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Abstract. Thermal-wave slice diffraction tomography (TSDT) is a photothermal imaging
technique for non-destructive evaluation (NDE), leading to the detection of subsurface cross
sectional defects in opaque solids in the very-near-surface region (µm–mm). An exact,
Green’s-function based mathematical model that represents the behaviour of a three-dimensional
thermal wave is developed and correlated with a numerical reconstruction technique. The
computational technique utilizes the well known Tikhonov regularization method to invert
almost singular matrices resulting from the ill-posedness of the inverse thermal-wave problem
for the reconstruction of thermal diffusivity cross sectional images in materials. Numerical
calculations of the inverse problem are carried out using the Born approximation and simulated
reconstructions in back scattering and transmission are presented.

1. Introduction

Thermal-wave slice diffraction tomography (TSDT) is a photothermal imaging technique
for non-destructive evaluation (NDE), leading to the detection of subsurface cross sectional
defects in opaque solids in the very-near-surface region (µm–mm). Thermal-wave
tomography refers to cross sectional imaging of the thermal diffusivity of an object upon
reconstruction from its projections from different directions. This calls for an inversion
technique which can reconstruct the defect from experimental thermal-wave cross sectional
data.

Images obtained from conventional thermal-wave imaging are two-dimensional
‘projections’ of subsurface features. These images are projections in the sense that the
image is formed by mapping the sample surface temperature in a two-dimensional raster
without regard to the actual depth position of scatterers. Although work has been done
in obtaining depth information on subsurface features [1, 2] and depth profiling of layered
samples, using equivalent experimental techniques, no work has been reported until recently
in obtaining tomographic images using thermal waves. A photothermal method based on
the mirage effect was utilized to obtain depth information on the presence of defects by
means of a tomographic-like procedure [3] but due to the line-integral nature of the probe
beam, this technique cannot yield proper tomographic inversions.

The first rigorous implementation of TSDT, which detected scan data by
photopyroelectric detection [4], followed a reconstruction algorithm based on the ray-
like propagation of thermal waves [5, 6]. The limitations of this method suggested a
consideration of a diffractive propagation approach for thermal waves. A high-fidelity
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tomographic imaging, ray-based, reconstruction method for photopyroelectric thermal
detection was later demonstrated by Yaraiet al [7]. To overcome the limitations of a
ray-optic tomographic reconstruction and to account for the highly dispersive and spatially
damped nature of pseudopropagating thermal waves, a method was further developed by
Pad́e and Mandelis [8, 9]. The imaged quantity was the cross sectional thermal diffusivity.
The method was successful in developing a mathematical process to deal with the ill-
conditioning of thermal waves, by the Tikhonov regularization method, but it addressed
the physical behaviour of thermal waves only approximately. The technique approximated
the wave field with a two-dimensional Green’s function on the slice cross section. This
resulted in adequate reconstructions, in specific cases, in cross sections away from the
incident laser-source range, where a strong singularity was pronounced. This behaviour is
typical of two-dimensional propagating wavefields, and is shared by the pseudopropagating
thermal-wave problem. In order to avoid the strong two-dimensional singularity at the
origin, a three-dimensional formulation of the problem is needed, with Green’s function to
be described over a cross sectional area normal to the surface and at fixed lateral coordinate.

Unlike electromagnetic or acoustic tomography, thermal-wave tomography suffers from
the following relative setbacks: (a) propagation distances of the thermal wave are short,
(b) the thermal wavevector is complex, lying along the 45◦ line in the complex plane
[10], (c) the sample cannot be rotated in most practical situations [5]. Therefore, the
conventional reconstruction used in well-posed propagating wavefield tomographies [11]
cannot be applied in the case of the thermal-wave problem. A rigorous mathematical model
that represents the behaviour of three-dimensional thermal waves, rather than the earlier
approximate models [5–9], is developed and correlated with a numerical reconstruction
technique. This paper is focused on the new application of a recently developed theoretical
expression of Green’s function for the three-dimensional Helmholtz pseudowave equation
[12] to the solution of the incident harmonic temperature field; and its computational
implementation and correlation with the well known Tikhonov regularization method to
solve the discrete thermal-wave ill-posed problem. The work is in two parts: (a) a theoretical
model that describes the behaviour of thermal waves in three-dimensional space (forward
process), (b) a numerical technique that will produce a tomogram from simulated data
(inverse process).

