Time-domain photoacoustic spectroscopy of solids
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Most conventional photoacoustic spectroscopy of solids has employed a periodically
modulated light source. The availability of high-intensity pulsed light sources of short pulse
duration makes possible the study of the time response of a photoacoustic system in which the
solid is excited by a single optical pulse. A one-dimensional theoretical model is presented in
which the time dependence of the photoacoustic response is evaluated for systems of variable
optical absorption coefficient and sample thickness. The analysis is restricted to the case for
which nonradiative relaxation processes occur instantaneously on the time scale of the
measurement. Typical response curves for optically excited systems are presented and
interpreted in terms of physical processes occurring in the cell.

PACS numbers: 78.20.Hp

I. INTRODUCTION

The photoacoustic spectroscopy of solid samples is cur-
rently being explored in many laboratories as a tool for mea-
suring the optical properties of specimens on which conven-
tional optical absorption measurements are difficult. The
technique is capable of providing information about the non-
radiative deexcitation processes that occur after a sample
has been stimulated by the absorption of a photon. In the
“conventional” photoacoustic spectrometer, the sample is
excited by a periodically modulated light beam of controlled
wavelength and both the amplitude and phase of the photo-
acoustic signal produced by the periodic heating of the sam-
ple are monitored. In principle, this data enables the optical
absorption coefficient of the material to be determined and
the phase data may be used to provide information about the
relaxation times associated with the nonradiative deexcita-
tion paths. This last measurement is, however, complicated
by the fact that the phase also contains a component due to
the optical absorption depth of the exciting radiation in the
specimen under study and the thermal transit time in this
solid. Also, for good phase resolution high modulation fre-
quencies should be employed and these reduce the amplitude
of the photoacoustic response.

The theoretical models developed to compute the re-
sponse of a photoacoustic cell under the conditions de-
scribed above can be divided into two groups based on the
complexity of the thermal transport equation used to de-
scribe processes occurring in the gas in contact with the solid
being studied. Rosencwaig and Gersho'? and Rosencwaig’*
have formulated a model in which a simplified form of the
trasport equation in the gas was employed. This model ig-
nores the finite transit time of a pressure wave in the cell
taking the pressure to be the same at all points in the cell at
each instant. Pressure fluctuations in the cell result from the
periodic heat transfer between the sample, heated by the
modulated radiation source, and a gaseous layer on the order
of a thermal diffusion length in thickness that is in contact
with it. The thermal expansion of this boundary layer causes
it to act as an “acoustic piston” which adiabatically com-
presses the gas in the rest of the cell and hence generates the
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PAS signal. Despite the simplification of the gas transport
equation the algebraic expressions obtained for the pressure
in the cell are still complex. Certain simplified solutions were
obtained for limiting cases which provide direct relation-
ships between the magnitude of the PAS signal and the opti-
cal absorption coefficient, linear dimensions and thermal
properties of the solid together with the modulation frequen-
cy of the light and the thermal properties of the gas in the
cell. This model has been frequently successfully employed
in the interpretation of experimental data.

The second group of theoretical models follows the ear-
ly work of Parker® and their authors employ a more com-
plete form of the gas thermal transport equation which takes
into account the finite velocity of sound but still neglects
effects due to viscosity. Aamodt et al.¢ applied this method to
evaluate the dependence of the photoacoustic signal upon
the size of the cell. Whereas the Rosencwaig model is unsuit-
able for cells having dimensions on the order of a thermaldif-
fusion length in the gas, the more exact treatment of Aamodt
et al. enables a self-consistent aproach to cells that are
shorter than, or longer than, this thermal diffusion length. In
the large cell limit the conclusions of this improved model
agree with those of the simpler Rosencwaig and Gersho
model. Recently this more complete model has been ex-
tended by McDonald and Wetsel’ to include pressure contri-
butions arising from the thermal expansion of the solid and
acoustic-wave propagation within the solid. In certain re-
gions of the optical absorption coefficient and the modula-
tion frequency these additional contributions to the PAS sig-
nal become significant but in the range of parameters
frequently encountered in PAS measurements this model is
also in reasonable agreement with the simpler approach of
Rosencwaig.

