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In this work, we establish a theoretical model for a cylindrical rod of radius R with opening

angle h illuminated by a modulated incident beam. The model uses the Green function method in

cylindrical coordinates. An analytical expression for the Green function and thermal-wave

field in such a solid is presented. The theory is validated in the limit of reducing the arbitrary

wedge geometrical structure to simpler geometries. For acute angle wedges, it is shown that

the thermal-wave field near the edge exhibits confinement behavior and increased amplitude

compared to a flat (reference) solid with h¼p. For obtuse angle wedges, it is shown that the

opposite is true and relaxation of confinement occurs leading to lower amplitude thermal-wave

fields. The theory provides a basis for quantitative thermophysical characterization of

wedge-shaped objects and it is tested using an AISI 304 steel wedge and photothermal

radiometry detection. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798575]

I. INTRODUCTION

Laser photothermal radiometry (PTR) has become a

powerful tool for the thermophysical characterization and

non-destructive evaluation (NDE) of broad classes of materi-

als due to its noninvasive and highly sensitive nature. When

compared with other photothermal methods, such as mirage-

effect, thermal lens, and/or photothermal beam deflection,

PTR is relatively simple in terms of experimental apparatus

and is versatile in terms of the sample geometry (e.g., thin/

thick or flat/curvature) and physical properties (e.g., trans-

parent/opaque). Thermal waves are generated in a material

as a consequence of the absorption of an intensity modulated

beam. These highly damped thermal waves propagate

through the material and are interrupted or scattered by bur-

ied heterogeneities. With increasing PTR applications to the

characterization of materials with curved surfaces, studies on

curvilinear solids (e.g., cylindrical or spherical samples1–8)

have been performed in recent years. In this work, we estab-

lish a theoretical model by means of the Green function

method in cylindrical coordinates for a class of wedge-

shaped structures surrounded by walls of radius R illumi-

nated by a modulated incident uniform or Gaussian beam.

Thermal waves are generated along the plane wall at dis-

tance r (0< r<R) from the edge, Fig. 1. Based on the theo-

retical model, the thermal-wave fields of arbitrary-angled

wedges and their behavior with respect to modulation fre-

quency at any point on the wall surfaces of the wedge can be

obtained. It is found that the thermal-wave field near the

edge exhibits different behavior from that at a far distance

from the edge. If the position vector r of the measurement

point extends far enough away from the edge compared to

the thermal diffusion length, the thermal-wave field at this

point is reduced to that of a semi-infinite flat sample,9 as

expected.

II. THEORY

The geometry and coordinates of the wedge-shaped

structure are shown in Fig. 1. The Green function for the cy-

lindrical sector of infinite height, radius R, and opening angle

h, can be obtained by assuming a spatially impulsive

thermal-wave source located at ðr0; z0;/0Þ and homogeneous

Neumann conditions along all bounding surfaces.

In cylindrical coordinates, the Green function satisfies
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where x is the angular frequency, a denotes the thermal dif-

fusivity, and r has the physical meaning of the thermal wave

number which is defined as r ¼
ffiffiffiffiffiffiffiffiffiffi
ix=a

p
.

This equation can be solved using separation of varia-

bles with Gðr; z;/j~r0; xÞ ¼ RðrÞZðzÞUð/Þ and adiabatic

(zero thermal-wave flux) boundary conditions on the open

flat surfaces forming the corner at /¼ 0, h. This type of

boundary condition is justified, in practice, due to the large

difference in thermal effusivity between metallic solids and

a)Author to whom correspondence should be addressed. Electronic mail:

chinhua.wang@suda.edu.cn.

0021-8979/2013/113(13)/133501/8/$30.00 VC 2013 American Institute of Physics113, 133501-1

JOURNAL OF APPLIED PHYSICS 113, 133501 (2013)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  128.100.49.199 On: Wed, 23 Mar

2016 21:00:41

http://dx.doi.org/10.1063/1.4798575
http://dx.doi.org/10.1063/1.4798575
http://dx.doi.org/10.1063/1.4798575
mailto:chinhua.wang@suda.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4798575&domain=pdf&date_stamp=2013-04-01


the surrounding air which is acting as an effectively insulat-

ing interface. The resulting ordinary differential equation for

the axial component Z(z) is

d2ZðzÞ
dz2

� ðr2 þ k2ÞZðzÞ ¼ 0; (2)

where k is the first separation variable. The bounded solution

of Eq. (2) is

ZnðzÞ ¼
Ane�

ffiffiffiffiffiffiffiffiffiffi
r2þk2
p

�ðz0�zÞ; z � z0

Bne�
ffiffiffiffiffiffiffiffiffiffi
r2þk2
p

�ðz�z0Þ; z � z0

; n ¼ 0; 1; 2;…

8<
: (3)

