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A theoretical model is presented for the time-domain photoacoustic response of a condensed
sample with a two-level optical-absorption band. The nonradiative lifetime of the excited state
and the transfer function of the pressure transducer are included in the formalism. The
limitations of the technique for nonradiative lifetime measurements are discussed and the
experimental conditions necessary for optimum relaxation time determinations are evaluated. It
is found that the limitations imposed by the modified gas thermal transport equations used in the
model restrict it to relaxation times greater than ~ 10~ ° sec. This is of the same order as the limit
imposed on experimental measurements by the transfer function of commercial microphones.

PACS numbers: 78.20. — e, 78.65. — 5,42.80. — f,07.65. — b

I. INTRODUCTION

When light is absorbed by an electronic state in a solid
or liquid, the system may return to its ground state by emit-
ting light, by nonradiative paths in which the excess energy
appears as heat in the sample, or by photochemical pro-
cesses. The lifetime of the excited state is determined by the
relative rates for these competitive deexcitation paths, and
the effective lifetime tends to be dominated by the fastest
relaxation. Photoacoustic spectroscopy (PAS) provides a
probe for those deexcitation processes that result in the liber-
ation of heat and is thus complementary to measurements of
fluorescence and phosphorescence. In the time domain the
delay of the photoacoustic response with respect to the opti-
cal stimulus can provide information about the effective life-
time of the excited state, and measurements of this type are
therefore of interest, particularly on materials for which the
fluorescence quantum efficiency is low. If the material under
study is stable photochemically, the magnitudes of the radia-
tive and nonradiative process will anticorrelate.

The relaxation times of radiationless processes have
been studied using frequency-domain PAS techniques by
Powell and co-workers.'-> They employed the relationship
between the nonradiative relaxation time and the phase of
the photoacoustic response used by Harshbarger and Robin*
for gaseous samples. Mandelis ez al.® have derived the corre-
sponding relationships between the photoacoustic phase and
the nonradiative relaxation time for condensed samples.
They have shown that only in the limits of an optically and
thermally thick specimen or an optically transparent ther-
mally thick sample is the relaxation time simply related to
the photoacoustic phase. For other conditions additional
contributions to the phase arise from the wavelength-depen-
dent optical-absorption depth in the sample.

A one-dimensional theoretical model of the time evolu-
tion of the photoacoustic response of a solid sample which |

. THEORY

A. PAS response including a nonradiative relaxation time

includes finite relaxation times for the nonradiative pro-
cesses has been employed by Aamodt and Murphy.® The
application of this model to data analysis is difficult because
no analytic closed-form expressions are available for the in-
version of the complicated Laplace transforms involved. In
an attempt to overcome this difficulty Mandelis and Royce’
employed a simplified form of the transport equations in the
gas of the photoacoustic cell and derived an explicit closed-
form expression for the time-domain response following ex-
citation of a system with instantaneous nonradiative deexci-
tation processes by a single optical radiation pulse. For pho-
toacoustic cell dimensions typical of experimental situations
this simplified theory gave results in agreement with the
more complete model for times longer than ~ 10 ~° sec, an
acoustic transit time for the cell. Neither of these time do-
main papers took into account the transfer function of the
pressure measuring transducer.

This paper is concerned with the extension of the theory
of Ref. 7 to include the finite relaxation time 7 of the radia-
tionless deexcitation processes in a condensed sample and
the transfer function of the pressure measuring transducer.
The model presented allows analytical closed-form inver-
sion of the Laplace transforms for the temperature and pres-
sure in the cell and provides an algebraic expression for the
time development of the relaxation-time-dependent photo-
acoustic signal. Linear control theory methods are then em-
ployed to evaluate the modifications to this signal intro-
duced by the microphone-preamplifier transducer, and it is
found that an additional signal time delay results due to the
high-frequency rolloff of the microphone response. For
commercially available condenser microphones this factor
would restrict the PAS technique to the measurement of life-
times longer than ~ 10 ~* sec. This limit is approximately
the same as that imposed by the assumptions made in the
evaluation of the cell pressure.

