,IA9) in the following matrix order m(k, [): 

3 5 8 14 17 
4 9 13 18 . 

10 12 19 . 
11 20 . ' 
21 .~ 

of order is quite general. We ck .~ ;e the order in matrix (13) because it is I iepen- 
dent on the matrix dimension and hence is more general than ordering which is dependent on 
the dimension of the matrix. Moreover this ordering is not difficult for programming. 

Discretizing equation (12), we obtain 
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where 

pm = ~m(i.,) = ((W2. ( j W )  (15) 

and the right-hand side of equation (15) indicates the norm of a vector with grid 
components iAC and jA9  measured from the origin.  formally the left-hand side of 
equation (14) is known from the photothermal tomographic measurement [ 5 ] ,  whereas 
calculation of Green’s function for the present problem is carried out in appendix A. 
Therefore the linear system (14). can be solved for the multiplicity FT, which is the 
object function F multiplied by the temperature field T. At this stage we have the value 
of F T  in the entire region R. so now we can calculate the scattered field in the entire 
region R,  by 

Carrying out the double sum (16) for 0 5 k ,  I <  n results in obtaining the scattered 
field in the entire cross-sectional region. The use of a i f 2  x n2 matrix requires 
considerable computer resources. However, in ~ the current state of computer 
development it is not a severe restriction. For example. the solution of equation (16) 
for n = 25. which means a system of 625 equations with 625 unknowns. takes 
about an hour on a Sun4 workstation, and would take (without vectorization) 
about 300 seconds on a Convex computer. Thus using equation (8) the thermal- 
wave field is known, and it is easy now to calculate Fand to obtain the behaviour of the 
thermal diffusivity and hence the inhomogeneities of the sample. 

In this work we use only the first Born approximation [9] ,  namely, in equation (12) 
we use Ti instead of T. Ti is known (see appendix B) and we solve equation (14) directly 
for F: The Born approximation is used because it simplifies the computations, and it 
demands less time than the full solution. The present paper shows the feasibility of 
the Born method which provides satisfactory inversions in the range of our simulation 
and experimental parameters. The method of complete recovery of Tis currently under 
numerical computer implementation. 

Defining a matrix of coefficients A by 
~~ 

&a G o h  - ~ ~ ~ 1 )  (17) 

wehave the following nz x n’ system of linear equations 

A f = t  (18) 

wherej= FT and t = T,. 
The main problem with this method, from the computational point of view, is 

that the matrix GOTi is in many cases almost singular. To  overcome this problem 
we can use either the Tykhonov regularization method or we solve the system 
using SVD (singular value decomposition) [14]. In this work we mainly use the 
Tykhonov regularization [15.16], which means that we have to minimize the 
functional, 

@(:) = 11.43 - + Un(2) (19) 
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where O(z) is a positive convex functional [16]. For reasons of simplicity and ease of 
computation, we chose O(z) to be 
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(I 

where 1 1 .  [ I 2  is the usual Euclidean norm. 
Minimization of the functional 4(z)  is equivalent to minimization of: 

where bars indicate complex conjugation. 
Differentiating with respect to the components of z we find that the minimum is 

obtained as the solution of the linear system (starred quantities denote adjoint matrices) 

(d+ A*& = A*t.  (22) 

Green’s function for equation (9) is (see Appendix A), 

where Ht is the Hankel function of the second kind of order 0. 
The fact that in equation (23) we have a complex argument which has small absolute 

value (because of small thermal wavenumbers) is the main cause for,the ill-posedness of 
the linear system. In contrast, optical and acoustic tomographic systems are not 
ill-posed, due to the fact that the magnitudes of the relevant wavenumbers are large 
(several orders of magnitude larger than the thermal wave-numbers). Hi has an 
essential singularity a t  the origin causing uncontrolled behaviour of the function 
when the argument is small (< 1). This, in turn, causes the matrix of coefficients Akm to 
be ill-behaved. 

The initial field Ti, which is the solution of 

is (see appendix B) 

H f I 2  is the Hankel function of the second kind of order 1/2. 