Then by introducing the second separation variable l, the az-

imuthal angle equation can be written as

d2Uð/Þ
d/2

þ l2Uð/Þ ¼ 0: (4)

Applying the homogeneous boundary conditions dU
d/ j/¼0

¼ dU
d/ j/¼h ¼ 0 yields the following solutions (eigenfunctions):

Unð/Þ ¼ Cn cos
np/
h

� �
; n ¼ 0; 1; 2… (5a)

and the associated eigenvalues

ln ¼
np
h
; n ¼ 0; 1; 2;… (5b)

Finally, the radial equation is

r
d

dr
r

dRðrÞ
dr

� �
þ ðr2k2 � l2ÞRðrÞ ¼ 0 (6)

with solution bounded at the origin

RnðrÞ ¼ DnJnp=hðkrÞ; n ¼ 0; 1; 2;…; (7)

where J(.) represents the Bessel function of the first kind of

non-integer order. Equation (7) is subject to a Neumann

boundary condition at r ¼ R

dRnðrÞ=drjr¼R ¼ 0: (8)

Substituting Eq. (7) in the well-known recursion expression

for the derivative of Bessel functions gives

ðkRÞJðnp=hÞ�1ðkRÞ ¼ np
h

� 	
Jðnp=hÞðkRÞ; n ¼ 0; 1; 2;… (9)

For n¼ 0, the eigenvalue equation reduces to

J1ðkRÞ ¼ 0) k ¼ bm ¼ cm=R; m ¼ 1; 2; 3;…; (10)

where J1ðcmÞ ¼ 0. For other values of n, we require the set

of m roots of the Bessel function Jnp=hðkRÞ which satisfies

dJnp=hðkrÞ=dr
��
r¼R ¼ 0: (11)

Therefore, k ¼ knm with k0m� bm. This yields the Green

function expression

G<ðr; z;/j~r0; xÞ ¼
X1
n¼0

X1
m¼1

anmJnp=hðknmrÞe�nnmðz0�zÞ

� cos

�
np/
h

�
; z � z0; (12)
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X1
n¼0

X1
m¼1
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� cos

�
np/
h

�
; z � z0; (13)

where

nnmðxÞ ¼
�

k2
nm þ

ix
a

�1
2

: (14)

Working with these equations and using the orthogonality

condition9

ðR

0

J2
np=hðknmrÞrdr ¼ R2

2

�
1�

�
np

hknmR

�2�
J2

np=hðknmRÞ;

(15)

the following Green function is obtained:

FIG. 1. (a) The relation of an ordinary Cartesian coordinate and a cylindrical

coordinate. (b) The geometry and coordinates of a wedge-like solid used in

our simulation and experiment.

133501-2 Tai et al. J. Appl. Phys. 113, 133501 (2013)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  128.100.49.199 On: Wed, 23 Mar

2016 21:00:41



Gðr;z;ujr0;z0;u0;xÞ¼ 1

haR2

X1
m¼1

J0ðbmrÞJ0ðbmr0Þe�n0mjz�z
0
j

n0mJ2
0ðbmRÞ þ2

X1
n¼1

Jnp=hðknmrÞJnp=hðknmr0Þe�nnmjz�z
0
jcos

�
npu
h

�
cos

�
npu0

h

�
nnm½1�ðnp=hknmRÞ2�J2

np=hðknmRÞ

8>><
>>:

9>>=
>>;:

(16)

For a laser or general optical beam incident at / ¼ 0, i.e., on

the flat surface comprising one of the two walls of the

wedge, the thermal-wave field for an opaque material (no

volume source) such as a metal wedge is given by

Tð~r;xÞ ¼ a�
S0

½Gð~rj~r s
0; xÞ ~rTð~r s

0;xÞ� • d~S0: (17)