The one-dimensional geometry of the PAS system under consideration is shown in Fig. 1 and is essentially the same as
that employed by Aamodt and Murphy.® The sample(s), of thickness /, contains a two-level optical-absorption band which has
an excited-state lifetime 7 and is associated with a wavelength-dependent optical-absorption coefficient 5. The system is
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stimulated by a light pulse in the form of a Heavyside function of duration 7, and irradiance I, . Following light absorption, the
sample relaxes nonradiatively with an efficiency 1. Under these conditions the sample experiences a spatially dependent head
flux that is the time-domain equivalent of that given by Eq. (1) of Ref. 7 and which has the form:

[1—exp(—t/7)], 0<i<r,,
[exp(r,/7) — 1] exp( —t/7), 7T>7

P’

H(xt)= (BI,m) exp(Bx) ¢))
where — I<x<0.

Following the procedure of Ref. 7, four coupled heat-diffusion equations can be written with only that for the solid
containing the distributed heat source since the other regions of the cell are assumed to be optically transparent. The transport
equation for the gas does not include terms due to the finite sound velocity, and this is equivalent to assuming that the gas
pressure is uniform throughout the cell, whereas the temperature distribution has a spatial as well as a time dependence. The
four coupled transport equations may be solved simultaneously using Laplace transform techniques with the boundary
conditions of heat flux and temperature continuity at the interfaces of the regions of the cell. In this way the Laplace transform
of the temperature in the gas, 7' (x,s), may be obtained and, by integration over the cell volume, an expression for the Laplace

transform of the average pressure change in the gas can be derived. This has the form:

1BLopo [1 — exp(—s7,)]
KLa, T,(s+7 ") (B*—al)

A4p(s;T) = 4p(s5;0) — (

) [cosh(a,L ) — 1 + Dsinh(a,L )]

( (r—1)(b+1)exp(al)—(r+1)(b—1)exp(—a,d)+2(b~—r)exp( —pfl) ) @)
(b+1)[(1+gD)S+ (D+g)Clexp(al)— (b—1)[(gD—1)S+ (g—D)Clexp(—a,l) )’
where Af(s;0) is the Laplace transform of the pressure response expected for a sample with instantaneous relaxations and is
given by Eq. (12) of Ref. 7. The other symbols also have the same meanings as in that paper.

Equation (2) may be explicitly inverted in the limit of a thermally thick solid for which the sample thickness / is greater
than the time-dependent thermal diffusion depth u, (¢) for all times of interest and also for a thermally thin solid for which

! <p (t). The average pressure in the cell is then given by:

(e (570) = (0, (10,0} — [ (e 8nLop Va, )/ T, LK, ] [

Jiogrxl+2 3 (— v (L \/Z),t;mf]],
n=1

<7, (3)

@ l>7, 57D =@ [ < )it em — @ [<r i ey 27,

where (p(#,0,y)) is the cell pressure if the nonradiative relaxations are instantaneous and is given by Eq. (17) in Ref. 7. The
quantity y is a characteristic time (=74 or 7, in the thermally thick and thermally thin limits, respectively) that is also defined

in Ref. 7. J is defined in the Appendix.