The availability of pulsed laser light sources suggests
that an understanding of the time response of a photoacous-
tic cell to an excitation pulse would be of value. Quantities
such as relaxation times associated with nonradiative decay
paths would be expected to be measurable as time delays in
this approach although once again the interpretation of the
data will be complicated by thermal transport effects due to

© 1979 American Institute of Physics 4330

Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



SAMPLE

BACKING WINDOW
(b} {s) }

{w

-1 (¢} L

FIG. 1. Schematic Diagram of the one-dimensional cell geometry,

variable optical properties. Surface adsorbates may also be
more easily detectable by this method.

Experiments have been reported in the literature in
which the time development of a photoacoustic signal fol-
lowing a pulse stimulation was recorded. Callis® ef a/. de-
scribe the use of a capacitor microphone to detect volume
changes resulting from the optical flash excitation of chro-
matium chromatophores. Callis® has also described a piezo-
electric calorimeter in which the sample to be investigated is
suspended in a transparent solid medium and the pressure
pulse generated following optical excitation is detected by a
contiguous clamped piezoelectric transducer. Both thermal
expansion and acoustic-wave transport contribute to the sig-
nal in this case. Farrow et al.’® also report data on the piezo-
electric detection of photoacoustic signals generated in a sol-
id deposited on the transducer surface and excited either by a
modulated light source or a pulsed argon ion laser. In this
case the system is unclamped and the signal should arise
from acoustic-wave generation in the solid under study. No
intermediate gas pressure transfer medium is involved in
these last two cases.

Theoretical exploration of the response of a convention-
al photoacoustic cell to pulsed excitation has received atten-
tion from Aamodt and Murphy."! These authors employ the
more complete form of the gas thermal transport equation
used in their previous study® of a cell stimulated by modulat-
ed radiation. The response of the photoacoustic system is
expressed in terms of its Laplace transform and no examples
of analytical inversions are presented. The authors use nu-
merical techniques to evaluate the cell response for the case
of a short-duration square temperature pulse and note that
this is not the equivalent of the response to a light pulse of
corresponding duration because of the different energy dis-
tribution in the solid in the two cases and the time depen-
dence of the surface temperature of the solid. Examples are
also given where square heating pulses with either a uniform
or exponential position dependence in the solid are
considered.

This paper presents a treatment of the response of a
photoacoustic cell to a pulse of light energy absorbed by a
solid sample in the cell. For this case it is the distributed heat
input to the solid that is in the form of a Heaviside function
rather than the sample temperature. To enable analytical
inversions of the Laplace transforms of the pressure in the
cell to be made, the simplified form of the gas transport equa-
tion is employed. This is equivalent to assuming an infinite
velocity of sound but for the cell dimensions considered
should give agreement with the more complete model at
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times on the order or 10” sec and longer. This is a range of
practical interest when a microphone is used as a pressure
transducer. The data is discussed in simple physical terms.

Il. THEORY
A. Outline of the model

Optical, acoustic, and thermal processes occurring in a
photoacoustic cell excited by a light pulse of short duration
are treated in a one-dimensional approximation correspond-
ing to the configuration illustrated diagramatically in Fig. 1.
A solid of thickness / (cm) having an optical absorption coef-
ficient # (cm™) is supported on an optically transparent
backing. The cell, of length L (cm), contains an optically
transparent gas and the light pulse enters the cell through a
nonabsorbing window. Both the backing and the window are
taken to be thick so that their exterior boundaries are not
important. The sample is excited by a light pulse in the form
of a Heaviside function of duration 7, (sec) and an irradi-
ance of I,(W cm™). The nonradiative deexcitation processes
following light absorption in the solid are taken to be instan-
taneous. The pfessure in the cell (the PAS signal) is assumed
to be uniform throughout the cell and to exhibit no delays
due to the finite velocity of sound.

Under the conditions outlined above, the thermal diffu-
sion equations for each of the regions of the cell can be writ-
ten, with only that for the solid containing a distributed heat
source for the duration of the pulse. For the solid

& I
= Igﬂ"exp(ﬂx)

s

=0, t>7, —I<x<0, (1la)

O<i<r, —I<x<0,

where T, (x,1 ) is the temperature of the solid, 7 is the efficien-
cy of the nonradiative processes, K is the thermal conduc-
tivity, and @, = K/p.C, is the thermal diffusivity. C, and p,
are the specific heat and density of the solid, respectively.