Assuming that the incident light intensity on the plane sur-

face is uniform, the optical intensity can be expressed as

k~n • ~rTðr; z; 0; xÞ ¼ 1

2
F0ð1þ eixtÞ; (18)

where F 0 is the optical flux on the surface and k is the ther-

mal conductivity. The thermal-wave field should be single-

valued along the axial (length) direction z (at the corner

discontinuity r¼ 0), regardless of the location of the source:

Tð0; z; 0; xÞ ¼ Tð0; z; h; xÞ: (19)

The final expression for the thermal-wave field is

Tðr; z;u; xÞ ¼ F0

2hkR2

X1
m¼1

J0ðbmrÞ
n0mJ2

0ðbmRÞ

ð1
�1

e�n0mjz�z
0
jdz0

ðR

0

J0ðbmr0Þdr0




þ 2
X1
n¼1

Jnp=hðknmrÞ
nnm½1� ðnp=hknmRÞ2�J2

np=hðknmRÞ

ð1
�1

e�nnmjz�z
0
jdz0

ðR

0

Jnp=hðknmr0Þdr0

�
: (20)

If the detection point is ðr; 0; 0Þ and the opening angle is h ¼ 3p=2, i.e., the two walls of the wedge intersect vertically to form

an obtuse right corner, Eq. (20) can be further written as

Tðr; 0; 0; xÞ ¼ F0

3pkR2

X1
m¼1

(
J0ðbmrÞ

n0mJ2
0ðbmRÞ

ð1
�1

e�n0mjz0
jdz0

ðR

0

J0ðbmr0Þdr0

þ 2
X1
n¼1

J2n=3ðknmrÞ
nnm½1� ð2n=3knmRÞ2�J2

2n=3
ðknmRÞ

ð1
�1

e�nnmjz0
jdz0

ðR

0

J2n=3ðknmr0Þdr0

)
: (21)

From the structure of this expression, it is seen that the fre-

quency dependence of the thermal-wave field of a wedge

illuminated with a uniform light beam is a strong function of

the thermophysical parameters of the material as well as the

geometrical factors of the solid.

It is computationally very intensive to perform the nu-

merical simulation directly from Eq. (20) because for large

values of n and m in k ¼ knm convergence is very slow. A

simplification of Eq. (20) is necessary for numerical compu-

tation purposes. For wedge-like solids, the cylindrical bound-

ary curvature can be ignored for R large enough such as

R!1 is a valid approximation. The following transforma-

tion of the first term in Eq. (20) can be made:9

1

R2

X1
n¼1

J0ðbmrÞJ0ðbmr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bm

2 þ r2
p

J0
2ðbmRÞ

! 1

2

ð1
0

J0ðkrÞJ0ðkr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ r2

p kdk;

(22)

where

lim
R!1
ðbmÞ ¼ k; (23)

and the z integration yieldsð1
�1

e�n0mjz0jdz0 ¼
2

n0m

: (24)

Using Eqs. (22) and (24), the first term of Eq. (20) can be

written in the limit R!1 as

1

R2

X1
n¼1

J0ðbmrÞJ0ðbmr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bm

2 þ r2
p

J0
2ðbmRÞ

ð1
�1

e�nnmjz0jdz0

ðR

0

J0ðbmr0Þdr0

¼
ðR

0

dr0

ð1
0

J0ðkrÞJ0ðkr0Þ
k2 þ r2

kdk: (25)

The inner integral on the rhs of Eq. (25) has an analytical

solution9

ð1
0

J0ðkrÞJ0ðkr0Þ
k2þ r2

kdk¼
I0ðrrÞK0ðrr0Þ; 0� r � r0

K0ðrrÞI0ðrr0Þ; 0� r0 � r
:

(
(26)

Substituting Eq. (26) into Eq. (25), the first term of Eq. (20)

can be transformed in the limit R!1
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1

R2

X1
n¼1

J0ðbmrÞJ0ðbmr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bm

2 þ r2
p

J0
2ðbmRÞ

ð1
�1

e�n0mjz0jdz0
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0

J0ðbmr0Þdr0 ¼
ðr

0
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r

I0ðrr0ÞK0ðrrÞdr0: (27)

Following the same procedure, the second term of Eq. (20) can also be written in the limit R!1 as

2
X1
n¼1

J2n=3ðknmrÞ
nnm½1� ð2n=3knmRÞ2�J2

2n=3
ðknmRÞ
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Inp=hðrrÞKnp=hðrr0Þdr0

)
: (28)

The final operational expression for the thermal-wave field in the limit of infinite radius of curvature is given as

Tðr; 0; 0; xÞ ¼ F0

2kh

ðr

0

½I0ðrr0ÞK0ðrrÞ þ 2
X1
n¼1

Inp=hðrr0ÞKnp=hðrrÞ�dr0

þ
ð1
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8>>>><
>>>>:

9>>>>=
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: (29)

If the exciting optical source is a Gaussian laser beam centered at ðq0; 0; 0Þ, the thermal-wave flux into the solid on the flat sur-

face /¼ 0 is

kn̂ • ~r Tðr; z; 0; xÞ ¼ 1

2
F0 expf�½ðr � q0Þ2 þ z2�=W2gð1þ eixtÞ: (30)

In this case, the expression for the thermal-wave field becomes

Tðr; z;u; xÞ ¼ F0

2hkR2

X1
m¼1

(
J0ðbmrÞ

n0mJ2
0ðbmRÞ

ð1
�1

e�n0mjz�z
0
j�ðz0=WÞ2 dz0

ðR

0

J0ðbmr0Þe�ðr0�q0Þ2=W2

dr0

þ 2
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n¼1

Jnp=hðknmrÞcos
� npu

h
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0
j�ðz0=WÞ2 dz0

ðR

0

Jnp=hðknmr0Þe�ðr0�q0Þ2=W2

dr0

)
: (31)

If the incident Gaussian beam is further assumed to be a cylindrical Gaussian beam and the medium fully opaque, the light in-

tensity along the z axis is uniform and the z component can be ignored, i.e.,

kn̂ • ~rTðr; z; 0; xÞ ¼ 1

2
F0 expf�½ðr � q0Þ2 þ z2�=W2gð1þ eixtÞ: (32)

Equation (31) for the temperature field at z ¼ 0 and / ¼ 0 reduces to

Tðr; 0; 0; xÞ ¼ F0

2hkR2

X1
m¼1

(
J0ðbmrÞ

n0mJ2
0ðbmRÞ

ð1
�1

e�n0mjz0
jdz0

ðR

0

J0ðbmr0Þe�ðr0�q0Þ2=W2

dr0

þ 2
X1
n¼1

Jnp=hðknmrÞ
nnm½1� ðnp=hknmRÞ2�J2

np=hðknmRÞ

ð1
�1

e�nnmjz0
jdz0

ðR

0

Jnp=hðknmr0Þe�ðr0�q0Þ2=W2

dr0

)
(33)

which can be further transformed in the limit R!1

Tðr; 0; 0; xÞ ¼ F0

2kh

(ðr

0

½I0ðrr0ÞK0ðrrÞ þ 2
X1
n¼1

Inp=hðrr0ÞKnp=hðrrÞ�e�ðr0�qÞ2=W2

dr0

þ
ð1

r

½I0ðrrÞK0ðrr0Þ þ 2
X1
n¼1

Inp=hðrrÞKnp=hðrr0Þ�e�ðr0�qÞ2=W2

dr0

)
: (34)
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III. NUMERICAL CALCULATIONS

