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Motivated by increasing practical and industrial applications of photothermal techniques in the
measurement of materials of various shapes with curvature, we extend the applications of
photothermal diagnostics to solid spheres, in which both theoretical and experimental photothermal
radiometry studies on spherical geometries and thermal diffusivity of the sample are discussed.
Based on the Green function method, a full thermal-wave field distribution of a spherical solid is
obtained. The characteristics of the thermal-wave field with respect to thermophysical properties of
the material, the diameter of the solid, the size of the incident laser beam, and the measurement
angle are discussed. Experimental results with steel spheres of different diameters exhibit good
agreement between the theory and the experiments. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2721424�

I. INTRODUCTION

Due to its noncontact, nondestructive, and highly sensi-
tive nature, photothermal radiometry �PTR� has become a
powerful tool for the thermal characterization and nonde-
structive evaluation of broad classes of materials1–5 since the
late 1980s. Photothermal radiometry is based on the genera-
tion and detection of thermal waves in a sample as a result of
absorption and nonradiative conversion of an intensity
modulated laser beam. The laser-induced oscillating tem-
perature distribution in the solid results in changes in infra-
red radiation emission from the material which can be quan-
titatively evaluated by the Stefan–Boltzmann law. For
decades, however, studies in photothermal techniques have
been restricted to samples with flat surfaces, for which either
a one-dimensional3 or a three-dimensional5,6 theoretical
model has been developed and applied in various material
studies, depending on the relative size of incident beam spot
size and thermal diffusion length within the modulation fre-
quency range of interest. With recently increasing applica-
tions of PTR to the nondestructive evaluation of industrially
manufactured products, requirements for characterization of
samples with curvature, such as cylinders and spheres, have
made it necessary to consider the formulation of thermal-
wave fields in curvilinear coordinate systems. As a result,
PTR has been extended to quantitative evaluation of both
homogeneous and composite cylindrical structures.7,8 Theo-
retical studies and experimental validation have been per-
formed in the frequency domain. Salazar et al.9 further veri-
fied and developed the PTR technique in the time domain in
which the thermal diffusivity of cylindrical rods and tubes

was evaluated using the flash method. Salazar et al.9 also
derived the thermal-wave �alternating current �ac� tempera-
ture� field of a spherical solid in which the sample is as-
sumed to be illuminated by a collimated beam with a spot
size equal to the diameter of the spherical sample. In this
article, we extend the PTR technique to spherical samples
excited by a laser beam of arbitrary spot size. Specifically,
we present both theoretical and experimental PTR studies on
spherical solids in the frequency domain. Based on the Green
function method,10 the thermal-wave field distribution of a
spherical surface under the excitation of a periodically
modulated uniform beam is obtained. The characteristics of
the thermal-wave field related to various material parameters
and beam sizes are discussed. Finally, the theoretical model
is further validated experimentally with spherical steel
samples of different diameters.

II. THEORY

The thermal-wave field in a spherical sample of radius
R0, induced by modulated optical excitation of the spherical
surface, can be conveniently derived based on the Green
function method. The geometry and the coordinates of the
boundary-value problem are shown in Fig. 1. The exciting
laser beam, which is of circular symmetry with respect to the
z axis and subtends an angle �, impinges uniformly on the
spherical surface, in conformity with typical experimental
geometries. Considering the harmonic modulation of the in-
cident exciting light, the governing thermal-wave equation
for the material under investigation can be written as

�2T�r, �� − �2���T�r,�� = −
1

k
Q�r,�� , �1�

a�Electronic mail: chinhua.wang@suda.edu.cn

JOURNAL OF APPLIED PHYSICS 101, 083503 �2007�

0021-8979/2007/101�8�/083503/8/$23.00 © 2007 American Institute of Physics101, 083503-1

Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.2721424
http://dx.doi.org/10.1063/1.2721424


where ����= �i� /��1/2= �1+ i��� /2� is the thermal wave
number; � �m2/s� and k �W/K m� are, respectively, the ther-
mal diffusivity and the thermal conductivity of the material;
� is the angular modulation frequency, and Q�r ,�� is the
volume thermal source at coordinates �r ,�� inside the mate-
rial. Based on the Green function method, the general solu-
tion for Eq. �1� can be expressed as10

T�r,�� = ��/k����
V0

Q�r0,��G�r�r0;��dV0

+ ��
s0

�G�r�r0
s ;���0T�r0

s ;��

− T�r0
s ,���0G�r�r0

s ;���dS0, �2�

where S0 is the surface surrounding the domain volume V0,
which includes the harmonic source Q�r0 ,��. r0

s is a position
vector from the origin representing the coordinate of a source
point on surface S0. dS0 indicates an infinitesimal area vector
along the outward direction normal to the boundary surface
S0 :dS0=ndS0 with n being the outward unit vector, as
shown in Fig. 1. G�r �r0 ;�� is the thermal-wave Green func-
tion with units �s /m3�. The physical interpretation of this

particular Green function, as opposed to conventional heat-
diffusion Green functions11,12 is that it represents the tem-
perature modulation anywhere in a given domain due to a
harmonic heat source of unit strength located at point r =r0

within the domain and represented by the Dirac delta func-
tion ��r −r0�.10 The Green function G�r �r0 ;�� takes differ-
ent forms depending on the types of boundary conditions,
e.g., Dirichlet, Neumann, or mixed �third-kind�, imposed on
the investigated material.

In the most general case, when a laser beam is incident
onto a homogeneous solid which is not entirely opaque, the
material will absorb some of the photon energy and thus
generate a volume heat source. Depending on the surface of
the material, different types of the boundary conditions may
apply. Therefore, the temperature field must be evaluated us-
ing the complete form of Eq. �2�. However, in most cases,
Eq. �2� can be simplified depending on specific material
properties. For solids with high attenuation of the incident
light, such as metals, the absorption of the incident light
occurs at the surface, and therefore, the volume source can
be neglected. In this article, we will focus on opaque mate-
rials. In the absence of a volume source, and assuming the
system is subject to boundary conditions of the third kind,
we obtain

Q�r0,�� = 0, �3a�

�kn · �T�r,���r=rs + HT�rs,�� = F�rs,�� , �3b�

�kn · �G��r�r0;���r=rs + HG�rs�r0;�� = 0, �3c�

where H is the heat transfer coefficient representing convec-
tive heat loss and F�rs ,�� is the thermal flux distribution
along the spherical bounding surface. Substituting Eq.
�3a�–�3c� into Eq. �1� yields

T�r,�� = 	�

k

�

s0

G�r�r0
s ;��F�r0

s ,��dS0. �4�

Assuming that the intensity of the incident radiation on
the surface is uniform, in conformity with our PTR system,
the thermal flux, which must be weighed by a projection
factor in the form of the cosine of the angle with the direc-
tion of the incident light intensity, can be expressed as

F�R0,�,�;�� = ��1/2�F0 cos ��1 + exp�i�t��; 0 � � � �, 0 � � � 2	

0; � � � � 	, 0 � � � 2	 .
� �5�

From the symmetry of the boundary value problem, it is expected that the thermal-wave field will be symmetric with
respect to the z axis. The appropriate Green function corresponding to the foregoing boundary condition is10

G�r,��r0,�0;� =
i


2	�
�
l=0

� � �hl
�1��
r0�f l

�2��
R0� − f l
�1��
R0�hl

�2��
r0��jl�
r�
f l

�1��
R0� + f l
�2��
R0� �Nl���Nl��0� , 0 � r � r0

�
l=0

� � �hl
�1��
r�f l

�2��
R0� − f l
�1��
R0�hl

�2��
r��jl�
r0�
f l

�1��
R0� + f l
�2��
R0� �Nl���Nl��0�, r0 � r � R0

� , �6�

FIG. 1. Geometry of a solid sphere of radius R0 externally excited photo-
thermally by a uniform light beam impinging on part of its surface subtend-
ing a sector of angle 2�. Inset: spherical coordinate system used in this
work.
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with f l
�1,2� defined as

f l
�1,2��
r� � hl

�1,2��
r� + 	 k

H

 d

dr
hl

�1,2��
r� , �7�

where hl
�1,2��
r� are the complex spherical Hankel functions

of the third kind and of order l. They can be defined as
hl

�1,2��z�� jl�z�± inl�z�, where jl�z�and nl�z� are the complex-

argument spherical Bessel functions of the first and the sec-
ond kind, respectively, of order l. Nl���
=��2l+1� /2Pl�cos ��, where Pl�cos �� is a Legendre poly-
nomial, and 
���is a modified complex thermal wave num-
ber: 
���� i�=−�1− i��� /2�.

Neglecting the direct current term in Eq. �5�, interchang-
ing r and r0, r ⇔r0, and noting the azimuthal isotropy of the
problem, Eq. �4� can be further expressed in the form

T�r,�� =
iF0R0

2


2k
�
l=0

�
�hl

�1��
R0�f l
�2��
R0� − f l

�1��
R0�hl
�2��
R0��jl�
r�

f l
�1��
R0� + f l

�2��
R0�
Nl���jl�
r��

0

�

Nl��0�sin �0 cos �0d�0. �8�

By integrating the last term in Eq. �8� and separating out
the l=0 and l=1 terms for computational convenience, the
thermal-wave field can be expressed analytically as

T�r,�� =
F0

2k� j0�
r�
HA
k +

��R0−1�
�R0

2 e�R0�1 −
1+�R0

1−�R0
e−2�R0�

sin2 �

2

+
j1�
r�

Hj1�
R0�
k + d

dr �j1�
R0��

cos �

2
�1 − cos3 ��

−
sin �

2 �
l=2

�
jl�
r�Pl�cos ��

Hjl�
R0�
k + d

dr �jl�
R0��

�2l + 1�
�l − 1��l + 2�

��sin �Pl�cos �� + cos �Pl
1�cos ���� , �9�

where A= �ei
R0 −e−i
R0� / i
R0 and Pl
m are the associated Leg-

endre polynomials and �d /dz�jl�z�� jl��z� is the derivative of
the spherical Bessel function given by

ji��z� =
1

2l + 1
�ljl−1�z� − �l + 1�jl+1�z�� . �10�

Equation �9� gives a general solution of the boundary
value problem under the third kind boundary condition with
heat transfer coefficient H ranging from 0 to �. Note that in
the absence of heat losses, H=0, the third kind boundary
condition reduces to the second kind �Neumann� adiabatic
boundary condition, which appears to be the case in most
experimental conditions. It can be justified by the small heat-
transfer coefficient H��0.1 W/m2 K� between the material
and the static air in typical laboratory settings and by the
small temperature difference between the sample and the am-
bient medium ��1 K� when compared with the incident heat
flux F�R0 ,� ,�� ��105 W/m2 for a 1 W laser beam with a
10 mm2 spot size�. Moreover, in our experiments, neglecting
the heat-transfer term can also be justified by the very small
��0.1� Grashoff �Gr� number. Free convection is effectively
suppressed when Gr
2000.13 Therefore, Eq. �9� can further
be simplified as

T�r, �� =
F0

2k� j0�
r�e−�R0�R0
2

��R0 − 1��1 −
1+�R0

1−�R0
e−2�R0�

sin2 �

2

+
j1�
r�

d
d�
r� �j1�
R0��

cos �

2

�1 − cos3 ��

−
sin �

2

�
l=2

�
jl�
r�

d
d�
r� �jl�
R0��

Pl�cos ���2l + 1�
�l − 1��l + 2�

��sin �Pl�cos �� + cos �Pl
1�cos ���� . �11�

Equation �11� gives the thermal-wave field at any point
inside the spherical solid. From the structure of this expres-
sion it is seen that the frequency dependence of the thermal-
wave field of spheroids under illumination by a uniform light
beam is a strong function of the material thermal diffusivity
as well as geometrical factors of the solid. As shown in Eq.
�11�, if �=0, i.e., no light is incident on the surface, the
temperature field T�r ,��=0, as expected. If �=90°, i.e., full
hemispherical illumination, the thermal-wave field reduces
to:

T�r,�� =
F0

2k� j0�
r�e−�R0�R0
2

2��R0 − 1��1 −
1+�R0

1−�R0
e−2�R0�

+
j1�
r�

d
d�
r� �j1�
R0��

cos �

2

−

1

2


��
l=2

�
jl�
r�

d
d�
r� �jl�
R0��

Pl�cos ���2l + 1�
�l − 1��l + 2�

�Pl�0��� .

�12�

III. NUMERICAL CALCULATIONS

Equation �11� shows a very complicated relationship be-
tween the modulated temperature field and the thermophysi-
cal parameters, as well as several geometric and measure-
ment configuration factors for a spherical solid. To gain more
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physical insight into the characteristics of the thermal-wave
field, it is instructive to study its dependence on individual
parameters involved in Eq. �11�. Considering the nature of
PTR measurements of opaque solids, only the thermal-wave
field on the sample surface �r=R0� will be evaluated in the
following simulations. In all simulations, the amplitude and
the phase of the surface temperature oscillation are normal-
ized to the corresponding amplitude and phase of a flat sur-
face of a semi-infinitely thick sample of the same material in
order to see the effects of the curved surface with optimal
contrast. The normalization process involves amplitude ra-
tios and phase differences. The amplitude and phase of a flat
surface are calculated based on the well-known one-
dimensional �1D� theoretical model of thermal waves, valid
under the condition that the incident beam spot size is much
larger than the thermal diffusion length of the material within
the modulation frequency range of interest. Under illumina-
tion producing a constant-amplitude thermal-wave flux F0 at
the surface of the flat sample, the ac temperature field evalu-
ated at the surface is given by the well-known dependence of
the amplitude on the inverse of the square root of the fre-
quency and a constant �	 /4� phase lag of the temperature
oscillation with respect to the incident thermal flux.10

Figure 2 shows the effect of the diameter of a spherical
solid on the thermal-wave field measured at the sample sur-
face �r=R0=3 mm� and at angle �=0°. The beam size is
assumed to be large enough so as to cover the entire upper
part of the sphere, therefore, �=90° is assumed in the calcu-
lation or Eq. �12� is used directly. The other material param-

eters used in the simulation are as follows: �=13.57
�10−6 m2/s for AISI 1018 carbon steels,14 F0=1 W/cm2,
and k=51.9 W/K m.

It is seen that, as the diameter of the sphere increases,
both the normalized amplitude and phase curves become
flatter, an indication that the thermal-wave field from large
diameter of spheres reduces gradually to that of a flat sur-
face, as expected. As shown in Figs. 2�a� and 2�b�, amplitude
and phase reduces to a flat line toward 1 and 0, respectively,
when the diameter is equal to 100 mm. It is also noted that
when the diameter of the sphere is small, e. g., 2R0
5 mm,
both amplitude and phase exhibit peaks as a function of
modulation frequency which shift to lower frequency values
with increasing diameter. The origin of the peaks in ampli-
tude and phase is akin to resonances observed in propagating
�i.e., nondiffusive� wave fields and can be attributed to ther-
mal wave interference within the confined geometry of the
spherical solid, a physical explanation similar to that of cy-
lindrical geometries.7 The boundary of the finite-diameter
sphere confines the thermal waves and forms a low-Q reso-
nant material cavity,15 as witnessed by the stronger interfer-
ence effect in the smaller diameter spheres. All the amplitude
and phase curves at high frequencies converge to 1 and 0,
respectively, the behavior of a flat surface. This can be ex-
plained by the shorter thermal diffusion length at higher
modulation frequencies which favors the forward conduction
pathway compared to other �sideways� degrees of freedom.
The larger ratio, R, of the surface curvature radius to thermal
diffusion length at higher frequencies is closer to that of a
flat surface, for which R→�. In Fig. 2 we also show simu-
lation results of cylindrical C1018 rods of the same diam-
eters as the corresponding spherical C1018 samples for com-
parison �diameter=1.5 and 3.0 mm, respectively�. It is
interesting to see that both normalized amplitude and phase
of the spherical samples show larger magnitude of oscilla-
tions than that of the cylindrical samples of the same diam-
eter. For the sample of 1.5-mm diameter, the normalized am-
plitude of the spherical sample oscillates from 2.1 at 0.5 Hz
to 1.08 �trough� at �3.7 Hz and then to 1.34 �peak� at
�22 Hz while the amplitude of the cylindrical sample oscil-
lates from 1.79 at 0.5 Hz to �1 at �3.2 Hz �trough� and then
to 1.17 �peak� at �18 Hz. The corresponding peak/trough of
the cylindrical sample shows a shift toward lower frequen-
cies than that of the spherical sample. The same trend is
apparent in the phase channel, in which the magnitude of the
oscillation of the normalized phase of the spherical sample is
larger than the corresponding cylindrical sample. This can be
qualitatively explained by the geometrical fact that the
spherical sample is effectively a higher Q-parameter cavity
than the cylindrical sample. The finite extent of the spherical
surface forms a closed �confined� circular thermal-wave cav-
ity while the surface of the cylindrical sample forms a closed
thermal-wave cavity only along the radial direction. There-
fore, the thermal wave confinement inside a spherical sample
is better than that of a cylindrical sample, thus exhibiting
larger magnitude of oscillation than the cylindrical sample.

Figures 3 and 4 show the frequency dependence of
spherical thermal-wave fields on the spherical surface
�diameter=3.0 mm� at various longitudinal angles � when

FIG. 2. Effect of the diameter of the spherical solid on the thermal-wave
field measured at the sample surface �r=R0� and angle �=0°. The illumi-
nating laser beam size subtends an angle of �=90°. Amplitude and phase
are normalized, respectively, to the corresponding values of a flat semi-
infinite surface of the same material.
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the illumination of the incident beam is expanded to cover
the whole upper part of the sphere �i.e., �=90°�. The tem-
perature fields plotted in Figs. 3 and 4 represent two different
PTR measurement schemes, i.e., reflection �backpropaga-
tion� and transmission modes, respectively. In reflection
PTR, the signal is measured in the upper region of the sphere
�−90° 
�
90°� which is on the same side as the incident
illumination, while in transmission PTR the signal is mea-
sured in the lower region of the sphere �90°
�
270°�, on
the side opposite to the illuminated surface. In a manner
similar to cylindrical geometries,7,8 both amplitude and phase
strongly depend on the measurement angle �. Although the
incident beam is uniform and expanded to cover the entire
upper part of the sphere, the thermal flux absorbed by the
sphere is a projection of the incident uniform flux normal to
the spherical surface with the angle � along the curved sur-
face in the upper part of the sphere. At different angles, the
frequency dependence of the PTR signal is different. In Fig.
3, both amplitude and phase are very sensitive to the angular
coordinate �. The PTR amplitude near �=0° exhibits a stron-
ger thermal-wave interferometric peak than that near 90° or
�90°, as shown in Fig. 3�a� for different �. This is due to the
weaker strength of the thermal-wave field at positions near
� 90° or �90°. �The net photothermal flux into the sphere
decreases as F ·dS decreases at large polar angles, Fig. 1.�
This explains the decreased amplitude with increasing angle
� in Fig. 3�a�. �t �� ±90°, F ·dS =0 and the formation of a
thermal standing wave is not possible, due to the infinite

effective thickness of the cavity formed by the upper and
lower sectors of the spherical surface along the z axis of
symmetry at �=0°. The amplitude interference peak disap-
pears in Fig. 4 when the PTR signal is measured in the trans-
mission mode �i.e., 90° 
�
270°�. This is consistent with
the heavy attenuation of the interfering waves after double
thermal transit across the body of the sphere. The phase in
Fig. 4 shows a stronger dependence on frequency than that in
the reflection mode, Fig. 3. Due to the symmetry of illumi-
nation about the 0° axis perpendicular to the surface, the
thermal-wave field also exhibits symmetry, as can be seen
from the coincidence of the frequency scan curves at �
=60° /−60° in Fig. 3 and �=120° /240°, and 150°/210° in
Fig. 4, as expected.

Figure 5 is a simulation showing the effect of laser-beam
size on the thermal-wave field at �=0° using parameters of a
C1018 steel sample with a diameter of 3 mm. The normal-
ization is still performed with the thermal-wave field of a 1D
flat solid with the same thermophysical properties. It is seen
that the amplitude peak decreases at decreasing angles � due
to the increasing remoteness of the spherical boundaries
from the thermal-wave flux: boundaries are thermal-wave
confining interfaces which induce interferometric superposi-
tion of thermal waves across the volume of the spheroid and
their increasingly remote location from the thermal-wave
source diminishes the effects of superposition. The peak
shifts to higher frequencies at smaller optothermal aperture
�, as the effective distance to the solid-air boundary de-
creases, with only the immediately adjacent curved surface
to the illuminated region contributing to the confinement of

FIG. 3. The normalized surface thermal-wave amplitude and phase �r
=R0� at various measurement angles �upper part of the sphere, −90° ��
�90°� for a sphere with a diameter of 3.0 mm. The illuminating beam size
subtends an angle of �=90°. Both amplitude and phase plots use the same
symbol notations for different angles.

FIG. 4. The normalized surface thermal-wave amplitude and phase �r
=R0� at various measurement angles �lower part of the sphere, 90° ��
�270°� for a sphere with a diameter of 3.0 mm. The illuminating beam size
subtends an angle of �=90°. Both amplitude and phase plots use the same
symbol notations for different angles.
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thermal waves. As the illumination aperture angle � de-
creases, the phase lead �with respect to the flat geometry� at
the peak increases, again due to contributions from the re-
mote spherical walls which retains the thermal-wave centroid
closer to the upper surface detection point than in a semi-
infinite flat geometry. In small-aperture cases, a larger phase
lead is observed due to the fact that, albeit thermal-wave
centroid confinement by remote curved interfaces moves
deeper into the bulk of the solid, yet it remains closer to the
observed surface point than in the semi-infinite flat-surface
geometry. This is essentially an argument of the position of
the thermal-wave centroid in three-dimensional versus one-
dimensional geometries, as defined by the size of the illumi-
nation aperture. The normalized phase exhibits broadened
width with decreasing � due to the increased relative contri-
butions from more remote surface areas. At large values of �
the surface locations are closer to the thermal-wave source
and the interference pattern is readily visible. At higher fre-
quencies, both amplitude and phase with different illumina-
tion angles � converges to that of a flat surface, i.e., normal-
ized amplitude and phase toward 1 and 0, respectively, due to
the shorter thermal diffusion length and the diminished role
of curvature.

Figure 6 shows the effect of the thermal diffusivity of the
material on the thermal-wave field measured at �=0° for a
solid with a 3-mm diameter and illumination angle �=90°.
As the thermal diffusivity increases, the amplitude increases
and the interference becomes more pronounced. This can be
explained by the wider extent of the thermal wave into the

spheroidal volume with increasing diffusivity, which in-
cludes contributions from a larger area of the curved inter-
faces to the ac temperature field at the observation point. The
higher diffusivity enhances the contributions from interface-
interacted thermal-wave fluxes to the overall field at the ob-
servation point thus exhibiting stronger interferometric be-
havior. This is corroborated by the phase interference pattern
in Fig. 6�b�: The increased thermal diffusion length with in-
creased thermal diffusivity “sees” the confining curved inter-
faces at higher frequencies, therefore interference peaks also
occur at higher frequencies. Therefore, the peak/trough fre-
quency position of the thermal-wave field provides a unique
feature for the determination of the thermal diffusivity of the
material once the diameter is known.

IV. EXPERIMENTAL AND DISCUSSION

To verify the foregoing theoretical model, PTR experi-
ments were performed using spherical ball-bearings as
samples, made of SAE 52100 steel with composition: C
0.95%–1.05%, Cr 1.40%–1.65%, Si 0.15%–0.35%, P
0.025%, S 0.025%, Cu 0.25%, and Ni 0.30%. The sample
diameters ranged from 4 to 13 mm. The experimental system
is shown in Fig. 7. The thermal-wave source was a high-
power semiconductor laser ��20 W�. The output of the laser
was modulated by a periodic current, the frequency of which
was controlled by the computer and which also served as the
lock-in reference. The beam was expanded, collimated, and
then focused onto the surface of the sample with a spot size
ranging from �1 to 20 mm by adjusting the position of the
lens. The harmonically modulated infrared radiation from the
sample surface was collected by an off-axis paraboloidal

FIG. 5. The normalized surface thermal-wave amplitude and phase �mea-
sured at r=R0 and �=0°� with different laser-beam sizes subtending differ-
ent angles �, Fig. 1, for a sphere with a diameter of 3.0 mm. Both amplitude
and phase plots use the same symbol notations for different angles.

FIG. 6. Effect of thermal diffusivity of the material on the normalized sur-
face thermal-wave amplitude and phase for a sphere with 3.0 mm diameter
and measured at r=R0, �=0°, and �=90°.

083503-6 Wang et al. J. Appl. Phys. 101, 083503 �2007�

Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



mirror system and detected by a HgCdTe detector. The signal
from the detector was amplified by a low-noise preamplifier
and then fed into a lock-in amplifier which was interfaced
with a personal computer. The spherical sample was freely
resting on a Teflon platform with a shallow notch to prevent
the sample from rolling. Given that the contact area between
the spherical sample and the platform was very small, Teflon
is not a good thermal conductor and, most of all, the mea-
surement point was usually far away from the bottom contact
area �compared with the thermal diffusion length�, the ther-
mal effect of the sample-Teflon contact can be neglected.

The experimental setup was optimized using the similar
procedure to that of the cylindrical sample.7 The system was
first optimized using a flat surface steel sample �not of the
same material, because the one-dimensional PTR amplitude
slope and phase frequency scans are independent of the ma-
terial type10� such that both sample and detector were aligned
onto the focal plane. This was done using a focused beam by
adjusting the focusing lens and the Y direction of the flat
sample, Fig. 7, since the crossing point of the focused beam
with the flat surface matches, most sensitively, the focal
point of the paraboloidal mirror system when the beam is
focused. When the flat surface sample was replaced by a
spherical surface, the thus determined focal plane was the
optimized Y position for the spherical sample. Scanning the
sample along X and Z �vertically� determined the optimized
X and Z positions by maximizing the signal. By doing so, the
crest of the curved surface of the sample �i.e., the point that
is tangential to the focal plane� was exactly placed �within
reasonable experimental error� at the focal point of the pa-
raboloidal system. Therefore, the detector was monitoring
the thermal-wave field emissions from that point. Synchro-
nous thermal radiation information from other points on the
sample surface can be neglected, which is especially true for
our curved surface due to the strong defocusing �receding�
effect of the curvature. Following this procedure, the laser
beam was expanded to �20 mm in diameter by moving the
lens such that the laser beam was large enough to cover the
entire hemispherical surface �i.e., �=90°� and also to vali-
date the 1D model in the case of a flat sample.

Figures 8 and 9 show the experimental results and the

corresponding theoretical fits for two SAE 52100 steel
spheres with diameter of 4.998 and 7.138 mm, respectively.
The experimental data from the spherical ball bearings are
normalized with the data from a C1018 steel flat surface to
eliminate the instrumental transfer function. The fitting was
performed using the phase data as the primary function in the

FIG. 7. �Color online� PTR experimental setup.

FIG. 8. Fitted results of amplitude and phase for a spherical steel sample
with a diameter of 4.998 mm. Both amplitude and phase theoretical fits were
performed using parameters measured from experimental phase data alone.
The theoretical amplitude was calculated using the fitted parameters.

FIG. 9. Fitted results of amplitude and phase for a spherical steel sample
with a diameter of 7.138 mm. Both amplitude and phase theoretical fits were
performed using parameters measured from experimental phase data alone.
The theoretical amplitude was calculated using the fitted parameters.

083503-7 Wang et al. J. Appl. Phys. 101, 083503 �2007�

Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



least square method because the phase is more sensitive to
parameter changes than the amplitude. The corresponding
amplitude data were calculated with the fitted parameters.
Two parameters were introduced for fitting: thermal diffusiv-
ity and measurement angle �. The purpose of introducing �
as a fitting parameter is that it allows taking into account the
measurement angle due to the geometrical arrangement in
the experiment, including the error of localizing the sample
on the focal point in the experiment. The different behaviors
shown in Figs. 3, 4, and 6 with respect to the measurement
angle � and the thermal diffusivity enable the multiparameter
fitting process while preserving the uniqueness of the fitting
parameters. The peak/valley magnitude difference remains
unchanged when the thermal diffusivity changes �Fig. 6�
while the same difference changes significantly with the
measurement angle �Figs. 3 and 4�. This fact is of great im-
portance in practice, because it assures that one does not
have to measure the actual incidence angle of the laser beam
in order to obtain the thermal diffusivity.

Both results show good agreement between the experi-
ments and the theoretical model. The best-fitted thermal dif-
fusivities are 12.9�10−6 m2/s and 12.6�10−6 m2/s, respec-
tively, calculated from Figs. 8 and 9 which are in excellent
agreement with the literature value of 12.0�10−6 m2/s.16

The fitted measurement angle � in Figs. 8 and 9 are 20° and
29°, respectively, which is consistent with the experimental
arrangement in which the laser beam is incident on the
spherical surface at an angle ��30° as seen in Fig. 7. The
discrepancy in � obtained from Figs. 8 and 9 is probably due
to operator induced alignment error. It should be pointed out
that the noise in the normalized experimental data is mainly
due to two sources: �1� Both spherical sample and flat refer-
ence sample were well polished, highly reflective sample
surfaces. The absorption of the incident light was thus lim-
ited, resulting in relatively low signal-to-noise ratio. �2� The
normalization process in both amplitude and phase statisti-
cally adds up the noises of signals from spherical and flat
samples, thus aggravating the signal-to-noise ratio of the nor-
malized signal. As shown in Figs. 8 and 9, the relative errors
in amplitude and phase channels �defined as the ratio of the
average deviation between the experimental data and the the-
oretical fits to the normalized amplitude and phase� are about
3% and 7%, respectively. Considering the fact that the fre-
quency position of the peak/trough in both amplitude and
phase are very sensitive to change in thermal diffusivity, the
overall uncertainty of the fitting results of the thermal diffu-
sivity and the angle have been estimated to be approximately
5%, i.e., the thermal diffusivity lies within the best fitted
values above ±0.3 m2/s.

V. CONCLUSIONS

We have formulated a new thermal-wave model that is
suitable for characterizing spherical samples using laser in-
frared photothermal radiometry. Based on the Green function
method, the thermal-wave field from a spherical sample with
surface illumination from a laser beam with arbitrary spot
size was obtained. The thermal-wave profile dependencies on
various thermophysical and geometrical parameters were
also investigated. In a manner similar to cylindrical solids, it
was found that the thermal diffusivity of the material is the
only thermophysical property involved in the frequency de-
pendence of the thermal-wave field and it affects the pattern
of thermal-wave interference within the body of spherical
solids. The theoretical model was further validated by suit-
able experiments in which spherical steel samples with vari-
ous diameters were measured and compared with literature
values. Together with our earlier investigations on cylindrical
solids,7,8 this work complements the applications of the PTR
technique in the two most commonly used curvilinear coor-
dinate systems.
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