Three similar equations, but with no source term, hold
for the other regions of the cell. These have the form

82
;T(x t)~;lé—T(x 2)=0, for all ¢
where for
x< — 1, i=b (backing), (1b)
0<x<L, 1i=g (gas), (I¢)
x>L, i=w (window). (1d)

Since only temperature changes due to the light pulse are of
interest, Egs. (1) are subject to the initial condition:

7, (x,0) = 0 and to the condition of temperature and heat
flux continuity at the boundaries between the regions for all
times.

The time-domain equations (1a)—(1d) are solved in La-
place space s by taking their Laplace transforms. This re-
duces the partial differential equations in (x,? ) to a set of
ordinary differential equations in x. The Laplace transforms
of Egs. (1) have the form
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2~ A~ A
—d—TS(x,s) — iTx(x,s) and yield the following expressions for T’ (x,s):
a,

dxz s A
T (x,5) = c\(s) exp( — ax) + ca(s) exp(a,x) + 4 (s) exp(Bx),
1 — _ s
- _ (ﬂﬁ[g) ( eXp( STp)) exp(ﬂx), _ 1<x<0’ (23) (43.)
RY s
and Ty (x,8) = c(s) exp( — a, | + x|), (4b)
4 ) — 2 Tiw) T(5,5) = €4(5) exp( — ax) + ex(s) explag), (40)
x a,
x<—1, i=b, @by T,(x5) = co(s) exp[ —a x — L)], (4d)
=010<x<L, i=g, (2¢) where
L i=w G (naBly (1= exp(—s7,)
where the ?’i(x,s) are the Laplace transforms of the tempera- (5) = ( K, ) ( s(s — a,B?) )’

ture distributions in the regions /. Equations (2) are solved

subject to the condition that at each boundary the ¢; (s) contain the material parameters of the system, and
fwi _ fj (3a) a, =(s/a,)"*withi=s, b, w, and g.
and It is the temperature distribution in the gas that is re-
A A sponsible for the time development of the PAS signal in this
aT; aT; .
K-k (3b) model. The general expression for the Laplace transform of
dx ! ox . this temperature distribution is given below:

?g(x,s) = A (s){sinh[a,(L — x)] + D cosh[a (L —x)]}

((1 + Z){[exp(g) + m exp( — @)1 — (B /a,) [exp(g) — m exp( — @)]} + 2(4 — 1) exp( _31)) -
(1 +Z){(S + DC)[exp(g) + m exp(— )] + B(C + DS)[exp(g) — m exp( — q)1} ’

where

A= Kbab’ Z= Kbab, q =ad, m= T D= ———Kuﬂw, B = Ka C=cosh(g, L), §=sinh(a,L).

The definitions of the quantities Z, ¢, m, D, and B are similar to those used in Ref. 11.

The expression can be put in the form of the Laplace space counterpart of the expression for the chopped excitation mode
presented by Rosencwaig and Gersho? as their Eq. (13) by making the following substitutions in the above expression for
T, (x,s) and rearranging the terms:

b=1/Z, g=B, r=f/a, =bA,

o 7,1 — exp( —
T () = ("ﬂ LK (;f‘i( az)”")] ){sinh[ag(L — )] + D cosh(a L — x)]}
( (r—1)b + D expad) — (r+ )b — 1) exp( — aJ) + 2(b — ryexp( —BI) ) ©)
b+ D[ +gD)S+ (D +g)C]expad) — (b — D@D — 1)S+ (g — D)C lexp(—af)

This expression is more general than that in Ref. 2 in that the effects of the window are taken into account through the
parameter D.

B. The time-dependent photoacoustic response

In order to obtain the expression for the photoacoustic response of a cell excited by a light pulse, the time development of
the temperature profile in the gas must be converted to an average pressure in the cell. This average pressure is detected by the
microphone. Under typical experimental conditions the gas in the cell may be treated as an ideal gas and from the equation of
state:

pxt) = Ro(x, )T (x,t), Q)
where p(x,?) is the density of the gas in the one-dimensional enclosure and R is the gas constant. The average pressure in the

chamber can be computed by taking the spatial average of p(x,t ). Rearranging Eq. (7) and recognizing that the spatial integral of
p(x,t) is the total mass of gas M, in the one-dimensional system, and therefore constant,'>!* gives