To highlight the net effects of the presence of the wedge

in simulations and experimentally, the amplitude and phase

of the surface thermal-wave field are normalized to the corre-

sponding amplitude and phase of a flat semi-infinite solid of

the same material (AISI 304 stainless steel). The incident

light is assumed to be a plane wave. The thermophysical pa-

rameters of AISI 304 stainless steel are k¼ 16.3 W/mK,

a¼ 4.1� 10�6 m2/s.10 Figure 2 shows the thermal-wave

fields at various distances (r) from the edge on the surface

/ ¼ 08. The opening angle is h ¼ 3p=2. It is observed that

the effect of the corner on the thermal-wave field becomes

more pronounced as the detection point moves closer to the

corner. If the detection point is far enough away from the

corner (i.e., r is large compared to the thermal diffusion

length), the thermal-wave field at this point reduces to that of

a semi-infinite flat solid, i.e., the normalized amplitude and

phase are toward 1 and 0, respectively, in Fig. 2, which is as

expected. At distances very close to the obtuse right corner

(i.e., within one thermal diffusion length), the normalized

amplitude decreases because physically the 270	 corner acts

as a thermal-wave sink in comparison with the flat reference

solid: the solid material extends vertically above the horizon-

tal plane to form the wall at h ¼ 3p=2 thereby amounting to

additional upward degrees of freedom for diffusive thermal

waves, compared to the flat case h¼ p. As a result, the nor-

malized amplitude for the right angle case for the low fre-

quency range where the thermal diffusion length overlaps

the corner coordinate is smaller than that for the h¼ p case

due to decreased confinement in the half space below the sur-

face plane. There is a hint of thermal-wave interference due

to the presence of the right corner (diffraction around the

corner) before the two geometries converge to the same

thermal-wave amplitude at high frequencies where the ther-

mal diffusion length is short compared to the distance from

the corner. Similarly, the normalized phase exhibits a lag for

several degrees as the thermal wave extends farther away

from the radial location, proportionately shifting away the

thermal centroid.

Different wedge angles will result in measurably differ-

ent thermal-wave distributions especially around the edge

region, provided the distance to the edge is commensurate

with the thermal diffusion length. Figure 3 shows several

thermal-wave fields in structures with different opening

angles. The detection point is located at / ¼ 08 and

r¼ 1 mm. It is seen that when h ¼ p=2, i.e., the structure

contains a vertical solid edge (acute right corner), the nor-

malized thermal-wave field, both amplitude and phase, is

coincident with that in a semi-infinite flat structure. This is

consistent with numerical simulations based on the method

of images (Ref. 9, p. 294). This identity between h ¼ p=2

and h¼p geometries shown in Fig. 3 is also consistent with

earlier results using the method of images.11 The apparent

paradox of these thermal-wave field coincidences is due to

the adiabatic (zero flux) boundary condition along the verti-

cal wall: this condition does not allow for a horizontal

thermal-wave flux component across the interface, thereby

producing a thermal-wave field at the coordinate point r¼ 0

in the right corner geometry which is identical to the flat

FIG. 2. The normalized thermal-wave fields at different distances (r) from a

h ¼ 3p=2 wedge.

FIG. 3. The normalized thermal-wave fields of a wedge structure with dif-

ferent opening angles /.
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solid which also does not sustain a horizontal flux compo-

nent. This situation has been discussed in detail in Ref. 9, pp.

274–276.

Figure 4 shows the behavior of the normalized thermal-

wave field near the obtuse right corner h ¼ 3p=2 when the

detection point is scanned along the radial direction at vari-

ous frequencies. The results can provide a theoretical signal

reference near the corner for noncontact and nondestructive

detection. The discussion accompanying Fig. 2 is also valid

here. It is observed that at high frequencies and/or longer dis-

tances away from the corner, such that the decreased thermal

diffusion length is shorter than the distance to the corner, the

relaxation of the thermal-wave confinement provided by the

flat surface solid makes little difference in the amplitude and

phase of the field in the solid with h ¼ 3p=2.

Finally, we present the thermal-wave field of a surface

illuminated by a cylindrical Gaussian laser beam. In the sim-

ulation, the spotsize W is assumed to be 1 mm, 2 mm,

10 mm, 100 mm (i.e., close to infinite), respectively. The

beam center is fixed at q ¼ 1 mm, which is also the detection

point in the simulation. The simulation results are shown in

Fig. 5. It is seen that as the spotsize increases, both amplitude

and phase move toward the response of the obtuse right cor-

ner illuminated with a homogeneous beam. When the laser

spotsize W is 100 mm, the two lines overlap, as expected,

because the beam spatial profile distribution converges to a

uniform distribution. The Green-function sensitivity to beam

spotsize demonstrates the necessity to carefully characterize

the incident beam profile and size for accurate quantitative

photothermal thermophysical studies.

IV. EXPERIMENTAL AND RESULTS

To verify the foregoing theoretical model, PTR experi-

ments were performed using a wedge with an obtuse right

corner (h ¼ 3p=2), made of AISI 304 steel with composition

C 0.07%, Si 1.0%, Mn 2.0%, Cr 17.0%–19.0%, Ni

8.0%–11.0%, S 0.03%, P 0.035%. The experimental system

is shown in Fig. 6. The thermal-wave source was a high-

power semiconductor laser (
30 W). The output of the laser

was modulated by a periodic current, the frequency of which

was controlled by a computer generated waveform which

FIG. 4. The scanned and normalized thermal-wave field along the radial

direction at different frequencies.