Figure 2 shows the form of the heat input and the time-
dependent photoacoustic response for an optically opaque
thermally thick sample obtained by numerical evaluation of
Egs. (1) and (3). The effect of the nonradiative relaxation
time on the pressure signal appears as a time delay. H (t,r)is
shown for the case where the relaxation time 7 ( = 10 ~ *sec)
is long compared to the pulse duration 7, (=55%X10 ~°¢
sec). Under these circumstances the excited-state population
continues to build up for the duration of the pulse, and H (¢;7)
therefore exhibits its maximum value at the end of the pulse.
When the stimulus is removed the excited-state population
decreases with its characteristic relaxation time 7 and the
heat input to the solid exhibits a parallel decrease. Through-
out this period the pressure in the gas is increasing due to
heat transfer to it from the solid. The pressure response has
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FIG. 1. Schematic diagram of the one-dimensional cell geometry.
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an inflection point at ¢ = r provided 7 is short compared to a
thermal transit time of the cell but long compared to 7,,.
These limitations restrict measurements of 7 to the approxi-
mate range: 10 ~°<7<0.1 sec. By t~10r the excited-state
population is depleted and no more heat is supplied to the
solid. The surface temperature of the solid has not yet de-
cayed to T, and some heat is still being supplied to the gas.
At longer times heat transfer processes to the cell window
reduce the gas pressure to its preexcitation value. For very
long relaxation times the interplay between energy transfer
to the gas from the photoexcited solid and energy loss to the
window determines the form of the pressure response. This is
illustrated in Fig. 2 by the 7 = 10 ~ *-sec curve which does
not reach the same maximum value of the pressure despite
the fact that the total energy in the pulse was the same as for
the other curves. This effect is even more marked for longer
relaxation times or shorter thermal transit times.

The case presented in Fig. 2 is the only one for which the
7 dependence of the pressure response is clearly resolvable.
In the optically and thermally thin limit the pressure curves
corresponding to different values of  are distinct but there is
no clear way of extracting lifetime data from them without
fitting the theoretical expression to the complete pressure
curve.
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FIG. 2. Heat release rate to solid and cell pressure for various nonradiative
relaxation times.

B. Effect due to the microphone transfer function

Previous papers on time-domain photoacoustic spec-
troscopy have only been concerned with the computed cell
pressure rather than the output of a pressure-measuring de-
vice, the experimentally determined quantity. It is to be ex-
pected that the frequency response of the pressure trans-
ducer will impose a limit on relaxation time measurements.
In this section the influence of the transducer’s transfer func-
tion on the measured response is considered.

A mechanical model of the microphone was employed,
the transducer being simulated by a spring-mass-damper
system. The system is considered to be excited by an arbi-
trary force F () produced by the time-dependent cell pres-
sure acting over the area of the microphone diaphragm 4,,,
sothat F (t) = A,Ap(t). Under these conditions the differen-
tial equation describing the diaphragm motion in terms of
the average coordinate z for the lowest-order mode is given
by*:

mi(t) +6z(t) + K,z(t) = F (1) =A4,4p(t), 4

where m is the mass of the diaphragm, 6 is a damping coeffi-
cient, and K, is the spring constant. The Laplace transform
of the displacement may be obtained from Eq. (4) and has the
form:

2(s) = [(do/m)AP()] (5 + 2bw,,s + %) ', (5
where w,, =(K,,/m)'/* is the undamped natural angular fre-
quency, {=(6/2mw,,) = (6/8,,) is the damping factor, and
Ap(s) is the Laplace transform of Ap(z ).

The simplified equivalent circuit of a condenser micro-

phone and preamplifier is shown in Fig. 3. The output volt-
age resulting from the displacement z(¢ ) which gives rise toa
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capacitance change AC () can be expressed in terms of its
Laplace transform as:

TrcS ) 2(s)
1 + Tres d
where d is the equilibrium distance between the diaphragm
and the charge plate, 7, is the time constant of the equiv-
alent circuit, and E is the polarization voltage. Equations (5)
and (6) are combined to give the transfer function Z (s) of the

system,

4
Z(5)=—) =( S ) . m
4p(s) s +a,5°+as+a, Pa

where a,=(w2, /Tr¢), 0, =(0%, + 2£0,,/Tre), @, =%,
+ 1/7g¢), and G is a scaling parameter that matches the
computed and experimental amplitudes.