4. Simulated tomographic inversions 

Figures 2-4 illustrate results of a theoretical simulation, where we assumed a hole 
of diameter 0.5 mm and a plane thermal wave oscillating with frequencies 10 Hz, 50 Hz, 
1000 Hz, respectively. An object function was constructed using equation (3). and 
assuming F ( r )  = 1 over the hole. We used a small grid of 8 x 8 points. We 
used equation (14) to calculate the scattered field and then solved equation (22) 
with regularization parameter U = IO-’ to reconstruct the non-dimensional object 
function (U’(.) - 1). This value of U was chosen so as to yield optimum quality 
reconstructions. A more detailed discussion of the general criteria established for the 
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Figure 2. Wave reconstruction of theoretical object Figure 3. Wave reconstruction of theoreticdl object 
function. The intensity modulation frequency of the ~ function.' The intensity modulation~frequency of the 
exiting laser is 10 Hz. exciting laser is 50 Hz. 

choice of optimal U values and of the discretization interval with respect to defect 
geometry has been presented elsewhere [17]. The value of the thermal diffusivity used 
for the material region surrounding the air gap ('hole') was a(.) = 0.9cm2s-', well 
within the range of values characteristic of aluminium [ I  I]. 

We observe excellent reconstruction for the low frequencies, figures 2-3, and 
good reconstruction for the high frequency tomography, figure 4. Note that the 
reconstruction is very good despite the small grid (which is the reason why the 
circular,nature of the-hole is not apparent), and the very wide range of assumed laser 
beam intensity modulation frequencies. 

The success of these reconstructions attests to the satisfactory performance of the 
Born, approximation. This is also expected theoretically. since the condition for the 
validity of the Born approximation (in freely propagating fields) is that the scattered 
field be smaller than the incident field [9]. This is certainly the case with the very rapidly 
spatially decaying thermal-wave field, although no formal proof of the extension of the 
validity of the above condition to the thermal-wave case has been constructed. This 
rapid spatial decay of the pseudo-propagating subsurface thermal-wave field is further 
responsible for~the absence of multiple scattering of thermal waves, especially at higher 
modulation (and spatial) frequencies, where the attenuation is stronger. This is a 
remarkable advantage of the thermal-wave tomography over other tomographies 
based on freely propagating fields and. holds the promise of high fidelity 
reconstructions from materials which are normally efficient scatterers of acoustic or- 
optical waves (e.g. composites, macromolecular and polymeric solids etc). 

5. Experimental results 

An aluminium sample the dimensions of which were 3.75min wide and 2mm thick 
was illuminated on one side with a focused laser beam at various points and a 

Figure 4. Wave reconstruction of theoretical 
object function. The intensity modulation 
frequency of the exciting laser is IOOOHz. levr IOC&?" 



IY2  0 Pudi; mid A Mrm(ldi,s 

Figure 5. ( U )  Cross section or thc cxperimental set-up. showing the lines joining two laser-pin scanning 
positions and the detection electronics. Lascr intensity chopping ireequency: I 6 H z .  ( h )  Schematic description 
of sample and ~n coordinale system. 

photopyroelectric pin detector was scanned along the other side. Details of 
the experimental set-up are shown in figure 5(a) [5].  In this experiment, the lock-in 
amplifier provides the amplitudc and phasc components of thc steady-state thermal- 
wave field T ( r , w ) .  With the present sample thickness. a Contribution from twicc- 
reflected thermal waves might be expected at . /=  16 Hr modulation, corresponding 
to one reflection a t  thc back surfacc of the sample followed by one morc reflection 
a t  the front surface. The magnitude of such an added contribution to the thermal- 
wave field generated from the first transmission at the back would be decreased by a 
factor (181 

(26) 
I - '  e ~ ? k , , l _ ~ , ~ ~ e ~ Z ~ l 1 0 7 ~ 0 . ~  ~ R - ( l + h )  - - 1.15 x 10.' 

where I is thc aluminium thickness and 
k P V D F f i  h =  
 AI G 

is an  interfacial thermal-wave reflection coefficient, with [I81 

kAl = 2.008 x IO' W m K - '  

kpvnr =0 .13WmK-I  

nAl = 8.2 x IO-'m?s-I 

nPVUt = 5.4 x ~ ~ - " m ' s - ' .  