2. Forward process: thermal-wave diffraction theory

The physical geometry of the problem is shown in figure 1 where two possible embodiments
of the thermal-wave slice tomographic configuration include a focused laser-beam source
scanned along the spatial coordinate(x, 0) and a thermal-wave detector on the laser side
(back-scattered tomography) or on the opposite side (transmission tomography) of the
sample. The laser fluence is modulated at a constant frequencyf = ω/2π whereω is
the angular modulation frequency. Upon absorption on the opaque sample surface and
optical-to-thermal energy conversion, the modulated optical radiation generates a surface-
localized harmonically oscillating temperature (‘thermal-wave’) field. The latter, driven
by thermal gradients into the bulk of the solid, may encounter thermal discontinuities
(defects, cracks, inclusions) and scatter. The detector(s) pick up amplitude and phase signals
which contain information about the scattering process. The inverse problem consists in
deconvoluting this information from that associated with the forward propagating thermal-
wave field, and reconstructing the slice thermal diffusivity image from data generated by
scanning the laser-source coordinate and with stationary detector(s), or vice versa [13].
The mathematical theory of the thermal-wave propagation process is developed utilizing
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Figure 1. The geometry for TSDT amenable to back-scattering and transmission detection.

thermal-wave diffraction [10] (the forward process).
In the case of a harmonic photothermal excitation of a region in space, the temperature

is found to obey the Helmholtz pseudowave equation [10, 14]

(∇2+ q2(r))T (r) = 0 (1)

where

q(r) = (1+ i)

[
ω

2α(r)

]1/2

(2)

is the complex thermal wavenumber;α(r) is the thermal diffusivity of the medium in which
the thermal wave is excited and pseudopropagates. Letting the thermal diffusivity of the
assumed homogeneous medium surrounding the object regionQ be α0, equation (1) may
be replaced by a modified Helmholtz pseudowave equation [10]

(∇2+ q2
0)T (r) = −F(r)T (r) (3)

where

F(r) =
{
q2

0[n2(r)− 1] r ∈ Q
0 r /∈ Q.

(4)

Furthermore,q0(ω) is the thermal wavenumber,

q0(ω) = (1+ i)

(
ω

2α0

)1/2

= |q0(ω)|eiπ/4 (5)

n(r) ≡
[
α0

α(r)

]1/2

. (6)

n(r) is a measure of the variation of the values of the thermal diffusivity in the scattering
objectQ from that of the surrounding (reference) regionQ0. The ratio in equation (6) has
been symbolized byn(r) deliberately, to suggest the analogy of this parameter to the effects
of variations in the refractive index in conventional optical propagating fields. The effect
of the inhomogeneities of object regionQ appear as a source function in the right side
of equation (3), withF(r) being the object function, representing the inhomogeneities of
scattering-object regionQ. The object functionF(r) is zero at every point outside region
Q and has a non-zero value that represents the ratio of thermal diffusivities inside region
Q.
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The exact solution for the scattering field of equation (3) satisfies, in three dimensions
[15, 16],

Ts(r) =
∫ ∫ ∫

R

G0(r|r0)F (r0)T (r0) d3r0 (7)

which is the Fredholm integral equation of the second kind needed for solving the inverse
problem. T (r) is the total thermal-wave field. RegionR is a cross sectional slice in two-
dimensional space, and is of constant thickness. An approximate solution can be written
using the Born approximation, valid for the case when the object is weakly inhomogeneous,
and the scattering field is weak and much smaller than the total field,|Ts(r)| � |T (r)| [11],

Ts(r) ' Tborn(r) =
∫ ∫ ∫

R

G0(r − r0)F (r0)Ti(r0) d3r0 (8)

whereTi(r) is the incident homogeneous thermal-wave field, representations of which are
derived in section 2.1 for semi-infinite and bounded three-dimensional geometries. The
accuracy of the first Born approximation increases when the scattered field becomes much
smaller than the incident field.

2.1. Homogeneous thermal-wave field

For a surface source only, the solution to the homogeneous thermal-wave equation is,

Ti(r, ω) = α
∫
©
∫
S0

[G0(r − rs0, ω)∇0T (r
s
0, ω)− T (rs0, ω)∇0G0(r − rs0, ω)] · dS0 (9)

whereS0 is the surface surrounding the source volumeV0. dS0 must be replaced by
dSi = n̂i dx0 dy0 pointing in the direction inside the material volume,V0, to indicate the
in-flow of thermal energy;rs0 is a coordinate point onS0. T (rs0, ω) is the thermal-wave
field distribution on the optically heated material surface. The thermal diffusivity,α, and
the thermal conductivity,k, are assumed to be constant throughoutV0.

Thermal-wave flux,φ, is prescribed over the interface plane,z0 = 0,

φ(rs , t) = φ0e−r
2
s /w

2
eiωt (10)

generated by a Gaussian laser beam of spot-sizew. If the thermal-wave flux is prescribed
at the interface,z = 0, the Green’s function must satisfy homogeneous Neumann boundary
conditions at the source coordinate,z0 = 0. For the finite geometry of figure 1, the method
of images can be used to accommodate plane bounding surfaces atz = 0, L. The resulting
Green’s function is [12],

G0(r − r0|r − r′0, ω) =
1

4πα

∞∑
n=−∞

(
e−q0(ω)|r−r0n |

|r − r0n |
+ e−q0(ω)|r−r′0n |

|r − r′0n |

)
(11)

where, figure 2,

|r − r0n | =
√
(x − x0)2+ (y − y0)2+ [z− (2nL+ z0)]2 (12a)

and

|r − r′0n | =
√
(x − x0)2+ (y − y0)2+ [z− (2nL+ z0)]2 (12b)

andq0(ω) is the complex thermal wavenumber.
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Figure 2. The coordinate system for three-dimensional geometry.

2.1.1. Semi-infinite solid. Green’s function for the semi-inifinite solid geometry is given
by [12]

G0(r − r0|r − r′0, ω) =
1

4πα

(
e−q0(ω)|r−r0|

|r − r0| +
e−q0(ω)|r−r′0|

|r − r′0|

)
. (13)

For the homogeneous case, no volume sources exist in the half-spacez > 0, as in figure 2.
Therefore, from equation (9) the thermal-wave field becomes,

Ti(r, ω) = α
∫
©
∫
S0

G0(r − rs0|r − r′s0 , ω)∇0T (r
s
0, ω) · dS0. (14)

The surface,S0, is the planez0 = 0. Combining equations (10), (13) and (14), the thermal-
wave field in the form of an integral over the bounding interface,S0(x0, y0) [12], is

Ti(r, ω) = φ0

2πk
eiω0t exp

(
− (x

2+ y2)

w2

)
J3(x, y, z) (15)

with

J3(x, y, z) = 2π
∫ ∞

0

ρ√
ρ2+ z2

exp

(
− ρ

2

w2
− q0(ω)

√
ρ2+ z2

)
I0

(
2ρ

w2

√
x2+ y2

)
dρ.

(16)

I0 is the modified Bessel function of order zero. The thermal-wave field represented by
equations (15) and (16) can be evaluated numerically using the polynomial approximation
for I0(x) given in [17, entries 9.8.1–9.8.4]. IntegralJ3 has a removable singularity atz = 0,
which makes it very attractive for programming. Atz = 0, J3 becomes,

J3(x, y,0) = 2π
∫ ∞

0
exp

(
− ρ

2

w2
− q0(ω)ρ

)
I0

(
2ρ

w2

√
x2+ y2

)
dρ. (17)
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Figure 3. The forward process; three-dimensional relief of a simulated cross section with a hole
centred at(xc, yc) = (1.5 mm, 0.5 mm); radiusa = 0.4 mm.

Figure 4. The inverse process–TSDT back-scattering reconstruction of the object function
F(x, y) of figure 3. Laser position atxl = 1 mm, f = 15 Hz; regularization parameter
σ = 10−6.
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2.1.2. Solid of finite thickness bounded between two planes.In the finite region,z0 = 0, L,
the thermal-wave flux is prescribed over the interface plane,z0 = 0, generated by a Gaussian
laser beam of spot-sizew, given by equation (10). The thermal-wave field, equation (14), is
simplified, with the thermal-wave flux being set to zero atz0 = L. This is due to the large
thermal mismatch between the matter enclosed between the bounding planes at 0 andL,
and the surrounding medium, assumed to be a poor thermal conductor (air). The relevant
Green’s function is now equation (11), satisfying homogeneous Neumann conditions at both
interface planes. Defining the integrals

J4(x, y,An) = 2π
∫ ∞

0

ρ√
ρ2+ A2

n

exp

(
− ρ

2

w2
− q0(ω)

√
ρ2+ A2

n

)
I0

(
2ρ

w2

√
x2+ y2

)
(18)

results in the expression for the thermal-wave field

Ti(r, ω) = φ0

2πk
eiωte

(
− x2+y2

w2

){
J3(x, y, z)+

∞∑
n=1

[J4(x, y,2nL− z)+ J4(x, y,2nL+ z)]
}
.

(19)

The thermal-wave field at the sample surfacez = 0 now becomes

Ti(x, y,0;ω0) = φ0

2πk
exp

(
−x

2+ y2

w2

){
J3(x, y,0)

+
∞∑
n=1

[J4(x, y,0)+ J4(x, y,2nL)]

}
(20a)

and the thermal-wave field at the back surfacez = L becomes

Ti(x, y, L;ω0) = φ0

2πk
exp

(
−x

2+ y2

w2

){
J3(x, y, L)

+2
∞∑
n=1

J4(x, y,2nL)

}
. (20b)

These expressions are novel and exact representations of the homogeneous thermal-wave
field in the solid. They can be used to reconstruct the inverse problem.

3. Inverse process: computational aspects

The foregoing thermal-wave diffraction problem leads to a so-called discrete ill-posed
problem when solved numerically. In an ill-posed problem, small perturbations in the data of
the problem cause large perturbations in the solution [18]. These problems are intrinsically
difficult to solve, and, indeed, the standard methods in numerical linear algebra, such as
LU - or QR-factorizations [19] cannot be used. Instead, a regularization method can be
applied to stabilize the problem. In this work, the Tikhonov regularization method is used.