£ p(xt) -
257 dx =R | p(x,t)dx = RM,. ®
o T(x,t) 0
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For small departures from the equilibrium temperature 7, and recognizing that in the approximation of the present model
p(x,t) = p(t) only, Eq. (8) becomes

@ [ = = RM, ©®
o To{l + [Ti(x,t)/T,]}
Expanding the denominator in terms of powers of [T(x,? )/ T,] €1 and putting {p(t)> = p, + Ap(t ) gives
L
— Do 10
Ap(t) = J T.(x,t)dx. (10)
p(t) T.L b ()

Since the space and time coordinates are independent, the Laplace transform of Eq. (10) may be taken prior to the spatial
integration to give

Jowexp( —st)Ap(t)dt = T’;"L—f

0

" L L w
exp( — st) J Ti(x,t) dx dt = 22 f dx f exp( — st)Ti(x,t) dt,
0 ToL 0 0

i.e.,

L
aroy — _Po /\1 ) an
45(s) _TOL Jo Ti{x,5) dx

Substituting for ﬁ(x,s) from Eq. (6) yields a general expression for the Laplace transform of the photoacoustic signal,

. NBLp,[1 — exp( — s7,)] :
Ap(s) = ( SKLaTiB — af)p )[cosh(agL) — 1 4 Dsinh(a,L)]
><( (r—1)(b + 1) expad) — (r + 1)(b — 1) exp( — aJ) + 2(b — r) exp( — BI) ) (12)
(b+ DI +gD)S + (D +g)C ] expla) — (b — D[ED— 1S+ (g —D)Clexp(—aJ)/

This expression has been inverted to obtain Ap(z ), the PAS response, for several special cases given below. These are grouped
according to the optical opacity of the solid under consideration. Attempts to numerically integrate the Laplace transforms
using the Dubner and Abate' technique suggested by Aamodt and Murphy' showed very slow convergence and were
therefore discarded. The Euler transformation of Hamming"* employed by Simon et al.!*to speed up convergence resulted in
expressions that were more complex than the analytical relationships from the explicit inversion of the Laplace transforms
and were thus also discarded.

C. Special cases

For all of the cases considered, the quantities B and D defined above are very much smaller than unity, typically on the
order of 10°. This enables the following approximations to be made in evaluating 45(s):

sinh(a,L ) + D cosh(a,L )~sinh(a,L),
cosh(a,L ) + D sinh(a, L )~cosh(a,L ),
(D+B)~D and (l1+ DB)~1. (13)

In evaluating f(L,t) using Eq. (6), however, the term D cosh[a, (L — x)] is retained to avoid the nonphysical situation of
T (L,t) = O for all times.
1. Optically transparent thermally thin solids

For this case 15 =1/ >l and exp( — Bl )~(1 — BI), also exp( — a,! )~(1 — a,l). Itis also assumed that the efficiency of
the nonradiative processes 77 = 1. Under these circumstances

f"g (rs) = (as BIL,[1 — exp( — sr,,)]) (sinh(L — x)a, + D cosh(L — x)a,

, O<x«L. (14
K s2[s"* + al*/Z1 ] sinh(La,) )

5

Defining a relaxation time 7,=(Z % */a,) = (K, p,c /K, psc, ) */a,) the inverse Laplace transform of Eq. (14) gives the tem-
perature distribution in the cell both during and after the excitation pulse. Using theorems (B1)~(B3), and C1) together with
expression (A1) (see Table I) gives
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TABLE I. Expressions used in Evaluating the PAS response.

s) NOEE I O)
- exp[ — x(s/a )] . x
Al RS b 2 172 f
( ) SX/Z(SI/Z+ 1/(7.)1/2) (Tt) rer C((4ag[)|/z)
t X x t\172
* T[exP(? * (agr)'”) erfc[magz)w N (?) ]
X
_ erfc(—(4agt )m)]
1 4rr\12
A2 _—_— a0 12 _
® oo o= (CE) e |1 eml)

X erfe(t /T)'“]

. exp[ —x(s/a,)'?] x x
AR SR erf 2t /)
( () + 1/(1)"7?) T [er C((4agt)”l) /7 1erfc((4agt )m)
t \172
- exp( e T)W) [(401 L (?) ]
+ 4( )1 erfc((‘mgt)w)].
BH" If £7Hf(©)] = F(1) then .7 {exp( — as)f (5)} = {F(t-a) > t<a
(B2)" If #'{f(s)} = F(1) and .X'{g(s)] = G(t) then .2 {f(s)g(s)} = fF(u)G (t —u)ydu
(B3)® If #'{f(s)} = F(t) then f‘(&} = J.IF(u) du
5 Q0
€1 fsinh[LV (/)11 = 3 exp[ — @n + DL(s/a)"]. (C) tanhix=1+2 3 (— 1y exp(— nx).
n =0 n -1
PRI S PRIV, z (DOYS)-2n — 3
D erfex =1 =m0 G O etex = e L4 § (- TERERE)
“See Ref. 17. "See Ref. 18.

T,(x,1)

_ ("s Iﬁ(’“') 20 [(1 +D )[2(%)”21- erfc(_.__(iif‘g;———[i)) + exp[(Ti[) + (——-Z:‘T;" )]erfc[(ri[)”2 + (—i’}ijj )]

5

—erfc ((i’;i:g:))] a- D)[2(Til)l/2i erfc( [2(n(4+a:t);/z— x) ) + exp{(%) + [2_("(_;_71:1)%2—_3‘_”

Xerfc[(_t_)l/z + (Zﬁi'_tku‘i)] - erfc( [2n + DL — x] )” for 0<x<L, t<r, (15)
T (4a,t) (4a,t)

and

Tg(‘x’t > Tp) = [Tg(x’t < Tp)] t=1"" [Tg(x’t < Tp)] t=(t—1p for O<x<L, t> Tp

where

ferfex = J erffcydy  for O<x<L, t>7,

The relaxation time 7, is a modified thermal diffusion time for the film of thickness /. For times ¢<¢, the Laplace transform
of the temperature distribution in the cell depends only upon 8, whereas for times 7 ¢, this quantity depends upon the product

Bl
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The pressure in the cell is obtained by simplifying the general expression for its Laplace transform using Eq. (13) and

taking exp( — Bl )~(1 — BI):

a1 = (D207 (UL =) (L), 1
This may be inverted using Egs. (A2) and (A3), and (C2) to give
Ap(t) = (asﬁlfoz(;%/z)ﬂ)[((ﬁtn)) — 2(%)1/2 + 7-,‘/2(1 — exp(TLI)t:rfc(;t]—)U2
#2 5 () —25) o (Gagm) ~ool(2) Gl +o5) ]
+ 4(—7—?)1’ erfc(ﬁ)])], 1<7, an
! o

and |
Ap(t> Tp) = [Ap(t < Tp)]t =t [Ap(t < Tp)]l= —r)y

where

I erfex = f i erfcy dy.

As expected, the magnitude of the photoacoustic re-
sponse depends directly upon 5 and /,, an order of magni-
tude change in 8 producing a corresponding change in the
PAS magnitude. Its time development is a rather complex
function of material parameters and the cell dimensions.
This expression has been evaluated numerically and results
for two different film thicknesses, but the same optical ab-
sorption coefficient, cell, and material parameters are shown
in Fig. 2, with the following values being used:

K, =8 W/mK, C,;=700 J/kgK, p=2.3 gm/cm’,

a, =0.5cm’/sec, K, =237 W/mK,C,=90 J/kgK,
pp=2.7 g/cm’, p, =1 atm, and @, = 0.2 cm*/sec. The
pulse power flux was 3 X 10° W/cm? The cell length was
chosen to be 0.1 cm for this evaluation both because it is a
typical PAS cell dimension and because it limits the number
of terms required in the numerical evaluation of Ap(z).

The infinite series appearing in Egs. (15) and (17) con-
verge rapidly for early times ¢, i.e., large values of the argu-
ment, and less rapidly for later times. It was found that a
maximum number of 25-30 terms was always adequate to
secure independence of the numerical results from the num-
ber of terms used. In this evaluation, the complementary
error function was determined using the McLaurin series,
Eq. (D1), for small values of the argument and the asymptot-
ic series Eq. (D2), for large values. The transition from one
approximation to the other was chosen at that value of the
argument for which their numerical difference was mini-
mum. This was found to occur for an argument of 3.9228
and the difference:

[erfc(3.9228)] agymptotic — [1€(3.9228)]pscr aurin
=2.677Xx10".

Figure 2(a) shows the response of a thin film (/ = 10"
cm) to a square light pulse of 5.5 X 107-sec duration. The
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1>17,

temperature of the sample surface 7°(0,7 ) is seen to increase
during the pulse and to reach its maximum value at the end
of the pusle after which it decays to the background value via
heat conduction into the backing material and into the gas.
The finite transport time of the thermal wave across the cell
is shown by the diagram of the window temperature T'(L,)
which does not depart from the background value until this
wave arrives and indicates a thermal diffusion velocity on

1(t) | LIGHT ‘:‘
% 3 I INTENSITY E3
o w 1
'Ogt 2 [ gE 2
xg ll 3
ol il 1 1| NN N P | 0 1
5 |T(o.n | SAMPLE INTERFACE 2.4
x4 ITEMPERATURE
o 3 i ¥!e
o2 -
x | x 0.8
ot 4 ! Lt 1 1 0 L
{<p(t)> |
5 ™ CELL PRESSURE 10
! l 8
TS 3 136
_gt, 2 I =] 4
X g [ xg
i i 2
ol | A o L
I WINDOW TEMPERATURE
5 T |
[T
3‘ 4 l | 4
o 3 I l N 3
x 2 | l '9 2
I X |
ol IR SRS B 0 L1 T N B |
|o*", 1o* I 102 1 102 :0‘1 fod llo‘z I 102
TIME {secs) TIME {secs)
@7 TTRANSIT w7, TrransiT secs

FIG. 2. Time development of cell parameters for (a) thin and (b) thick films
of the same optical absorption coefficient.
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FIG. 3. (a) Dependence of the PAS signal on the value of the optical absorp-
tion coefficient for an optically thick thermally thick specimen:(—)5>10°
cm, (---)F=10cm, (---)f=10cm™, (----)B8 =100 cm’, and

(------ )3 = 10 cm™. (b) Temperature profile in the gas of a PAS cellat
various times after the termination of the excitation pulse: (—)10™ sec,
(=-~)5X10*sec, (----)10" sec, and (= — - - — — )5 X 107 sec.

the order of 2 cm sec™. The pressure in the cell (p(¢)> in-
creases to a maximum value at the end of the pulse, remains
essentially constant until the thermal wave reaches the win-
dow of the cel], and then decreases to its background value p,
as energy is removed from the gas by transport through the
window.

Figure 2(b) shows the corresponding quantities for a
thick film of the same material. In this case the initial energy
absorbed from the light pulse is also distributed throughout
the 0.1-cm thickness of the film. The surface temperature
T (0,t)isstillamaximum at the end of the light pulse; howev-
er, it decays to the background value much more slowly and
the film transfers energy to the gas for times long compared
to the thermal transit time of the gas. Because of this, the
pressure in the gas does not have its maximum value at the
end of the pulse but continues to increase as a function of
time. The position of the maximum in the {p (#)> curve is
determined by a balance between the energy transfer from
the sample to the gas and energy loss from the gas through
the cell window.

2. Optically opaque thermally thick solids

For this case, the optical absorption depth of the radi-
ation is taken to be very much less than the thickness of the

4336 J. Appl. Phys., Vol. 50, No. 6, June 1979

solid, i.e., uy =1/B<! and exp( — 5/ )—0, also exp( — a,/)
~0. Using these simplifications, the expression for the La-
place transform of the temperature distribution in the gas
becomes

T (xs) = ("‘ BL{1 — exp( —57,)] )

K

5

sinh(L — x)a, + D cosh(L — x)a,

x( ST S
$73(s12 4 /j’a_:A) slnh(Lag)

(18)

Defining a relaxation time 7,=(1/f *a,) which corresponds
to the thermal transit time from a depth i3 in the solid indi-
cates that for times 1<, T, (x,s) exhibits a 8 dependence,
whereas for 1> 7, T,(x,s) exhibits no dependence on 3. This
is due to the fact that, in this approximation, the £ occurring
in the constant prefactor is cancelled by the 8 from the de-
nominator of the second term when s'2 can be neglected
compared to Bal”?

This independence of the photoacoustic signal in the
time domain from the optical absorption coefficient of the
solid is exactly equivalent to the corresponding situation in
the frequency domain where for high optical absorption co-
efficients the heat deposition profile has a range that is short
compared to the thermal diffusion depth in the solid at that
chopping frequency. In the time domain the corresponding
thermal diffusion depth can be thought of as a time-depen-
dent quantity increasing in magnitude as the square root of
time. Once this parameter is considerably larger than the
optical absorption depth in the solid £ independence occurs.

?g (x,s) can be inverted to yield the explicit relationship
for the temperature distribution in the cell that is identical to
Eq. (15) but with 7, replaced by 7. Similarly, the expression
for the pressure in the cell is identical to Eq. (17) with the
same substitution being made. Figure 3(a) shows the re-
sponse of a photoacoustic cell containing such an optically
opaque and thermally thick sample to a pulse length of
5.5 10 sec. The different curves presented correspond to
values of 7 ranging between 10 and 10° cm™. It can be seen
that the PAS signal amplitude is relatively insensitive to
large variations in 3 at experimentally attainable observation
times, in contrast to the optically thin sample case, where the
amplitude varies linearly with /3 at all times. Values of 8> 10°
cm™ yield p(¢ ) curves that are identical at observation times
of 107 sec or longer. If shorter observation times could be
employed, the correspondingly smaller values of ., (¢ ) would
permit higher values of £ to be resolved. It should be real-
ized, however, that the model would break down under these
conditions. All of the p(¢) curves decay along the same as-
ymptote once energy leaves the cell through the window.
Figure 3(b) shows the time development of the temperature
profile in the gas. In contrast to the case of a temperature
pulse considered by Aamodt and Murphy'! and presented in
their Fig. 7, the surface temperature of the solid does not go
to zero at the end of the heating pulse. The solid surface is
always the highest temperature point in the cell and the heat
flux in the gas is away from this surface towards the cell
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window. At times long compared to the transit time of the
thermal wave, the temperature gradient in the gas is approxi-
mately linear.

Equation (18) also applies to an optically transparent
thermally thick sample and to an optically opaque thermally
thin sample if b = 1.

lil. DISCUSSION

The general expression for the photoacoustic response
to a pulsed excitation developed above, together with the
special cases considered, indicate that the pulse technique is
capable of providing useful information about the optical
absorption properties of a material.

For the case of the optically transparent thin films, the
characteristic relaxation time 7, associated with the time de-
velopment of the signal depends only upon the sample thick-
ness and the thermal properties of the sample and the back-
ing material. The information about the optical properties of
the material is contained in the time-independent multiply-
ing factor in the expression for the pressure. If observations
are made at times short compared to this characteristic re-
laxation time, the signal depends only upon #and is indepen-
dent of the sample thickness. At times larger than this char-
acteristic time, the signal is proportional to the product AI.
Recognizing the limitations of the model and taking 10~ sec
as the earliest practicable observation time in a gas-filled
photoacoustic cell indicates that for films having thermal
properties analogous to those of their support, the transition
between these two regimes will only be observable for films
thicker than 10~ cm. For a given film thickness the time
development of the PAS response will be the same for all
values of B (provided 15 > /') but the amplitude of the signal
will vary linearly with 8. For films of the same /3 but different
thicknesses, the PAS response will develop more slowly as
the film thickness increases, as was indicated in Fig. 2. The
maximum amplitude of the signal increases with the thick-
ness of the film since the total energy absorbed from the
incident radiation also increases.

For the thicker films, the dimensions of the photo-
acoustic cell become more important in controlling the time
development of the signal as energy is still being transferred
from the solid to the gas at times greater than the thermal
diffusion time across the gas in the cell. In general, the PAS
signal starts to decrease at times greater than this thermal
diffusion time since the gas is losing energy to the window.
The detailed form of the time response under these condi-
tions therefore depends upon the ratio of the energy transfer
to the gas from the solid and the energy loss from the gas to
the window. At long times this last process dominates and all
curves decay along the same asymptote to the initial tem-
perature of the cell.

In the case of the optically and thermally thick solid,
the corresponding characteristic time of the system is that
for which the thermal diffusion length in the solid is equal to
the optical absorption depth, i.e., (a,73)""* = u,. Since the
solid has been assumed to be thermally thick, i.e., for all
times of interest (@, ¢ )'? < /, the PAS response is independent
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of the sample thickness. The optical absorption properties of
the solid are contained in both the time-independent factor
and the time development of the photoacoustic signal. As
expected intuitively, the photoacoustic signal develops more
rapidly in a cell of fixed properties for higher optical absorp-
tion coefficients. The largest value of B that can be resolved
depends upon the shortest time at which the time develop-
ment of the photoacoustic signal can be followed since *“f3
saturation” occurs at times for which the time-dependent
thermal diffusion length in the solid becomes greater than
the optical absorption depth (i.e., the energy deposition pro-
file). Figure 3(a) also indicates the interplay between the en-
ergy deposition in the gas from the solid and the loss of ener-
gy from the gas through the cell window. For high optical
absorption coefficients more of the absorbed energy has been
transferred to the gas before heat losses occur from the cell
through the window and the pressure tends to saturate be-
fore decaying to its initial value. For the lower optical ab-
sorption coefficients, heat is deposited in the gas from the
solid for longer periods of time and the heat losses through
the window prevent the pressure from reaching the same
maximum value. This interplay between the two heat trans-
fers causes the maximum cell pressure to be lower for solids
of lower optical absorption coefficient and the maximum of
p(t)tooccur at later times. Typically, the pressure in the cell
will reach the same saturation value for samples of different
B if the thermal transit time across the cell is greater than
~10°7,.

Another form of time-domain saturation, “thermody-
namic saturation”, which also gives a response that is Binde-
pendent (in the limit of the optically thick approximation)
occurs when the heat losses from the cell just balance the
heat imput to the solid via the optical absorption process.
This form of saturation requires the establishment of time-
independent temperature gradients in both the sample and
the gas cell and for specimens of normal dimensions would
need long-duration light pulses such as the step-function
pulse considered by Aamodt and Murphy."

The dependence of B saturation on the shortest possible
time of observation suggests that, in order to extend time
domain PAS to the highest possible values of 8, a zero length
cell with piezoelectric detection would be advantageous.
Presumably, for the correct interpretation of the response,
the interaction between the solid and the detector would
have to be treated in a manner analogous to that employed
by McDonald and Wetsel.

Comparison of the equations for the optically and ther-
mally thin film case and the optically and thermally thick
case presented above indicates that the sample thickness in
the case of the thin films plays the same role in the time
development of the PAS response as does Kp in the case of
the thick films. The curves presented in fig. 2 for films of the
same 3 but with thicknesses of 10" and 10-* cm have the same
form as those obtained for an optically and thermally thick
solid for which #s = 107 or 10" cm. For the thin films,
however, the signal magnitudes scale directly with 3, where-
as for the thick specimens the signal magnitude is less 3
dependent.
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FIG. 4. Diagram showing characteristic times and lengths important in
time-domain PAS. Y (s) = (poJo/LT,){ [1 — exp( — s7,)]/s] tanh(§La,).

As indicated above, the present time-domain model in
Laplace space is the equivalent of the Rosencwaig-Gersho
model in the frequency domain but with each pulse display-
ing in the time-domain development of the photoacoustic
signal that information obtainable in the modulation mode
by separate measurements at different modulation frequen-
cies. Early times correspond to high modulation frequencies
and therefore contain surface information, later times pro-
vide weighted information from the interior of the samples.

In order to illustrate this point further, Fig. 4 shows the
effect of the relative spatial positions of the distances /, u,
and u (t )=(a )" on the form of the PAS signal for the
special case considered above. The characteristic times 7,
and 7, are shown on the corresponding time axis in Fig. 4.
Transitions between approximations occur when the time-
dependent thermal diffusion length u, (¢ ) becomes greater
than /for the case of optically transparent solids or 115 for the
optically opaque solids. A comparison of this diagram with
Fig. 3 of Ref. 2 demonstrates the expected complete analogy
of the time-domain PAS response to that obtainable in the
frequency domain.

One of the potential advantages of time-domain pho-
toacoustic spectroscopy is the facility with which delay
times may be measured with high precision. In the present
model it has been assumed that the nonradiative events pro-
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viding the distributed heat source in the solid are instanta-
neous. The case for which these processes have a characteris-
tic relaxation time is currently being developed using the
same approximate expression for the thermal transport
equation of the gas. As in the case of modulation PAS, a
major problem in obtaining relaxation times is deconvolut-
ing time delays due to optical density changes (and a con-
comitant change in the characteristic time for thermal trans-
port in the solid) from those associated with the relaxation
time of the nonradiative deexcitations.
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