Y , , I .  ,.. 

Figure 6. Ray optic recmstriiction or  thurmal Figure 7. Isometric c o n t ~ u r  liner o i  ihcrmal dif- 
diifusivity: hole iit the csntrc of the  sample CTOS 

section. 
I\lrivity tomogram. irom ray  opt^ rrcmstruction. 
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Figure 8. Wave tomographic reconstruction of Figure 9. Isometric contour lines of thermal 
thermai diffusivity: hole at the centre of the sample diffusivity tomogram. from wave optic recon- 
cross section. struction. 

From the small magnitude of the correction term, equation (26), it was concluded that 
such a reflected thermal-wave contribution to our tomographic reconstruction was 
essentially negligible. The sample had a machined hole in its middle with diameter 
of l m m  (figure 5(b)). Two dimensional reconstruction was carried out [5] using 
multiplexing all the laser and detector positions (figure 5(b)): The results of the ray 
optic reconstruction [5] from the transmitted thermal-wave amplitude and phase are 
presented in figure 6 (thermal diffusivity), and in figure 7 (isometric contour lines). 
The location of the hole in the x direction is good, however, the depth is somewhat 
smeared out and distorted, while the defect size  is^ underestimated. The ray optic 
reconstruction was performed using 26 detector positions fbr every one of the 26 laser 
positions. In figure 6 (and subsequently in figures 8, 10, 12 and 13), owing to the 
thinness of the sample and for clarity. a 13-point resolution is shown along the depth 
( y )  coordinate, each point corresponding to an averaging interpolation between three 
adjacent data points. 

In all the wave reconstruction results presented here we used both the amplitude and 
the phase of the scattered field. This was done by solving the linear system (22) over the 
complex field. The solution of the system, the object function, should be real, and the 
result of the computation was very nearly so (the imaginary part was less than 10% of 
the absolute value). 

Figure 8 describes the reconstruction by the current method, using only one laser 
position and 26 detector positions. We note a more accurate location of the hole in 
both directions than in figure 6, along with a much more realistic size and shape of 
the defect. In figure 9 we present the contour lines. In this experiment. and in all 
subsequent experiments in which the slice tomogram were reconstructed with the 

Figure 10. Wave reconscruction of thermal diffusiv- 
ity; hole at the edge of the sample. 

Figure 11. Isometric contiur lines  of^ thermal 
diffusivity, from wave reconstruction; hole at the 
edge of the sample. 
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Figure 12. Wave reconstruction of thermal diffusivity: 
fine computational grid, laser at 2.4" from the left 
edge. right edge. 

Figure 13. Wave reconstruclion of thermal diffusiv- 
ity; fine computational grid. laser a1 1.3mm from the 

methodology prcscntcd in this paper, the scattered field was measured on 26 points. 
Then thc data were interpolated to the desirable number of points, so that the number 
of resulting equation was the same as the number of unknowns. The interpolation 
method used was cubic splines. In figures R and 9 we also observe some edge effects 
(artifacts). Figures I O  and 11 describe similar results, only this time the hole was moved 
to the lower edge of the sample. The actual location of the hole is marked with H on 
figure I I .  Wc notc here, again, good reconstruction of the hole position in the x and 
y dircctions. Similar reconstructions using the ray optic approach rcsulted carlicr [SI 
in locating the defect, hut the defect presence was much less noticeable than in 
figures I O  and I I .  

Figure 12 is similar to figure 8 only this time we used a finer computational grid. We 
find that we have a well resolved shape contour of the edge of the hole on the side of the 
laser location. In figure 13 the laser was moved to a different location on the other side 
of thc holc, and again we see a clear, well rcsolved shape contour of the edge of the hole 
on the laser side. Therefore, it may be concluded that the use of higher resolution 
delineates accurately the actual contour of the hole on the side close to the position 
of the lascr. It can further be seen from the inspection of figures 12 and 13 that a com- 
bination of the two laser positions may be able to delineate the entire contour image of 
the subsurface wall. 

6. Conclusions 

A rigorous matrix-equation-based wave approach lo the thermal-wave slice inverse 
tomographic problem was presented, along with a combined computational~analytical 
implementation on metallic samples with well characterized sub-surface defects. Recon- 
structions of photopyroelectric thermal diffusivity tomograms showed that for a good 
quality and accurate reconstruction we need to use two or three laser locations, and 
perhaps repeat the process by reversing the detector and laser positions. These opera- 
tions are currently under investigation. 

The new mcthod yields superior reconstructions to those originally obtained by ray 
optic approximations. and is capable of solving the Helmholtz pseudowave equation 
and reconstructing the diffusivity field. 
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Appendix A. Integral-representation of the two-dimensional themal-wave Green function 

Following Mandelis [4] we find that ~ the Green function _Ear the two dimensional 
thermal-wave Helmholtz equation should be 

Using the theorem of residues [19] we obtain 

- ~ Y I  - 
dk, 

where X = - E and Y = y - 17. 
Define, k, = ko cos(@ - 4) and tan 4 = Y / X .  Then 

m Y = i o [ X c o s ( O - - )  - Ysin(B-y)] 

The path of integration to ensure convergence is along a: = 7r/2, so that 

G - - G S~”i - imexp( i~Rcos8)d@ n/2-im 

Changing variable: 0 = -iu 

a i n i / 2  
exp(&Rcosh U) du. (A.5) I 71/2-,a S -m-.i;i/Z 

n/2+icc 
exp(ioR cos 0) d@ = i 

Let ti = U + 37ri/2; then cosh U = i sinh v and 

m i- i /z  m-m 
exp(LoRcosh U) du = I 

-m-m/2 -m-2ni 
exp(i&Rsinhv)dv 

The right hand side of (A.6) follows from the fact that the hyperbolic functions are 2m 
periodic. 
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It follows from equations (A.4) and (A.6) that [20] 

Go(R) = $iH:(e'"'4koR) (A.7) 

where Hi is the Hankel function of the second kind of order 0. 

Appendix B. Solution of the homogeneous Helmholtz pseudowave equation 

In the experimental configuration of figure 1 we have a point source at the surface, 
generating thermal waves. If we assume a homogeneous medium, then the thermal 
wave propagation will be similar to a spherical wave. Let the angle 8 be defined in a 
plane perpendicular to the plane of the crossed-sectional slice in figure 1. Assuming 
symmetry in 8 ( i t .  invariability of material and scattering object geometries and 
thermophysical properties in the direction perpendicular to the slice plane), we obtain 
the equation 

(0' + i$)T(r) = o (B.1) 

In spherical coordinates, 

Assuming T(r, ~p) = u(r)v(d), we obtain the following two ordinary differential 
equations by separation of variables: 

and 
-"(sinIp$) 1 =7.  
v sin 'p dIp 

Substituting w = cos4 in equation (B.4), we obtain, 

d'v dv 
dw' dw 

(1  - w2)- - 2w-+ X(X+ I)v = 0 

where 7 = X(X + I ) .  
Equation (B.3) can be written as, 

,d'u du - r - + 2r- + (k:? - II)u = 0. drz dr 
Substituting in equation (B.5) z = i&r and u(r) = r-'"w(z), we obtain, 

d'w dw 
d 9  dz 2- + z- + [2 + (7 - a ) ]  = 0 

Equation (B.5) is a Legendre equation [20], and equation (B.7) is a Bessel equation [19]. 
Choosing X ~= 0 in equation (B.4) results in v 1, and from equation (B.7) we conclude 
that W ( Z )  must be a Bessel function of order IJ = f. The Bessel function whose behaviour 
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is O ( l / r )  for both small and large values of r and is most suitable for experimental 
results was found to be 

w(z) = H&(z )  P.8) 

and hence we can write 

T(r,tp) = T(r)  = ~ $ ( & r ) / &  (B.9) 

where H:,2 is the Hankel function of the second kind of order 4. 
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