The parameters in Eq. (7) can be determined by fitting
to the published frequency response data of the transducer
with s replaced by iw. This procedure was followed for the
}in. B&K condenser microphone Type 4138, chosen be-
cause of its flat high-frequency response. The best fit to the
published frequency response data was found for 75 = 0.03
sec,{ =0.7,w,, = 1.25X 10°cycles/sec,and G = 1.58 x 10°
V Pa "~ 'sec - 2 Using these parameters it was found possible
to match experimental square-wave response data given by
the manufacturer. The fit to the frequency response curve is
relatively insensitive to the values of w,, and G, but the high
frequency region is sensitive to the choice of £ and the low-
frequency rolloff to the choice of 7. The values given
above are such that the g, satisfy the stability criteria'? re-
quired of a third-order system, viz:

Vi(s) =E( : (6)

a, >0 and a4, —a;>0. (8)

Once the parameters of the microphone transfer func-
tion have been determined, the phase-variable theory of lin-
ear control systems!' was employed to evaluate the time-
domain response. The time response of the microphone-
preamplifier combination is given in terms of the matrix dif-
ferential equations:

x(1) =Ax(t) + Bu(r),

y(1) = Cx(1), )
where u(? ) is the one-dimensional time-dependent input con-
trol function, x(¢ ) is the three-dimensional state vector, y(¢)
is the one-dimensional output vector, 4 is the 3X 3 system

matrix, Bisthe 3 X | control matrix, and Cis the 1 X 3 output
matrix. These matrices are given by:

—iF — T

Ct
ACHE d R
- ) )

|

FIG. 3. Equivalent circuit of the capacitor microphone and preamplifier. C,
is the capacitance of microphone cartridge; C, is the stray capacitance; C, is
the input capacitance of the preamplifier; 4C (¢ ) is the variation in capaci-
tance due to sound pressure; C = C, + C, + C,; R is the effective resistance
of charging circuit and preamplifier.
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The formal solution for the system of Eq. (9) is as follows: -

y)y=x,(¢), (10)

where x, (¢) is the second component of the vector x(¢ ) given
by the matrix integral equation:

x(t) = exp(At )x(0) +J expld (t — A )]u(d) dA.
0
(1)

Theinitial condition for the transducer at rest is x(0) = 0. By
use of the sample-data method'! the continuous solution (11)
can be transformed to a discrete-time solution:

x[(n+ DT ) =exp(AT )x(nT)
T
+ [J exp(A4A )BdA ]u(nT), (12)
0

where T is the sampling time interval.

Figure 4 shows a comparison between the pressure in
the PAS cell and the microphone-preamplifier response us-
ing the parameters given above for the }-in. B&K micro-
phone. Pressure curves for samples having 7 = 0and 10 — °
sec are given. It is seen that the high-frequency rolloff of the
microphone appears as an early time delay in the transducer
output for the 7 = 0 pressure stimulus. The overshoot at the
beginning of the plateau is dependent upon the damping co-
efficient . With this particular transducer, agreement be-
tween the pressure in the cell and the signal output at early
times is seen to be satisfactory for 72 10 ~ ° sec. The low-
frequency preamplifier rolloff causes a decrease in the signal
at long times since 7 is less than the thermal transit time of
the PAS cell considered. This feature will interfere with ther-
mal transit time measurements.

1. DISCUSSION

By introducing a simplified thermal transport equation
for the gas phase of a pulse-stimulated photoacoustic system,

613 J. Appl. Phys., Vol. 51, No. 1, January 1980

it has been possible to obtain an analytical expression for the
time-domain pressure development in the cell following ex-
citation of a solid which has a finite nonradiative relaxation
time. The results of this model are in good agreement with
those obtained by Aamodt and Murphy® who employed a
gas transport equation which included the finite velocity of
sound. The models disagree at short times for which the
more exact computation shows the presence of pressure
steps associated with sound wave propagation within the
cell. However, after about six such pressure steps, which are
on the order of 10 ~ * times the final value of the cell pres-
sure, the pressure increase predicted by the two models is in
good agreement. