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In this paper, we establish a Green-function based theoretical model for evaluating solid multi-

layered spherical samples which are illuminated by a frequency modulated incident beam. The

specific Green function for the multi-layered spherical structure is derived and an analytical

expression for the thermal-wave field in such a spherical sample is presented. The characteristics of

the thermal-wave field with respect to the thermophysical, geometrical, and measurement

parameters are presented. Unlike the quadruple method, the Green function method is capable of

evaluating thermal-wave fields at any point of multi-layered structures with arbitrary intensity

distributions of incident laser beams. Furthermore, experimental validation is also presented in the

form of experimental results with steel spheres of various diameters. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4743011]

I. INTRODUCTION

Photothermal techniques have been established as a

powerful tool for the thermophysical characterization and

nondestructive evaluation (NDE) of a wide variety of materi-

als.1–5 Photothermal radiometry is based on the generation

and detection of oscillating thermal infrared emission of a

sample as a result of absorption and nonradiative conversion

of an intensity modulated incident laser beam, in which

infrared emission from the material can be quantitatively

evaluated by the Stefan–Boltzmann law. For decades,

research in photothermal techniques has been restricted to

samples with flat surfaces. With the increasing applications

of photothermal radiometry (PTR) to nondestructive evalua-

tion of industrially manufactured products, requirements for

characterization of samples with curvature, such as cylinders

and spheres, have made it necessary to consider the formula-

tion of thermal-wave fields in curvilinear coordinate systems.

Recently, significant progress has been made on studies of

samples with curved surfaces. Wang et al. investigated both

theoretically and experimentally cylindrical and spherical

samples6–10 by the Green function method which is a well

known formalism for solving boundary-value problems,

including thermal-wave fields in diverse geometries. The

thermal-wave field of a sample with incident light of arbi-

trary angular and/or radial intensity distribution can be

obtained once the Green function is determined for a specific

geometry. In parallel, Salazar et al. developed a technique

for characterizing the thermal-wave fields of multi-layered

cylindrical and spherical samples using the quadrupole

method,11–13 in which a linear relation between temperature

and incident heat flux at the outer and inner surfaces of the

sample is used to derive the thermal-wave fields of layered

structures. The quadrupole method, however, is limited to

samples with cylindrical or spherical symmetry and can only

calculate the temperature on the sample surface, which

sometimes limits the general applicability of the theoretical

model. In this paper, we develop a theoretical model for

characterizing solid multi-layered spherical samples using

the Green function method. We first develop the thermal-

wave Green function for the multi-layered geometry, and

then we present an analytical expression for the thermal-

wave field in such a spherical solid. The earlier theoretical

models8,9,11 for two-layer or homogeneous spheres have

been used to demonstrate the validity of this multi-layered

model in the limit of two-layers. Finally, experimental vali-

dation is presented in which two spheres of different diame-

ters are measured and fitted to the theoretical model. In

contrast to the inverse-problem method, a “forward” data-

fitting process14 is employed to reconstruct the depth profile

of the thermophysical parameter. The experimental results

show good agreement with the theoretical model.

II. THEORY

The thermal-wave field of a multi-layered spherical

solid with outer radius rN and inner radii rN�1; rN�2; :::; r1;
ðb ¼ rN > rN�1 > rN�2 > � � � > r1 ¼ aÞ can be derived by

the Green function method. The geometry and the coordinates

of the boundary-value problem are shown in Figure 1. The

thermal conductivity and diffusivity of regions 1 and 2,…, N

are denoted with ðk1; a1Þ and ðk2; a2Þ,…,ðkN ; aNÞ, respec-

tively. The exciting laser beam, which is of circular symmetry

with respect to the z axis and subtends an angle 2w, Figure 1,

impinges on the spherical surface. The harmonic thermal-

wave equation for the material under investigation in region N

can be written asa)E-mail: chinhua.wang@suda.edu.cn.
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r2Tð~r ;xÞ � r2
NðxÞ � Tð~r;xÞ ¼ �

1

kN
Qð~r;xÞ; (1)

where rNðxÞ ¼ ðix=aNÞ1=2 ¼ ð1þ iÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=2aN

p
is the com-

plex thermal wave-number, x is the angular modulation fre-

quency of the laser beam, and Qð~r;xÞ is the volume thermal

source at coordinates ~r ¼ ðr; h;uÞ inside the sphere. Based

on the Green function method, the general solution for

Eq. (1) can be expressed as15

Tð~r;xÞ ¼ aN

kN

� �ð ð ð
V0

Qð~r0;xÞ � GðNÞð~rj~r0;xÞ � dV0

þ aN

þ
S0

h
GðNÞð~rj~r s

0;xÞ � ~r0Tð~r s
0;xÞ

� Tð~r s
0;xÞ � r

*

0GðNÞð~r j~r s
0;xÞ

i
� d~S0; (2)

where S0 is the surface surrounding the domain volume V0

(i.e., region N), which includes the harmonic source

Qð~r0;xÞ;~n is a unit position vector from the origin represent-

ing the coordinate of a source point on the surface S0:
~S0 ¼ ~n � dS0;~r0

s is a position vector tracing the boundary sur-

face S0. GðNÞð~rj~r s
0;xÞ is the thermal-wave Green function

with units of [s/m3]. The general case Eq. (2) can be simpli-

fied depending on specific material properties and boundary

conditions imposed on the solid. For solids with high optical

absorption coefficients, such as metallic samples, the volume

source can be neglected (Qð~r0;xÞ � 0). In this paper, we

will focus on metallic (opaque) materials. Moreover, consid-

ering that illumination of the outer surface by a laser beam

leads to optical-to-thermal energy conversion essentially at

the surface and that the thermal coupling coefficient between

a metallic solid and the surrounding gas (air) is on the order

of 10�3, the adiabatic second-kind (Neumann) boundary

condition at the outer surface can be applied. Furthermore, to

convert the improper Green function to a proper one which

can be applied to multi-layered solids with non-homogeneous

interface conditions,15 we assume a third-kind boundary con-

dition on the inner surface of region N at r ¼ rN�1 as dis-

cussed below. The homogeneous boundary conditions for the

appropriate Green function and inhomogeneous boundary

conditions for the temperature field, respectively, can be writ-

ten as

kN~n•rGðNÞð~rj~r0;xÞjr¼rN�1
¼ hN�1GðNÞð~rj~r0;xÞjr¼rN�1

; (3a)

kN~n•rGðNÞð~r j~r0;xÞjr¼rN
¼ 0; (3b)

�kN~n•rTð~r ;xÞjr¼rN�1
¼ FN�1ð~r;xÞ � hN�1Tð~r;xÞjr¼rN�1

;

(4a)

kN~n•rTð~r ;xÞjr¼rN
¼ FNð~r;xÞjr¼rN

: (4b)

Here hN�1[Wm�2 K�1] is the heat transfer coefficient at the

inner surface SN�1, FN�1, and FN are the heat fluxes [Wm�2]

imposed on the inner and outer surface, respectively. For the

exterior surface of region j, r ¼ rj ð1 � j � N � 2Þ, the

boundary conditions can be written as

Hjð~rj~r0; xÞjr¼rj
¼ Hjþ1ð~rj~r0; xÞjr¼rj

; (5a)

kj
@Hjð~rj~r0; xÞ

@r

����
r¼rj

¼ kjþ1

@Hjþ1ð~r j~r0; xÞ
@r

����
r¼rj

: (5b)

Hjð~rj~r0; xÞ is the spatial impulse-response function in region

j. Therefore, in the absence of volume thermal sources in

region N and in the underlying region N � 1, and with the

FIG. 1. The geometry and coordinates of a multi-layered

spherical solid.
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homogeneous boundary conditions for the Green function

shown in Eqs. (4a) and (4b), the general thermal-wave field

represented by Eq. (2) reduces to

Tð~r;xÞ ¼ � aN

kN

þ
SN�1

FN�1ð~r s
0;xÞ � GðNÞð~rj~r

s
0;xÞ � dS0

þ aN

kN

þ
SN

FNð~r s
0;xÞ � GðNÞð~rj~r

s
0;xÞ � dS0; (6)

where GðNÞð~r j~r s
0;xÞ is the Green function for region N

which must be derived so as to satisfy the appropriate bound-

ary conditions. It should be emphasized that the condition

for Eq. (2) to be reduced to Eq. (6) is that the Green function

must be proper (i.e., homogeneous boundary conditions must

be satisfied at all surfaces enclosing the volume V0).

The details of the derivation of the Green function for

the specified geometry of Fig. 1 are given in the Appendix.

Section I of the Appendix develops the Green function (in

region N) and the spatial impulse-response functions (in

region N � 1,…,2 and 1), respectively, for a multi-layer

concentric spherical structure. The relevant Green function

to be used in the exterior region rN�1 � r � rN is Eq. (A33).

However, great care must be taken since the Green-function

derivation for region N has employed a nonhomogeneous

(continuity) boundary condition at r ¼ rN . Therefore, the

function Eq. (A33) is an improper Green function.15 As a

result, it cannot be applied readily to obtain the thermal-

wave field in region N, because it does not satisfy the requi-

site homogeneous boundary condition at r ¼ rN to validate

the field Eq. (6). A proper Green function for the equivalent

exterior region N, which satisfies a homogeneous third-kind

boundary condition at r ¼ rN�1, must be used instead. This

Green function is given by Eq. (A55). However, in Eq.

(A55), there is no direct thermal-wave coupling to the

under-layer in region (N�1). There is only an indirect

involvement of the inner region at thermal equilibrium

through the heat transfer coefficient hN�1. A direct involve-

ment of region (N�1) into the proper Green function for

region N, Eq. (A55), can be introduced through correlating

the thermal parameters ðkN�1; aN�1Þ in Eq. (A33) in region

N to the (otherwise arbitrary) constant hN�1 in Eq. (A55).

This line of reasoning leads to the equivalence relations

(A57) and (A58) in Sec. II of the Appendix. Those relations

show that for the specified value of hN�1, the proper Green

function Eq. (A55), and its integral, Eq. (6), can be used as

an equivalent Green function and as a valid thermal-wave

field distribution integral, respectively, to describe the

effects of the multi-layer, despite the nonhomogeneous in-

terior boundary conditions. In summary, the appropriate

Green function to be used in Eq. (6) can finally be written

with the observation coordinate-position vector, r, as the

running variable in the form

GðNÞð~r j~r0; xÞ ¼ rN

4paN

X1
l¼0

NlðhÞNlðh0Þ
½YlðrNÞ � XlðrN�1Þ�

�
½nlðkNr0Þ � YlðrNÞ � jlðkNr0Þ�½nlðkNrÞ � XlðrN�1Þ � jlðkNrÞ�; ðrN�1 � r � r0Þ

½nlðkNr0Þ � XlðrN�1Þ � jlðkNr0Þ�½nlðkNrÞ � YlðrNÞ jðkNrÞ�; ðr0 � r � rNÞ

(
(7)

where r0 is the Green-function source radial location, and

XlðrN�1Þ �
½n0lðkNrN�1Þ � mN�1 � nlðkNrN�1Þ�
½j0lðkNrN�1Þ � mN�1 � jlðkNrN�1Þ�

; (8)

YlðrNÞ �
n0lðkNrNÞ
j0lðkNrNÞ

; (9)

mN�1 ¼
½j0lðjN�1rN�1Þ � n0lðjN�1rN�1Þ � cðN�1Þ�

bN;ðN�1Þ½jlðjN�1rN�1Þ þ n0lðjN�1rN�1Þ � cðN�1Þ�
;

and bN;ðN�1Þ ¼ kN=kN�1: (10)

Here kj ¼ irj ¼ �ð1� iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=2aj; ðj ¼ 1; 2; :::NÞ

p
are ther-

mal wave numbers. cN�1 �
t
ðN�1Þ
21

t
ðN�1Þ
11

, where the rhs symbols are

defined in the Appendix. jlðzÞ; j0lðzÞ are a spherical Bessel

function of the first kind of a complex argument of order l

and its derivative, and nlðzÞ, n0lðzÞ are a spherical Bessel

function of the second kind of a complex argument of order l
and its derivative.

Also, NlðhÞ ¼
ffiffiffiffiffiffiffi
2lþ1

2

q
Plðcos hÞ; Nlðh0Þ

ffiffiffiffiffiffiffi
2lþ1

2

q
Plðcos h0Þ;

where Plðcos hÞ is a Legendre polynomial.

In view of the structure of Eq. (6), the prescribed

thermal-wave fluxes FN�1 and FN , at the inner and outer sur-

face of the N-th layer, respectively, must be specified. In our

case, there is no incident flux prescribed at the inner surface

r ¼ rN�1, therefore,

FN�1ð~r0;xÞ ¼ 0; (11)

Assuming that the incident light intensity on the exterior sur-

face is uniform in conformity with standard experimental

photothermal configurations such as laser infrared PTR

(although the theoretical method is valid for any arbitrary

incident beam profile), the thermal-wave flux on that surface

must be weighted using a projection factor in the form of the
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cosine of the incident uniform light intensity which can be

expressed as

FNðrN; h;u;xÞ ¼
1

2
F0 cos h; 0 � h � w; 0 � u � 2p

0; w � h � p; 0 � u � 2p

8<
:

(12)

Substituting Eqs. (11) and (12) into Eq. (6), we obtain

Tð~r;xÞ ¼ aN F0

2kN

þ
SN

GðNÞð~r j~rs;xÞ � cos h0 � dSo; (13)

where dS0 ¼ ð2prN sin h0Þ � ðrN � dh0Þ ¼ 2pr2
N sin h0dh0. Now

interchanging ðr; h;uÞ $ ðr0; h0;u0Þ in the Green function,

Eq. (7), so as to allow integrations over the source coordinates

ðr0; h0;u0Þ and letting r0 ¼ rN (surface source), integration of

Eq. (13) and separation of the l ¼ 0 and l ¼ 1 terms for com-

putational convenience, yields the final thermal-wave field

analytically as

Tð~r ;xÞ ¼ F0

4kN

½n0ðjNrÞ � X0ðrN�1Þj0ðjNrÞ�
j00ðjNrNÞ½Y0ðrNÞ � X0ðrN�1Þ�

����
l¼0

� sin2w
2
þ ½n1ðjNrÞ � X1ðrN�1Þj1ðjNrÞ�

j01ðjNrNÞ½Y1ðrNÞ � X1ðrN�1Þ�

����
l¼1

: cos h � ð1� cos3wÞ
�

�
X1
l¼2

½nlðkNrÞ � XlðrN�1ÞjlðkNrÞ�
j0lðkNrNÞ½YlðrNÞ � XlðrN�1Þ�

� ð2lþ 1Þsin w
ðl� 1Þðlþ 2ÞPlðcos hÞ½sin wPlðcos wÞ þ cos wPl

1ðcos wÞ�
)

(14)

where Pl;Pl
m are Legendre polynomials and Associated Legendre polynomials, respectively.

From the structure of this expression, it is seen that the frequency dependence of the thermal-wave field of a multi-layered

sphere under illumination with a uniform light beam is a strong function of the material thermal diffusivity as well as geomet-

rical factors of the solid.

If the exciting laser beam is Gaussian, the thermal-wave flux on that surface can be expressed as

FNðrN;h;u;xÞ ¼
1

2
F0e�

b2sin2h
w2

� �
cos h; 0 � h � w; 0 � u � 2p

0;w � h � p; 0 � u � 2p

8<
: (15)

Here b is the radius of the sphere, and w is the spotsize of the laser beam.

Then the harmonic thermal-wave equation for the material under investigation in region N can be written as

Tð~r ;xÞ ¼ aN :F0

2kN

þ
SN

GðNÞð~rj~rs;xÞ:e�ð
b2sin2h

w2 Þ � cosh0:dS0: (16)

Using Eq. (7), the thermal-wave field in region N can be obtained

Tð~r;xÞ ¼ F0w2

8kNb2

� �
½n0ðjNrÞ � X0ðrN�1Þj0ðjNrÞ�
j00ðjNrNÞ½Y0ðrNÞ � X0ðrN�1Þ�

����
l¼0

� 1� e�
b2sin2w

w2

	 

þ
X1
l¼1

½nlðjNrÞ � XlðrN�1ÞjlðjNrÞ�
j0lðjNrNÞ½YlðrNÞ � XlðrNÞ�

(

� ð2lþ 1ÞPlðcos hÞ �
ðw

0

Plðcos h0Þ cos h0 sin h0e�
b2sin2w

w2 dh0

)
: (17)

Based on Eq. (17), the thermal-wave fields of a spherical

solid with Gaussian beam illumination can be obtained read-

ily with a numerical integration.

III. NUMERICAL SIMULATIONS

A. Special cases

In this section, we will focus on verifying this theoretical

model through special-case simplification and comparison.

Prior to this, it is noted that although Eq. (14) gives the

thermal-wave field at any point inside the sphere, using the

PTR technique with an opaque solid only the thermal-wave

field from the sample surface can be detected.16 Therefore, our

investigations and simulations will be restricted to the sample

surface at r ¼ rN . In all simulations, the amplitude and phase

of the surface thermal-wave field are normalized to the corre-

sponding amplitude and phase of a homogeneous flat surface

of the same material with semi-infinite thickness (AISI 1018

steel). The thermophysical parameters of AISI 1018 steel are

k ¼ 51:9 W=mK, a ¼ 13:57� 10�6m2=s.17 First, if we set

parameters ðk1; a1Þ, ðk2; a2Þ,…,ðkN�1; aN�1Þ in regions 1,

2,…,(N � 1) equal to parameters ðkN; aNÞ in region N, i.e.,
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ðk1; a1Þ ¼ ðk2; a2Þ ¼ � � � ¼ ðkN; aNÞ, Eq. (14) can be easily

reduced to a single-layer model, i.e., a homogeneous sphere.

The frequency dependence of the surface thermal-wave field

of a uniform solid sphere (the North Pole point, w ¼ p=2) is

simulated in this manner and is shown in Fig. 2. In the simula-

tions, two spherical solids with the same diameter (4 mm) but

made of different materials (aluminum and copper) are inves-

tigated in the limit where the incident light beam is large

enough to cover the whole projectional surface of the spherical

solid, i.e., w ¼ p=2. The other parameters used in the simula-

tions are 401 =mK, a ¼ 112:34� 10�6m2=s for copper and

k ¼ 204 W=mK, a ¼ 84:18� 10�6 m2=s for aluminum. In

addition, the same simulations performed with the theoretical

model developed in Ref. 11 are also presented for comparison.

It can be seen that both amplitude and phase channel of each

sample calculated with the model of Eq. (14) in the limit of a

single layer and those using the actual single layer expression

(the dashed line in Fig. 2) show perfect agreement. The single

layer model developed in Ref. 8 has been found to be suitable

for interpreting PTR measurements. In summary, the photo-

thermal theoretical model of Eq. (14) for a multi-layer sphere

exhibits the correct expected behavior in the limit of a single-

layer sphere.

Equation (14) can also be reduced to a 2-layer model by

assuming parameters ðk1; a1Þ, ðk2; a2Þ,…,ðkN�2; aN�2Þ in

region 1, 2,…, (N � 2) are equal to parameters ðkN�1; aN�1Þ
in region N� 1, i.e., ðk1; a1Þ ¼ ðk2; a2Þ ¼ � � � ¼ ðkN�1; aN�1Þ.
Under the same illumination and measurement geometry, two

AISI 1018 steel spheres coated with aluminum and copper,

respectively are considered, with the same diameter as before,

equal to 4 mm, and coating thickness 1 mm. The surface

thermal-wave fields in the 2-layer solid sphere illuminated by

modulated light were calculated and Fig. 3 shows the fre-

quency dependencies. The symbols are results based on the

present model, Eq. (14), in the limit of two layers and the solid

lines were calculated using the 2-layer quadrupole method

model developed in Ref. 11 for comparison. The results are

identical throughout the entire frequency range. The 2-layer

model developed in Ref. 9 is also presented with a dashed line

in Fig. 3 and also shows perfect coincidence with the simpli-

fied case of the multi-layer model. The foregoing special cases

are proof that the generalized complicated model of multi-

layered spheres yields the expected results in a number of im-

portant limiting cases. Indeed, the agreement involves both

our own earlier results9 and those obtained with the model

developed using the quadrupole method.

B. General case

Simulations involving the full multi-layered model are

now presented. Using the same illumination and measure-

ment geometry as above, two AISI 1018 steel spheres with a

4 mm diameter and different thermal conductivity depth pro-

files are investigated. We assume that the radial thermal con-

ductivity of the inhomogeneous layer in the multilayered

spheres varies continuously with the depth dependence18

kðrÞ ¼ k0

1þ De�Qr

1þ D

� �2

; with D ¼ 1�
ffiffiffiffiffiffiffiffiffiffi
k0=k0

p
ffiffiffiffiffiffiffiffiffiffi
k0=k0

p
� e�QL0

;

(18)

where k0 and k0 represent the thermal conductivity of the out-

ermost layer and innermost layer, respectively; L0 is the total

thickness of the inhomogeneous surface layer (i.e., L0¼ rN

� r1,). For a 2-layer sphere, only the outer layer r2� r� r1 is

assumed inhomogeneous with depth L0¼ r2 � r1. The expo-

nent Q represents the thermal gradient. The assumed depth

FIG. 3. The frequency dependence of surface thermal-wave field from

2-layer spherical solids. Sample A is a steel sphere coated with copper and

sample B is a steel rod coated with aluminum.

FIG. 2. The frequency dependence of thermal-wave field from solid spheres

simulated by this single layer model from degeneration of Eq. (14).
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profile ansatz Eq. (18) is capable of expressing arbitrary

monotonically increasing or decreasing depth profiles if pa-

rameters are properly chosen. Figure 4 shows the assumed

thermal conductivity depth profiles of the two spheres. The

thermal conductivity of the inhomogeneous layer is continu-

ously increased from k¼ 36.05 W/mK (at the surface) to the

saturated value k0 ¼ 51.9 W/mK at L0 (¼ 1 mm) inside the

material but with different gradients for the two spheres;

Q¼ 4000 (1/mm) and Q¼ 8000 (1/mm), respectively.

Figure 5 is the comparison of the frequency dependence of

the surface thermal-wave field in a sphere made of AISI

1018 steel calculated by the Green function theoretical

model, Eq. (14) (symbols) and the quadrupole method (solid

line) in Ref. 13. In Fig. 5, spheres with the continuously vari-

able thermal conductivity depth profiles of Fig. 4 are consid-

ered, however, the use of the discrete multiple layer formula

Eq. (18) necessitated the approximation of the continuous

profile with a step profile. For each virtual slice, j, 1� j�N
(usually for L0¼ 1 mm, N¼ 30 is sufficient to describe a

continuous profile) the value of k(r)¼ k(rj) is calculated by

using Eq. (18) in a stepwise manner for each slice with radial

limits rj� r� rjþ1. The frequency scans of Fig. 5 are normal-

ized by those of a corresponding single-layer flat surface of

the same material and thermal conductivity equal to 51.9

W/mK. It is further seen in Fig. 5 that both amplitude and

phase curves calculated with the Green function model com-

pletely overlap those curves based on the quadrupole method

over the entire frequency range. This indicates that both the-

oretical models are suitable for characterizing multi-layered

spherical samples using the PTR technique.

As shown in Eq. (14), the thermal-wave field is also a

sensitive function of the geometrical and measurement pa-

rameters. Figure 6(a) shows the normalized amplitude and

phase of a spherical solid at different azimuthal angles h
(diameter¼ 4 mm). Figure 6(b) shows the normalized ampli-

tude and phase of spheres with various diameters (D) at

h¼ 0	. In the simulation, the parameters k, k0, and L0 are the

same as those used in Fig. 5 and Q¼ 4000 mm�1.

From Fig. 6(a), it is seen that under the same illumina-

tion and same geometrical diameter, the thermal-wave field

is very sensitive to the measurement angle h, which suggests

that precise alignment is required during an experiment. In

Fig. 6(b), it is seen that the thermal-wave signal varies more

rapidly at increasing frequencies when the solid diameter

decreases. At very high frequencies, all normalized ampli-

tudes and phases converge to constant values, as expected,

due to the very short thermal diffusion length when com-

pared with the radius of curvature of the sphere. At high fre-

quencies, the normalized amplitudes are not equal (ratio 6¼ 1)

because the semi-infinite flat reference material is AISI 1018

steel with k¼ 51.9 W/mK (unhardened inner material),

whereas the thermal conductivity of the surface of the inho-

mogeneous layer is 36.05 W/mK (hardened surface).

Finally, we present the thermal-wave field of a surface

illuminated by a Gaussian laser beam. In the simulation, the

diameter of all spheres is assumed to be 10 mm, and the spot-

size w is assumed to be 2 mm, 4 mm, 10 mm, and 5000 mm

(i.e., close to infinite), respectively. The parameters of the

profile of the thermal conductivity of the inhomogeneous

layer are Q¼ 4000 mm�1, L0¼ 1 mm. The simulation results

are shown in Fig. 7. It is seen that as the spotsize increases,

both amplitude and phase converge to the response of spheres

illuminated with a homogeneous beam. When the laser spot-

size W¼ 500 mm, the two lines overlap, as expected, because

the beam spatial profile distribution converges to a uniform

distribution. The Green-function sensitivity to beam spotsize

demonstrates the capability of this mathematical approach to

deal with arbitrary incident beam profiles. Compared with the

Green function method, the quadrupole approach is limited to

samples with cylindrical or spherical symmetry and can only

calculate the temperature on the sample surface, which

FIG. 4. The assumed thermal conductivity depth profiles of two spherical

samples with different thermal gradients, Q [mm�1].

FIG. 5. Comparison of the frequency dependence of surface thermal-wave

field calculated by the Green function theoretical model and by the quadru-

pole method.
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sometimes limits the general applicability of this theoretical

approach. Using the Green-function method, the temperature

fields of arbitrary asymmetrical solids, such as wedges, as

well as the thermal-wave values at any point inside the solid

can be calculated.

IV. EXPERIMENTAL AND RESULTS

The experimental PTR setup is shown in Fig. 8. The op-

tical excitation source was a high-power semiconductor

laser, the emitted power of which was modulated by a peri-

odic current driver. The harmonic infrared radiation from the

sample surface was collected by an off-axis paraboloidal

mirror system and detected by a HgCdTe detector (EG&G

Judson). The signal from the detector was pre-amplified and

then fed into a lock-in amplifier (EG&G Instruments) inter-

faced with a personal computer.

Fabricating a multilayered or an inhomogeneous spheri-

cal solid, in practice, is actually not easy, especially when

the thickness of the surface layer is on the order of tens of

micrometers to millimeters. In this experiment, we used two

homogeneous steel spheres with diameters of 4.998 mm and

7.138 mm as experimental samples. The well-documented

surface roughness of spherical steel samples was considered

to be the inhomogeneous layer for the purposes of illustrat-

ing this theoretical model. In order to eliminate the instru-

mental transfer function the experimental data were

normalized with the data from a C1018 steel flat surface.

FIG. 8. The experimental PTR setup.

FIG. 6. (a) The normalized amplitude and phase at dif-

ferent azimuthal angles h. (b) The normalized ampli-

tude and phase of spherical solids with different

diameters at h¼ 0	.

FIG. 7. Frequency dependence of the surface thermal-wave field from multi-

layered spheres illuminated by Gaussian beams of various spotsizes. The

curves are normalized with a single-layer flat surface of the same material

and conductivity equal to 51.9 W/mK.
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The experimental procedure has presented in Ref. 8. The

samples were made of SAE52100 steel with composition: C

0.95%–1.05%, Cr 1.40%–1.65%, Si 0.15%–0.35%, P

0.025%, S 0.025%, Cu 0.25%, and Ni 0.30%.

Considering that the thickness of the surface roughness

(or surface inhomogeneous layer) may be on the order of

micrometers, the samples can be evaluated with the homoge-

neous (1-layer), or with the multi-layer model with different

approximations. In Sec. III, it was shown that the multi-layer

model can be reduced to the one-layer model by setting

ðk1; a1Þ ¼ ðk2; a2Þ ¼ � � � ¼ ðkN; aNÞ. In the following, we use

this degenerate one-layer and the general multi-layer model,

respectively, to fit the experimental data.

The experimental data and fitting curves are shown in

Fig. 9. Best fits were performed with the degenerate one-

layer model obtained from the multi-layer model, and also

directly using the multi-layer model. The results are shown

in Table I and the reconstructed thermal diffusivity depth

profiles using the multi-layer model with various diameters

are shown in Fig. 10. When these two types of best-fit results

are compared with those from the original one-layer model,8

they are found to be identical.

For the steel sphere with diameter of 4.998 mm, the

best-fit results from the direct multi-layer model are:

a1¼ 12.8� 10�6 m2/s, aN¼ 12.3� 10�6 m2/s, L0¼ 56 lm,

Q¼ 40 600 mm�1, and h¼ 21.3	. Compared with the results

a1¼ 12.9� 10�6 m2/s, h¼ 20	 obtained with the direct

one-layer model of Ref. 8, the difference of the thermal diffu-

sivity of the spherical substrate is small, about 0.6%. This is

so because the contribution of the inhomogeneous layer to the

PTR signal is very small due to the small thickness of the

very thin layer. The thermal contribution of the surface thin

layer modifies the signal mostly in the high frequency range,

as expected. Nevertheless, taking into account the thin inho-

mogeneous layer of the theoretical model yields better theo-

retical fits than that with the one-layer model. This can be

seen in Fig. 9(a), as the solid line crosses over more experi-

mental data than the dashed line, especially in the high fre-

quency range.

FIG. 9. Fitted results of amplitude and phase for spheri-

cal steel samples with diameters of (a) 4.998 mm and

(b) 7.138 mm by one-layer and multi-layer model,

respectively.

TABLE I. Best-fitted results of spheres based on the degenerate multi-layer

model of Eq. (14).

Diameter

(mm)

a1

(m2/s)

aN

(m2/s)

L0

(lm)

Q

(mm�1)

u
(Degree)

One-layer 4.998 12.9� 10�6 20

model 7.138 12.6� 10�6 29

Multi-layer 4.998 12.8� 10�6 12.3� 10�6 56 40600 21.3

model 7.138 12.6� 10�6 12.4� 10�6 64 43000 28.7

FIG. 10. Reconstructed depth profiles of thermal diffusivity of the surface

roughness (or inhomogeneity) layer of two spheres with diameters of

4.998 mm and 7.138 mm.
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The same trends can also be seen for the spherical sam-

ple with diameter of 7.138 mm. The best-fit results from the

direct multi-layer model are: a1¼ 12.6� 10�6 m2/s,

aN¼ 12.4� 10�6 m2/s, L0¼ 64 lm, Q¼ 43 000 mm�1, and

h¼ 28.7	. Compared with the results a1¼ 12.6� 10�6 m2/s,

h¼ 29	 obtained with the one-layer model of Ref. 8, the

thermal diffusivities of the spherical substrate are identical.

The thickness of the surface roughness is approximately the

same as that of the 4.998-mm diameter sample. Similarly,

the best-fit curve (solid line) from the multi-layer model,

Fig. 9(b), crosses over more experimental data than that

resulting from the original one-layer model (dashed line).

From the comparison of the best-fitted results using the

one-layer and the multi-layer models, it can be seen that the

difference between the results are very small due to the small

thickness of the surface layer. This means that both models

are suitable for thermal parameter measurements in this case.

It is seen, however, that we can obtain more accurate results

by taking into account the roughness layer and using the

multi-layer model. This demonstrates the value of the multi-

layer model in treating more general multi-layer spherical

cases.

V. CONCLUSIONS

We have developed a theoretical thermal-wave model

that is suitable for characterizing opaque multi-layered

spherical samples using optical heating from a laser beam

with arbitrary intensity spatial profile. Based on the Green

function method, the thermal-wave field from a multi-

layered spherical sample with uniform surface illumination

was obtained as a special case of spatial heating profile. The

thermal-wave dependencies on various thermophysical and

geometrical parameters were also investigated. Together

with our earlier investigations on composite cylindrical sol-

ids and spherical solids, this work complements the applica-

tions of thermal-wave techniques, and PTR in particular, in

these two most commonly used curvilinear coordinate sys-

tems. With the advantages of the Green-function method

regarding the arbitrariness of the photothermal source spatial

profile and its ability to handle both homogeneous boundary

conditions (proper Green function) and inhomogeneous

boundary conditions (improper Green function), this model

offers a general analytical tool for characterizing spherical

solids photothermally excited with incident laser beams of

varying spot sizes and angles of incidence, two parameters

of direct experimental relevance.
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APPENDIX: THERMAL-WAVE GREEN FUNCTION FOR
A MULTI-LAYERED SPHERICAL STRUCTURE

To calculate the Green function for a multi-layered

sphere with non-homogeneous boundary conditions at the

interface between the outer and inner layers, the following

two related problems must be solved.

1. Green function and spatial impulse-response
functions for a multi-layered sphere with a spatially
impulsive time-harmonic thermal-wave source at
ðr0; h0;u0Þ, rN21 £ r0 £ rN . A homogeneous Neumann
condition is prescribed at r5rN .

In region j½j ¼ 1; 2; � � � ; ðN � 1Þ�, with thermophysical

properties ðkj; ajÞ, the spatial impulse-response function

Hjð~rj~r0; xÞ (not a Green function in the layer which does not

include the thermal-wave Dirac delta-function source),15 sat-

isfies the homogeneous equation

1

r

@2

@r2
½rHjð~rj~r0; xÞ� þ 1

r2 sin h
@

@h
sin h

@

@h
Hjð~rj~r0; xÞ

	 


þ 1

r2 sin2 h

@2

@/2
Hjð~rj~r0; xÞ � r2

j ðxÞHjð~rj~r0; xÞ

¼ 0 rj�1 � r � rj

� �
: (A1)

In region N ðrN�1 � r � rNÞ, with thermophysical prop-

erties ðkN; aNÞ, the Green function GðNÞð~rj~r0; xÞ satisfies15

1

r

@2

@r2
½rGðNÞð~rj~r0; xÞ� þ 1

r2 sin h
@

@h
sin h

@

@h
GðNÞð~rj~r0; xÞ

	 


þ 1

r2 sin 2h
@2

@/2
GðNÞð~r j~r0; xÞ � r2

NðxÞGðNÞð~rj~r0; xÞ

¼ � dðr � r0Þdðcos h� cos h0Þdðu� u0Þ
aNr2

� ðrN�1 � r � rNÞ; (A2)

where rj ¼ ð1� iÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
x=2aj

p
; ðj ¼ 1; 2;…;NÞ is the complex

thermal-wave number. The Dirac delta function can now be

expanded in the basis of the orthogonal eigenfunction com-

plete set of spherical harmonics fYjmðh;uÞg

dðcos h� cos h0Þdðu� u0Þ ¼
X1
l¼0

Xl

m¼�l

Ylmðh;uÞYlm

ðh0;u0Þ:

(A3a)

when the exciting laser beam is of circular symmetry with

respect to the z axis, m ¼ 0 (always the case in this paper).

Equation (A3) reduces to

dðcos h� cos h0Þdðu� u0Þ ¼
1

2p

X1
l¼0

NlðhÞNlðh0Þ; (A30)

where NlðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ=2

p
Pl cos ðhÞ and Pl cos ðhÞ is a

Legendre polynomial.
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Both the Green function in region N and the impulse-

response function in region j½j ¼ 1; 2; � � � ; ðN � 1Þ� can be

expanded in the basis of the complete set of spherical har-

monic functions fYjmðh;uÞg

Hjð~rj~r0; xÞ ¼ 1

2p

X1
l¼0

hjlð~rj~r0; xÞ � NlðhÞNlðh0Þ; (A4)

GðNÞð~rj~r0; xÞ ¼ 1

2p

X1
l¼0

g
ðNÞ
l ð~rj~r0; xÞ � NlðhÞNlðh0Þ: (A5)

Substituting Eqs. (A4) into (A1), we obtain

hjlðr; r0; xÞ ¼ ajljlðjjrÞ þ bjlnlðjjrÞ
� ðrj�1 � r � rj; j ¼ 1; rj�1 � 0Þ; (A6)

where 1 � j � N � 1, j is natural number.

jjðxÞ � irj ¼ �ð1� iÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
x=2aj

p
; ðj ¼ 1; 2; � � � ;NÞ and

when j ¼ 1, b1l � 0 (because nlðj1rÞ becomes unbounded as

r ! 0).

Substituting Eqs. (A5) and (A30) into Eq. (A2), we

obtain

1

r

d2

dr2
½rg
ðNÞ
l ðrjr0; xÞ� þ j2

N �
lðlþ 1Þ

r2

	 

g
ðNÞ
l ðrjr0; xÞ

¼ � dðr � r0Þ
aNr2

ðrN�1 � r � rNÞ; (A7)

when r 6¼ r0, Eq. (A7) reduces to a homogenous equation.

Assuming its solution to be

g
ðNÞ
l ðr; r0; xÞ ¼

aNljlðjNrÞ þ bNlnlðjNrÞ; ðrN�1 � r � r0Þ

aNljlðjNrÞ þ bNlnlðjNrÞ þ jlðjNrÞnlðjNr0Þ � jlðjNr0ÞnlðjNrÞ
f ðr0ÞWðjNr0Þ

ðr0 � r � rNÞ;

8><
>: (A8)

where, using Green-function reciprocity, WðjNr0Þ � jlðjNr0Þ
n0lðjNr0Þ � j0lðjNr0ÞnlðjNr0Þ is the Wronskian identity for

the functions jlðjNrÞ and nlðjNrÞ, f ðr0Þ ¼ aNr2
0. The next task

is to derive relations among the coefficients of these N
equations.

In the exterior surface of region j, r ¼ rj ð1 � j � N � 2Þ

Hjð~rj~r0; xÞjr¼rj
¼ Hjþ1ð~r j~r0; xÞjr¼rj

; (A9)

kj
@Hjð~rj~r0; xÞ

@r

����
r¼rj

¼ kjþ1

@Hjþ1ð~rj~r0; xÞ
@r

����
r¼rj

: (A10)

At r ¼ rN , a homogeneous Neumann condition is assumed

@GðNÞð~rj~r0; xÞ
@r

����
r¼rN

¼ 0: (A11)

Substituting the boundary conditions (A9)–(A11) into Eqs.

(A6) and (A8), and omitting the subscript l of the coefficients

for convenience, we obtain

At r ¼ r1,

a1jlðj1r1Þ ¼ a2jlðj2r1Þ þ b2nlðj2r1Þ; (A12)

a1j0lðj1r1Þ ¼ b21½a2j0lðj2r1Þ þ b2n0lðj2r1Þ�; (A13)

where

bjþ1;j � kjþ1=kj: (A13a)

At r ¼ r2,

a2jlðj2r2Þ þ b2nlðj2r2Þ ¼ a3jlðj3r2Þ þ b3nlðj3r2Þ; (A14)

a2j0lðj2r2Þ þ b2n0lðj2r2Þ ¼ b32½a3j0lðj3r2Þ þ b3n0lðj3r2Þ�;
(A15)

……

At r ¼ rj,

ajjlðjjrjÞ þ bjnlðjjrjÞ ¼ ajþ1jlðjjþ1rjÞ þ bjþ1nlðjjþ1rjÞ;
(A16)

ajj
0
lðjjrjÞ þ bjn

0
lðjjrjÞ ¼ bjþ1;j½ajþ1j0lðjjþ1rjÞ

þ bjþ1n0lðjjþ1rjÞ�; (A17)

……

where 1 � j � N � 1.

At r ¼ rN ,

aNj0lðjNrNÞ þ bNn0lðjNrNÞ ¼ �
jN

aN
½j0lðjNrNÞnlðjNr0Þ

� jlðjNr0Þn0lðjNrNÞ�:
(A18)

To solve these equations, two steps are required. First, we

consider a1 to be a known number. Next we turn every two

equations into a pair for (aj,bj): ða1; b1 ¼ 0Þ ! ða2; b2Þ !;
� � � ; ðaN�1; bN�1Þ ! ðaN ; bNÞ. Then aN; bN can be expressed

in terms of a1, successively through the use of matrix methods

applied to the pair of Eqs. (A16) and (A17), taking into

account Eqs. (A12)–(A18). We thus obtain
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a2

b2

	 

¼ T1

a1

b1

	 

; (A19)

a3

b3

	 

¼ T2

a2

b2

	 

; (A20)

a4

b4

	 

¼ T3

a3

b3

	 

; (A21)

::::::;

aj

bj

" #
¼ Tj�1

aj�1

bj�1

" #
;

::::::;

aN

bN

" #
¼ TN�1

aN�1

bN�1

" #
;

(A22)

Combining matrices yields

aN

bN

	 

¼ TN�1TN�2 � � � T2T1

a1

b1

	 

(A23)

and b1 � 0, Tj ¼ B�1
j Aj, we find

Aj ¼
jlðjjrjÞ; nlðjjrjÞ
j0lðjjrjÞ; n0lðjjrjÞ

	 

;

Bj ¼
jlðjjþ1rjÞ; nlðjjþ1rjÞ
bjþ1;jj

0
lðjjþ1rjÞ; bjþ1;jn

0
lðjjþ1rjÞ

" #
: (A24)

Since we are only interested in aN; bN , we can avoid solving

for a1. In principle, we can write out the matrix

TN�1TN�2 � � � T2T1, in the form of

TN�1TN�2 � � � T2T1 �
t
ðNÞ
11 ; t

ðNÞ
12

t
ðNÞ
21 ; t

ðNÞ
22

" #
; (A25)

so that, aN ¼ t
ðNÞ
11 a1, bN ¼ t

ðNÞ
21 a1.

It follows that

bN

aN
¼ t
ðNÞ
21

t
ðNÞ
11

� cN; where cj �
t
ðjÞ
21

t
ðjÞ
11

: (A25a)

Also

aNj0lðjNrNÞ þ bNn0lðjNrNÞ ¼ �
jN

aN
½ j0lðjNrNÞnlðjNr0Þ

� jlðjNr0Þn0lðjNrNÞ� (A26)

or

aN½j0lðjNrNÞtðNÞ11 þ n0lðjNrNÞtðNÞ21 �

¼ kNt
ðNÞ
11

aN
½j0lðjNrNÞnlðjNr0Þ � jlðjNr0Þn0lðjNrNÞ�: (A27)

Finally, we obtain the solution

aN ¼
jNt
ðNÞ
11

aN½j0lðjNrNÞtðNÞ11 þ n0lðjNrNÞtðNÞ21 �
� ½jlðjNr0Þn0lðjNrNÞ � j0lðjNrNÞnlðjNr0Þ�; (A28)

bN ¼
jNt
ðNÞ
21

aN½j0lðjNrNÞtðNÞ11 þ n0lðjNrNÞtðNÞ21 �
� ½jlðjNr0Þn0lðjNrNÞ � j0lðjNrNÞnlðjNr0Þ�; (A29)

Using the Green function definition

gðNÞlðr; r0; xÞ ¼
g<l ðr; r0; xÞ; ðrN�1 � r � r0Þ
g>l ðr; r0; xÞ; ðr0 � r � rNÞ:

(
(A30)

we find

g<lðr; r0; xÞ ¼ jN½jlðjNrÞtðNÞ11 þ nlðjNrÞtðNÞ21 �
aN ½j0lðjNrNÞtðNÞ11 þ n0lðjNrNÞtðNÞ21 �
� ½jlðjNr0Þn0lðjNrNÞ � j0lðjNrNÞnlðjNr0Þ�
� ðrN�1 � r � r0Þ; (A31)

g>lðr; r0; xÞ ¼ jN ½jlðjNr0ÞtðNÞ11 þ nlðjNr0ÞtðNÞ21 �
aN½j0lðjNrNÞtðNÞ11 þ n0lðjNrNÞtðNÞ21 �
� ½jlðjNrÞn0lðjNrNÞ � j0lðjNrNÞnlðjNrÞ�;
ðr0 � r � rNÞ (A32)

where t
ðNÞ
11 ; t

ðNÞ
21 are defined in Eq. (A25). Connecting this for-

malism to Eq. (A5)

GðNÞlðr; r0; xÞ ¼
G<

l ðr; r0; xÞ; ðrN�1 � r � r0Þ
G>

l ðr; r0; xÞ; ðr0 � r � rNÞ;

(
(A33)

where

G<
lðr; r0; xÞ ¼

X1
l¼0

NlðhÞNlðh0Þ

� jN½jlðjNrÞtðNÞ11 þ nlðjNrÞtðNÞ21 �
2paN½j0lðjNrNÞtðNÞ11 þ n0lðjNrNÞtðNÞ21 �
� ½jlðjNr0Þn0lðjNrNÞ � j0lðjNrNÞnlðjNr0Þ� ;
rN�1 � r � r0 (A34)

G>
lðr; r0; xÞ ¼

X1
l¼0

NlðhÞNlðh0Þ

� jN½jlðjNr0ÞtðNÞ11 þ nlðjNr0ÞtðNÞ21 �
2paN½j0lðjNrNÞtðNÞ11 þ n0lðjNrNÞtðNÞ21 �
� ½jlðjNrÞn0lðjNrNÞ � j0lðjNrNÞnlðjNrÞ�;
ðr0 � r � rNÞ (A35)

It is noted that when N ¼ 2, from Eq. (A24)
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B�1
1 A1 ¼

j2r2
1

b21

b21n0lðj2r1Þ;�nlðj2r1Þ

�b21j0lðj2r1Þ; jlðj2r1Þ

" #
jlðj1r1Þ; nlðj1r1Þ

j0lðj1r1Þ; n0lðj1r1Þ

" #

¼ c
b21n0lðj2r1Þjlðj1r1Þ � nlðj2r1Þj0lðj1r1Þ;

�½b21j0lðj2r1Þjðj1r1Þ � jlðj2r1Þj0lðj1r1Þ�;

b21n0lðj2r1Þnlðj1r1Þ � nlðj2r1Þn0lðj1r1Þ

�½b21j0lðj2r1Þnlðj1r1Þ � jlðj2r1Þn0lðj1r1Þ�

" #
ðwhere c � j2r2

1=b21Þ

(A36)

These expressions put in the form of Eq. (A25) yield

t
ð2Þ
11 ¼ c½b21n0lðj2r1Þjlðj1r1Þ � nlðj2r1Þj0lðj1r1Þ�; (A37)

t
ð2Þ
21 ¼ �c½b21j0lðj2r1Þjlðj1r1Þ � jlðj2r1Þj0lðj1r1Þ�: (A38)

Substituting Eqs. (A37) and (A38) into Eq. (A33), we obtain

the Green function for a bi-layered spherical structure which

is identical to that derived in Ref. 9, as expected.

Similarly, for the impulse response, from Eq. (A23), we

can obtain

aN

bN

	 

¼ TN�1TN�2 � � � Tjþ1Tj

aj

bj

	 

: (A39)

Then

aj

bj

	 

¼ Tj

�1T�1
jþ1 � � � T�1

N�1T�1
N

aN

bN

	 

: (A40)

We can write out the matrix Tj
�1T�1

jþ1 � � � T�1
N�1T�1

N , in the form

Tj
�1T�1

jþ1 � � � T�1
N�1T�1

N �
w
ðjÞ
11 ;w

ðjÞ
12

w
ðjÞ
21 ;w

ðjÞ
22

" #
: (A41)

So

aj ¼ w
ðjÞ
11aN þ w

ðjÞ
12bN; (A42)

bj ¼ w
ðjÞ
21aN þ w

ðjÞ
22bN: (A43)

Also

hjlðr; r0; xÞ ¼ ajljlðjjrÞ þ bjlnlðjjrÞ: (A44)

Now the solution can be written as

hjlðr; r0; xÞ ¼ ðwðjÞ11aN þ w
ðjÞ
12bNÞjlðjjrÞ

þ ðwðjÞ21aN þ w
ðjÞ
22ÞnlðjjrÞ: (A45)

Then the spatial impulse-response function of region j
becomes

Hjð~rj~r0; xÞ ¼ 1

2p

X1
l¼0

½ðwðjÞ11aN þ w
ðjÞ
12bNÞjlðjjrÞ

þ ðwðjÞ21aN þ w
ðjÞ
22bNÞnlðjjrÞ� � NlðhÞNlðh0Þ:

(A46)

2. Equivalence relation between a multi-layer compos-
ite sphere with homogeneous Neumann conditions at
the exterior surface of region Nðr5rN Þ (Sec. I) and a
hollow sphere with a homogeneous Neumann condi-
tion at r5bfirN (exterior surface), namely m250, and a
homogeneous third-kind boundary condition at inte-
rior surface of a hollow sphere r5afirN21

In Sec. I, the Green function, Eq. (A33), evaluated at

r ¼ rN�1 can be re-arranged as follows:

GðNÞð~rN�1j~r0; xÞ ¼ jN

2paN

X1
l¼0

gðNÞðr1; r2; � � � rN ; rN�1Þ

� jlðjNr0Þn0lðjNrNÞ � j0lðjNrNÞnðjNr0Þ
� �
� NlðhÞ � Nlðh0Þ; (A47)

where gðNÞðr1; r2; � � � rN�1; rNÞ ¼ jlðjNrN�1Þ�tðNÞ11
þnlðjNrN�1Þ�tðNÞ21

j0 lðjNrNÞ�tðNÞ11
þn0 lðjNrNÞ�tðNÞ21

:

The quantities t
ðNÞ
11 and t

ðNÞ
21 can be determined from

t
ðNÞ
11

t
ðNÞ
21

" #
¼ TN�1

t
ðN�1Þ
11

t
ðN�1Þ
21

" #
; (A48)

where

TN�1 ¼ B�1
N�1AN�1

¼ jNr2
N�1

bN;N�1

bN;N�1n0lðjNrN�1Þ;�nlðjNrN�1Þ
�bN;N�1j0lðjNrN�1Þ; jlðjNrN�1Þ

	 

: (A49)

Furthermore,

jlðjN�1rN�1Þ;nlðjN�1rN�1Þ
j0lðjN�1rN�1Þ;n0lðjN�1rN�1Þ

	 


¼c
bN;N�1n0lðjNrN�1ÞjlðjN�1rN�1Þ�nlðjNrN�1Þj0lðjN�1rN�1Þ;
�½bN;N�1j0lðjNrN�1ÞjðjN�1rN�1Þ�jlðjNrN�1Þj0lðjN�1rN�1Þ�;

bN;N�1n0lðjNrN�1ÞnlðjN�1rN�1Þ�nlðjNrN�1Þn0lðjN�1rN�1Þ
�½bN;N�1j0lðjNrN�1ÞnlðjN�1rN�1Þ�jlðjNrN�1Þn0lðjN�1rN�1Þ�

" #
;

(A50)
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where c � jNr2
N�1=bN;N�1.

Combining results,

jlðjNrN�1ÞtðNÞ11 þ nlðjNrN�1ÞtðNÞ21 ¼
c

jNr2
N�1

bN;N�1½jlðjN�1rN�1ÞtðN�1Þ
11 þ nlðjN�1rN�1ÞtðN�1Þ

21 �: (A51)

Similarly we find

j0lðjNrNÞtðNÞ11 þ n0lðjNrNÞtðNÞ21 ¼ cfbN;N�1½jlðjN�1rN�1ÞtðN�1Þ
11 þ nlðjN�1rN�1ÞtðN�1Þ

21 �½j0lðjNrNÞn0lðjNrN�1Þ� j0lðjNrN�1Þn0lðjNrNÞ�

þ ½j0lðjN�1rN�1ÞtðN�1Þ
11 þ n0lðjN�1rN�1ÞtðN�1Þ

21 �½jlðjNrN�1Þn0lðjNrNÞ � j0lðjNrNÞnlðjNrN�1Þ�g:
(A52)

Collecting terms

GðNÞð~rN�1j~r0; xÞ ¼ jN

2paN

X1
l¼0

NlðhÞNlðh0Þ

� ½jlðjNr0Þn0lðjNrNÞ � nlðjNr0Þj0lðjNrNÞ�=ðjNr2
N�1Þ

½j0lðjNrNÞn0lðjNrN�1Þ � j0lðjNrN�1Þn0lðjNrNÞ� þ k½jlðjNrN�1Þn0lðjNrNÞ � j0lðjNrNÞnlðjNrN�1Þ�
; (A53)

where

k � ½j0lðjN�1rN�1ÞtðN�1Þ
11 þ n0lðjN�1rN�1ÞtðN�1Þ

21 �
bN;ðN�1Þ½jlðjN�1rN�1ÞtðN�1Þ

11 þ nlðjN�1rN�1ÞtðN�1Þ
21 �

: (A54)

For a hollow sphere, the Green function in the region N can be expressed as9

Gð~rN�1j~r0; xÞ ¼ jN

2paN

X1
l¼0

NlðhÞNlðh0Þ

� ½jlðjNr0Þn0lðjNrNÞ � nlðjNr0Þj0lðjNrNÞ�=ðjNr2
N�1Þ

½j0lðjNrNÞn0lðjNrN�1Þ � j0lðjNrN�1Þn0lðjNrNÞ� þ mðN�1Þ½jlðjNrN�1Þn0lðjNrNÞ � j0lðjNrNÞnlðjNrN�1Þ�
: (A55)

Comparing with Eq. (A53), it is found that

mðN�1Þ ¼ k

¼ ½j0lðjN�1rN�1ÞtðN�1Þ
11 þ n0lðjN�1rN�1ÞtðN�1Þ

21 �
bN;ðN�1Þ½jlðjN�1rN�1ÞtðN�1Þ

11 þ nlðjN�1rN�1ÞtðN�1Þ
21 �

;

ðN � 2Þ: (A56)

Using definitions Eqs. (A25a) and (A13a), m(N�1) can be

written in the form

mðN�1Þ ¼
½j0lðjN�1rN�1Þ þ n0lðjN�1rN�1ÞcðN�1Þ�

bN;ðN�1Þ½jlðjN�1rN�1Þ þ nlðjN�1rN�1ÞcðN�1Þ�
:

(A57)

Now turning to the relation

mðN�1Þ �
hðN�1Þ

kN
(A58)

between m(N�1) and the effective heat transfer coefficient

h(N�1),
15 we find

hðN�1Þ ¼ kðN�1Þ �
½j0lðjN�1rN�1Þ þ n0lðjN�1rN�1ÞcðN�1Þ�
½jlðjN�1rN�1Þ þ nlðjN�1rN�1ÞcðN�1Þ�

:

(A59)

If N ¼ 2, Eq. (A57) reduces to Ref. 6, Eq. (A.3.4)

h1 ¼ k1 �
j0lðj1r1Þ þ n0lðj1r1Þc1

jlðj1r1Þ þ nlðj1r1Þc1

¼ k1

j0lðj1r1Þ
jlðj1r1Þ

; ðc1 � 0Þ:

(A60)

As expected, on replacing the otherwise arbitrary con-

stants mðN�1Þ and hðN�1Þ in Eq. (A55) with the foregoing

expressions which contain thermal-wave parameters from the
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underlayer region N � 1, the Green function (A33) can be

transformed into a proper Green function for region N. As

such, Equations (A55) with Eqs. (A57) and (A59) satisfy the

field equations (6) and (7) with those particular values of

mðN�1Þ and hðN�1Þ. Substituting mðN�1Þ and hðN�1Þ into Eq.

(A59), one can obtain the Green function in region N, and on

using in Eq. (5) FNð~rs
N;xÞ from Eq. (12), the thermal-wave

field, Eq. (14), is obtained in region N after some algebraic

manipulation.
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