3.1. Formulation of equations

RegionR in equation (7) is a slice in two-dimensional space, and it is assumed to be
rectangular, with the photothermal excitation on one side of the region(y = 0), as in
figure 1. The rectangular region is then

R = {(x, y)|xi 6 x 6 xf , 06 y 6 yf }. (21)
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Figure 5. The inverse process–TSDT transmission reconstruction of the object functionF(x, y)

of figure 3. Laser position atx1 = 1 mm, f = 15 Hz; regularization parameterσ = 10−9.

Figure 6. The forward process; three-dimensional relief of a simulated cross section with a hole
centred at(xc, yc) = (1.5 mm, 0.5 mm); radiusa = 0.4 mm.
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The sample region is divided inton intervals, and the rectangular regionR is divided into
n2 cells. If the thermal-wave field in transmissionT (x, y = yf ) is measured, then from
the Born approximation, equation (8), and for 16 j 6 n2 the scattering field assumes the
following form [8],

Ts(j1x, yf ) =
∫ xf

xi

∫ yf

0
G0[r(j1x, yf )|r0(ξ, η)]F [r0(ξ, η)]Ti [r0(ξ, η)] dξ dη. (22)

Equation (22) can be written in a similar form for the thermal-wave field in back scattering,
with yf = 0 in the integrand.

Experimentally, the total transmitted or back-scattered field is measured. The
measurement provides the amplitude,|T |, and phase,ν, of the field, and, thus, the total
field can be expressed in the following complex form,

T (r) = |T (r)| exp[iν(r)]. (23)

The total thermal-wave field,T (r), can be expressed as the sum of the incident
(homogeneous) field,Ti(r), and of the scattering field,Ts(r), as follows:

T (r) = Ti(r)+ Ts(r). (24)

Using equation (24) with the theoretically calculated incident field, equations (20a) and
(20b), the scattered field at the transmitted or back-scattered surface is computed. With
the computed scattered field, the theoretical expression of Green’s function and the
homogeneous temperature distribution,Ti , the object function,F(r0), is computed via the
inversion of the complex linear system (22). The solution of the complex linear system
(22) is a complex function whose real part is the required object function,F , and whose
imaginary part is theoretically zero [9]. Numerically, it is not exactly zero, and its value
may serve as a criterion/measure for successful reconstruction [9]. The use of the first Born
approximation only, while neglecting higher orders, simplifies large-scale computation.

To solve the ill-posed problem in equation (8), Tikhonov’s regularization method is
used. LetAx = b be an algebraic problem, equivalent to system (8), withA being
ill-conditioned. The regularized solution,xσ , as proposed by Tikhonov [20] is

xσ = min{‖Ax− b‖2+ σ‖L|(x− x0)‖2} (25)

wherex0 is an initial estimate of the solution, and matrixL is either the identity matrix
I or a discrete approximation to a derivative operator. The regularization parameter,σ ,
controls the weight given to minimization of the side constraint,‖L(x− x0)‖2, relative to
minimization of the residual norm,‖Ax − b‖2. For this work, no particular knowledge
about the desired solution is available, sox0 = 0 is used; also matrixL is set as the identity
matrix, I. It is found that the minimum of equation (25) can be obtained as the solution of
the linear system [9]

(σ I+A∗A)x = A∗b (26)

where starred quantities denote adjoint matrices.
The fundamental idea in Tikhonov regularization is to introduce a trade-off between the

size of the residual norm‖Ax− b‖2 and the side constraint‖x‖2. By choosing a suitable
regularization parameter,σ , a satisfactory solution is one for which the two constraints must
be balanced [21].
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Figure 7. The inverse process–TSDT back-scattering reconstruction of the object function
F(x, y) of figure 6. Laser position atx1 = 1 mm, f = 15 Hz; regularization parameter
σ = 10−4.

Figure 8. The inverse process–TSDT transmission reconstruction of the object functionF(x, y)

of figure 6. Laser position atx1 = 1 mm,f = 15 Hz; regularization parameterσ = 10−9.
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4. Simulated tomographic inversions

Computer simulations that verify the inversion technique for imaging cross sectional defects
are presented. The simulations are produced by solving the exact forward process developed
in section 2, with an assumed object function, and, then, inverting the result via the Born
approximation of the inverse process method developed in section 3. The object function
resulting from the inversion process is compared to the original assumed object function to
test the accuracy of the inversion technique. Various classes of defects are investigated in
both back-scattering and transmission modes.

4.1. Simulation method

The scattering field,Ts , is solved using a known object functionF(x, y). The homogeneous
field, Ti , represented by equations (20a) or (20b), is then added to the scattering field by
equation (24). The result is the total temperature field that would be obtained under ideal
experimental conditions. The amplitude and phase of this field are then calculated and used
as input for the inverse process discussed in section 3.

In the simulation of an aluminium sample with a circular hole, the object function is
defined as follows,

F(x, y) =
{

4 (x − xc)
2+ (y − yc)

2 6 a2

0 otherwise
(27)

wherexc, yc is the centre of the circle anda its radius. The value 4 is chosen because
it approximates the ratio of the thermal diffusivities of aluminium and of air, according to
equation (6). The input parameters needed for the calculation of the homogeneous field are
thermal diffusivity,α, and thermal conductivity,k, of the aluminum sample; the modulation
frequency,f ; and the beam size,w, of the laser beam. For the simulations the input values
wereαAl = 9.0× 10−5 m2 s

−1
, kAl = 2.37× 102 W m−1 K

−1
, αair = 2.2× 10−5 m2 s−1

andw = 50µm. The depth of the defect is measured from the front surface of the sample.
In the inverse process reconstruction of the object function,F(x, y), the optimal solution
to the linear system (26) is given by the Tikhonov regularization parameter that produces
an object function with an imaginary part of approximately zero. This criterion has also
been used successfully for quantitative thermal-wave microscopy reconstructions [22]. In
every reconstruction that was performed, the imaginary part was less than 7% of the object
function’s magnitude. A 10×10 low-density grid was used and thus the linear system (26)
was made up of 100 equations. For some reconstructions a finer grid, of 16× 16 was used.

4.2. Computer simulation results and discussion

The computer simulations are separated into three sets in order to address some of the
fundamental aspects of TSDT, complementary to earlier conclusions [9]. The first set of
defects addresses the effects of the depth of a hole in a rectangular cross section, in both
back-scattering and transmission modes (figures 3–8). In the second set, averaging of
reconstructions is shown as a method of obtaining an optimal reconstruction. The technique
is illustrated in back-scattering mode (figures 9–12). The third set deals with the ability
to reconstruct more complex functions such as multiple defects. This set also addresses
the resolution of two defects at the same depth as the distance between them decreases,
indicated with back-scattering reconstructions (figures 13–17). A finer grid was chosen
for these reconstructions to more precisely examine the spatial resolution behaviour. The
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Figure 9. The forward process; three-dimensional relief of a simulated cross section with a hole
centred at(xc, yc) = (2.15 mm, 0.5 mm); radiusa = 0.4 mm.

Figure 10. The inverse process–TSDT back-scattering reconstruction of the object function
F(x, y) of figure 9. Laser position atx1 = 0 mm, f = 15 Hz; regularization parameter
σ = 10−6.



Image-enhanced TSDT 1405

quality of a reconstruction is rated by the accuracy of three main attributes: defect size,
location and magnitude (or contrast). The exact contrast value is 4.

Figure 3 shows the simulated object function,F(x, y), with a filled isometric signal
contour of the reconstruction function at the bottom, of a circular hole with radius
a = 0.4 mm, centred at(x = 1.5 mm, y = 0.5 mm), in a rectangular cross section of
length 3 mm and thickness 2 mm. The defect region does not resemble a circle because
of the rough grid size of the rectangular region. A finer grid would improve the image
to more closely approximate a circle at the expense of computation time. Figure 4 is the
back-scattering reconstruction of figure 3 with the laser position atx = 1 mm, a total of
100 detector scan positions, and with a modulating frequency of 15 Hz. When a laser
position is given for a specific reconstruction, the position, with respect to the origin, is
at the front surface of the rectangular region. The location and contrast of this image are
very accurate. The size of the defect, as seen from the front surface, is precise, but the
back of the defect is slightly distorted. This occurs because: (a) the information from only
one laser source position is used in the reconstruction and (b) the detection occurred at
the front surface, in back-scattering mode, where only limited information about the back
surface of the defect can be obtained. The quality of the reconstruction is, nevertheless,
satisfactory. The regularization parameter used was 10−6, which is relatively high. The
regularization parameter is directly proportional to the ill conditioning of the problem. An
ill-defined problem gives a reasonable solution after being regularized. Figure 5 is the
transmission reconstruction of figure 3, with a modulation frequency of 15 Hz, the laser
position atx = 1 mm, and a total of 100 detector scan positions. The location of the defect
is precise but the defect size is decreased and the contrast of the image is poor. An important
observation about this reconstruction is that the front surface of the defect is not seen. This
is due to the fact that the detection occurred at the back surface and within limited lateral
extent, which conceals the front edge of the material. Therefore, only limited information
is available to reconstruct the front of the defect. The regularization parameter used was
10−9, so this problem is less ill conditioned than the back-scattering one. Figure 6 is the
simulated object function,F(x, y), of a circular hole with radiusa = 0.4 mm and centred
at (x = 1.5 mm, y = 1.5 mm) in a rectangular cross section of length 3 mm and thickness
2 mm. The defect is now located at the back surface of the material. The back-scattering
reconstruction of figure 6 is shown in figure 7. The modulation frequency is 15 Hz, the laser
position is atx = 1 mm with 100 detector scan positions, and the regularization parameter
is 10−4. The quality of this tomogram is very poor. The position of the defect is shifted
towards the front surface; also the contrast is diminished, along with the size of the defect.
This shifting is a limitation of the back-scattering mode, and is related to the defect depth
versus thermal diffusion length relationship: in back scattering, the thermal wave has to
travel twice the defect depth for the scatterer to be seen at the front surface. When the
defect is deeper, less accurate information about the defect is received at the front surface
owing to the large dispersion and diffraction suffered by the thermal waves. Figure 8 is
the transmission reconstruction of figure 6, at a modulation frequency of 15 Hz, a laser
position atx = 1 mm, and the same number of detector scan positions. This is a good
reconstruction with a small regularization parameter of 10−9. The location and contrast of
the defect is very accurate; the front shape of the defect is diminished and distorted to only
a small degree. In transmission, the thermal wave has to travel only the defect depth for
the scatterer to be seen at the back surface. Therefore, the imaging fidelity is considerably
higher than in the back-scattering mode. Figures 3–8 show that (a) the back-scattering mode
gives high-quality tomograms of shallow defects, whereas in the transmission mode,deep
defects are reconstructed well, (b) back scattering degrades more readily than transmission
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Figure 11. The inverse process–TSDT back-scattering reconstruction of the object function
F(x, y) of figure 9. Laser position atx1 = 2.3 mm, f = 15 Hz; regularization parameter
σ = 10−6.

Figure 12. The inverse process–average back-scattering reconstruction of five laser positions.
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with increasing defect depth, (c) reconstructions in back scattering are more ill-defined than
in transmission, (d) as long as the regularization parameter is within computer accuracy
the quality of a reconstruction does not depend on it, but rather depends on the physical
characteristics of defect and thermal waves.

The intent of figures 9–12 is twofold. First, the impact of moving the laser position on a
reconstruction is illustrated. Second, an optimal reconstruction is achieved by averaging all
of the reconstructions at different laser positions. Figure 9 is the simulated object function,
F(x, y), in a rectangular cross section of length 3 mm and thickness 2 mm, of a circular
hole with radiusa = 0.4 mm, centred atx = 2.15 mm andy = 0.5 mm. Figure 10 is the
back-scattering reconstruction of the object function,F(x, y), of figure 9 at a modulation
frequency of 15 Hz and a regularization parameter of 10−6. The laser position is at the
edge of the scan,x = 0 mm. 100 detector positions were used in this reconstruction. The
location, shape and contrast of the image are satisfactory. The size of the defect is accurate
in the front surface, along the side of the defect, where the thermal wave first encounters
it (left-hand side). The back of the defect is slightly degraded. Further reconstructions
with a single laser-source position gradually approaching the position of the defect were
carried out using the same number of detector positions, and showed measurable image
improvement. In figure 11, the laser is positioned atx = 2.3 mm, placing it above the defect.
This laser position gave the most accurate shape, contrast and size of any of the images
reconstructed in this set. As the laser moves further away from the defect tox = 3 mm,
the image contrast is diminished and the size and shape of the defect are distorted.It
can be concluded that the quality of the reconstruction is inversely related to the laser’s
distance from the defect. It is interesting to observe that the regularization parameter for all
reconstructions at different laser source positions is the same. This implies that the position
of the laser beam is not related to the ill-conditioning of the inverse problem. Information
of a different kind is obtained at each laser position which is related to the angle from
which the thermal wave views the defect. The minimum requirement for reconstructing
an image is only one laser position with multiple detection points. Since data at multiple
laser positions can be obtained as well, the reconstruction of individual laser positions
with multiple detection points is performed, added to a resultant matrix, and divided by
the number of laser positions. This process produces an arithmetic average of individual
reconstructions and thus an optimal reconstruction. Figure 12 is the average reconstruction
of five such reconstructions, including figures 10 and 11. This image has a diminished
artefact content and enhanced contrast compared with any of its individual constituents.