FIG. 5. Frequency dependence of the thermal-wave field from a sample with

an obtuse right corner (h ¼ 3p=2) at r¼ 1 mm, illuminated with Gaussian

laser beams of various spotsizes. The curves are normalized with a semi-

infinite flat sample of the same material illuminated with a uniform beam.

FIG. 6. The experimental PTR setup.
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also served as the lock-in reference signal. The beam was

expanded, collimated, and then focused onto the surface of

the sample. Because the size of the beam (diame-

ter¼ 30 mm) was much larger than the thermal diffusion

length (
2.8 mm at 1 Hz), the beam can be considered uni-

form. The harmonically modulated infrared radiation from

the sample surface was collected by an off-axis paraboloidal

mirror system and detected by a HgCdTe detector. The sig-

nal from the detector was amplified with a low-noise pream-

plifier and then fed into a lock-in amplifier which was

interfaced with the personal computer.

In the experiments, the sample was positioned carefully

at the focal point of the paraboloidal mirror. The laser beam

was perpendicular to the surface (/ ¼ 0) of the sample. The

starting point was set as D (the distance between the corner

(r¼ 0) and the detection point). The detection point was

scanned along the radial direction. Adjusting the distance of

the detection point (r ¼ Dþ r0, where r0 is the well con-

trolled adjustable distance relative to position D of the first

point), the thermal-wave field signal was obtained at various

positions. The absolute position parameter D and the thermal

diffusivity of the sample were measured from those signals

as the result of best-fitting to the theory as described below.

From the experimental results, it was obvious that the effect

of the corner on the thermal-wave field followed the

expected behavior shown in Figs. 2 and 5 as the detection

point moved closer to the corner. The signal was normalized

to that from a semi-infinite flat sample of the same material.

Four sets of experimental data were measured at posi-

tions r ¼ D, r ¼ Dþ 0:1 mm, r ¼ Dþ 0:3 mm, and

r ¼ Dþ 1:3 mm, respectively. The data were fitted to the

theoretical model, Eq. (29). The fitting parameters were D
and a. The experimental data and the fitted results are shown

in Fig. 7, while the detailed best-fitted parameters are shown

in Table I. Figure 7 shows that the noise of the normalized

experimental data is relatively large especially at low fre-

quencies. The relatively low signal-to-noise ratio in the nor-

malized amplitude and phase is mainly due to the noise

addition and the large background subtraction incurred in the

normalization process. Nevertheless, Fig. 7 shows good

agreement between the theoretical and experimental results.

The main physical effects are: (1) overall decrease in

thermal-wave amplitude and concomitant increase in phase

lag very near the obtuse 270	 corner (thermal diffusion

length longer than D) due to the additional diffusion-wave

degrees of freedom available beyond the corner, and (2) the

slight diffractive interferometric amplitude increase preced-

ing the drop, at frequencies corresponding to thermal diffu-

sion lengths on the order of D. As expected, the larger the

distance r, the lower the frequency range within which these

interfacial effects occur because longer thermal diffusion

lengths, l(f), are required to satisfy the same relationship

(l(f)� D) to the changing value of D.

Table I shows the best-fitted thermal diffusivity values

and position parameters D at various locations with respect

to the corner. The result of the thermal diffusivity value is

(3.93 6 0.38)� 10�6 m2/s, averaged over the four best-fitted

values at each distance from the corner. This value is in good

agreement with 4.10� 10�6 m2/s reported in the literature.10

V. CONCLUSIONS

In summary, we have developed an analytical theory for

the thermal-wave field of wedge-shaped solid structure with

arbitrary opening angle using the Green function method

subject to boundary conditions of the second kind at the

open surfaces. The Green function is derived and a general

expression for the thermal-wave field of wedge-shaped solids

irradiated with an incident optical source of arbitrary radial

intensity distribution was obtained. The photothermal field

model of a finite-radius cylindrical solid wedge was further

extended to a solid of infinite radius of curvature, a simplifi-

cation of the theory for computational purposes. Relative

thermal-wave amplitudes and phases were obtained using

acute and obtuse-angle wedge responses “normalized” to

that of a flat solid of the same material. This work offers a

solid theoretical basis for characterizing wedge-shaped solids

of relevance to industrial manufacturing.
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