For an accurate study of spatial resolution, a fine-density grid of 16×16 was used to solve
the linear system of equations (26). Figure 13 shows the simulated object function,F(x, y),
of two circular holes with radiusa = 0.15 mm, centred at(x = 1.2 mm, y = 0.3 mm) and
(x = 1.8 mm, y = 0.3 mm), in a rectangular cross section of length 3 mm and thickness
1.5 mm. The back-scattering reconstruction of figure 13 at a modulation frequency of
15 Hz is shown in figure 14. At that frequency the thermal diffusion length in aluminium is
2.5 mm and the thermal wavelength is 15.7 mm, greater than the size of these defects. The
laser position is at the centre of the scan(x = 1.5 mm), in a symmetrical distance from the
defects. A total of 256 detector scan positions were used for all fine-grid reconstructions.
The distance between the two defects, in terms of grid size(1x = 0.2 mm), is 0.2 mm.
The actual centre-to-centre distance is 0.6 mm. Both defects are clearly resolved, and
the quality of the reconstruction in location, size and contrast, is precise. It is clear
that the thermal wavelength is not the limiting factor of resolution [23]. This is due
to the fact that the photothermal microscope works in the near-field limit. Figure 15 is
the simulated object function,F(x, y), of two circular holes with radiusa = 0.15 mm,
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Figure 13. The forward process; three-dimensional relief of a simulated cross section with two
holes centred at(xc = 1.2 and 1.8 mm,yc = 0.3 mm); radiusa = 0.15 mm.

Figure 14. The inverse process–TSDT back-scattering reconstruction of the object function
F(x, y) of figure 13. Laser position atx1 = 1.5 mm, f = 15 Hz; regularization parameter
σ = 10−6.
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centred at(x = 1.4 mm, y = 0.3 mm) and (x = 1.8 mm, y = 0.3 mm), in a rectangular
cross section of length 3 mm and thickness 1.5 mm. The defects are not separated by
a grid step but are still distinguished from each other. In figure 16, the back-scattering
reconstruction, with a modulation frequency of 15 Hz and laser position atx = 1.6 mm
is shown. At the front boundary the defects are resolved, but as the depth increases
the resolution deteriorates. The back surface of the defect is seen as one large defect.
Figure 17, is the back-scattering reconstruction with a modulation frequency of 50 Hz
and laser position atx = 1.6 mm. As the frequency increases the resolution at the front
defect boundary improves. As expected, information about the back of the defect is lost.
Therefore, increasing depth and decreasing frequency leads to a lower spatial resolution
and poor delineation of subsurface thermal boundaries. This type of behaviour has been
observed and extensively studied in conventional thermal-wave imaging [23] and in ray-
optic tomographic thermal-wave imaging [6].

The Born approximation seems to be adequate for the materials and defect geometries
utilized in this investigation. Assuming tubular (cylindrical) defects, such as drilled holes in
aluminium, Kak and Slaney [11] have given a mathematical condition of the validity of the
first Born approximation for general propagating fields obeying the conventional Helmholtz
wave equation. This condition can be expressed as

anδ <
λ

4
(28)

where a is the radius of the cylindrical defect,nδ is the change in the refractive index
between the surrounding medium and the defect, andλ is the probe-field wavelength. For
the worst-case situation of thermal-wave tomography examined in this work,a = 0.4 mm,
λth = 4.76 mm at 50 Hz andnδ = 2.02, equation (6). Therefore,anδ = 0.81 mm <

1.19 mm= λth/4, i.e. the criterion (30) holds for thermal-wave tomography, as well.

5. Conclusions

An improved TSDT reconstruction method was based on solving the Helmholtz pseudowave
equation with a complex wavenumber [10], for the thermal-wave field generated in a
material by some convenient means, such as an intensity-modulated laser beam incident on
the (opaque) surface. The three-dimensional incident field, assuming Neumann boundary
conditions, was calculated based on the known expression of Green’s function [12], and
a novel exact expression of the pseudopropagating three-dimensional thermal-wave field
was derived. Ultimately, the scattered field was expressed in the first Born approximation
by a Fredholm integral equation of the first kind. Owing to the diffusive nature of the
thermal-wave field and the ill-conditioning of the inverse problem, conventional Fourier
transform methods used in electromagnetic and acoustic tomography did not apply [11].
Thus, the integral equation was solved using the Tikhonov regularization method. Numerical
simulations were then performed to test the method.

From the above simulations, it was seen that the Born approximation yields a large
number of satisfactory results. Shallow defects were imaged better in back scattering
and deep defects were imaged better in transmission. The back scattering mode is more
ill-conditioned than the transmission mode. Increasing the modulation frequency causes
small changes in back-scattering reconstruction when the defect is within one thermal
diffusion length from the front surface, while it leads to a marked image deterioration as
the modulation frequency is increased beyond this limit. For shallow defects, transmission
reconstruction is more sensitive to changes in modulation frequency than back-scattering
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Figure 15. The forward process; three-dimensional relief of a simulated cross section with two
holes centred at(xc = 1.4 and 1.8 mm,yc = 0.3 mm); radiusa = 0.15 mm.

Figure 16. The inverse process–TSDT back-scattering reconstruction of the object function
F(x, y) of figure 15. Laser position atx1 = 1.6 mm, f = 15 Hz; regularization parameter
σ = 10−6.
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Figure 17. The inverse process–TSDT back-scattering reconstruction of the object function
F(x, y) of figure 15. Laser position atx1 = 1.6 mm, f = 50 Hz; regularization parameter
σ = 10−6.

reconstruction. The shape of a defect is reconstructed accurately on the side of the defect
that the thermal wave first encounters it. The minimum requirement for reconstructing
the cross sectional thermal diffusivity image is a single laser position and several detector
scan positions, or vice versa. A defect can be reconstructed at different laser positions,
and the accuracy of the reconstruction is inversely related to the laser’s distance from the
defect. Since only limited information is obtained from one laser position reconstruction,
an arithmetically averaged reconstruction of different laser positions leads to an optimal
image, especially when the actual subsurface position of a defect is unknown and in the
presence of artefacts. Finally, spatial resolution is lost with increasing depth and decreasing
frequency.

Overall, the physical behaviour of the numerical simulations validates the new theoretical
model developed for the three-dimensional incident and scattered fields. Based on
considerations adapted from propagating-field tomographies, the Born approximation seems
to be a valid approximation for the parameter ranges of this work, albeit no rigorous
mathematical proof of its validity was given.

Acknowledgments

The support of the Natural Sciences and Engineering Research Council of Canada
(NSERC) and of the Manufacturing Research Corporation of Ontario (MRCO) is gratefully
acknowledged.



1412 L Nicolaides and A Mandelis

References

[1] Busse G and Renk K F 1983 Stereoscopic depth analysis by thermal wave transmission for non-destructive
evaluationAppl. Phys. Lett.42 366

[2] Busse G 1983 Thermal wave non-destructive depth profiling with stereoscopic photothermal detectionJ.
Physique44 471

[3] Fournier D, Lepoutre F and Boccara A C 1983 Tomographic approach for photothermal imaging using the
mirage effectJ. Physique44 479

[4] Mandelis A and Mieszkowski M 1990 Thermal wave sub-surface defect imaging and tomography apparatus
US Patent No 4950897

[5] Munidasa M and Mandelis A 1991 Photopyroelectric thermal-wave tomography of aluminum with ray-optic
reconstructionJ. Opt. Soc. Am.A 8 1851

[6] Munidasa M, Mandelis A and Ferguson C 1992 Resolution of photothermal tomographic imaging of sub-
surface defects in metals with ray-optic reconstructionAppl. Phys.54 244

[7] Yarai A, Sakamoto K and Nakanishi T 1994 High signal-to noise ratio and high resolution detection techniques
for photopyroelectric thermal wave imaging reconstructionJ. Appl. Phys., Japan33 3255

[8] Pad́e O and Mandelis A 1994 Thermal-wave slice tomography using wave-field reconstructionInverse
Problems10 185

[9] Pad́e O and Mandelis A 1993 Computational thermal-wave slice tomography with backpropagation and
transmission reconstructionsRev. Sci. Instrum.64 3548

[10] Mandelis A 1991 Theory of photothermal wave diffraction tomography via spatial laplace spectral
decompositionJ. Phys. A: Math. Gen.24 2485

[11] Kak A C and Slaney M 1988Principles of Computerized Tomographic Imaging(New York: IEEE)
[12] Mandelis A 1995 Green’s functions in thermal wave physics: Cartesian coordinate representationsJ. Appl.

Phys.78 647
[13] Nicolaides L, Munidasa M and Mandelis A 1997 Thermal-wave infrared radiometric slice diffraction

tomography with back scattering and transmission reconstructions: experimentalInverse Problems13
1413

[14] Mandelis A 1989 Theory of photothermal-wave diffraction and interference in condensed mediaJ. Opt. Soc.
Am. A 6 298

[15] Morse P M and Feshbach H 1953Methods of Theoretical Physics(New York: McGraw-Hill) ch 7
[16] Langenberg K J 1986Applied Inverse Problems, (Notes on Summer School on Applied Inverse Problems)

Fachgebiet Theoretische Elektrotechnik der Gesamthochschule, Kassel, GHK-TET, Kassel, ch 3
[17] Abramowitz M and Stegun A 1970Handbook of Mathematical Functions9th edn (Washington, DC: National

Bureau of Standards)
[18] Morozov V A 1993 Regularization Methods for Ill-posed Problems(Boca Raton, FL: Chemical Rubber

Company)
[19] Tarantola A 1987Inverse Problem Theory(New York: Elsevier)
[20] Hofmann B 1986Regularization for Applied and Ill-posed Problems(Leipzig: Teubner)
[21] Hansen C 1992 Numerical tools for analysis and solution of fredholm integral equations of the first kind

Inverse Problems8 849
[22] Seidel U, Haupt K, Walther H G, Burt J A and Munidasa M 1993 An attempt towards quantitative

photothermal microscopyJ. Appl. Phys.78 2050
[23] Munidasa M and Mandelis A 1992Principles and Perspectives of Photothermal and Photoacoustic

Phenomenaed A Mandelis (New York: Elsevier) pp 300–58


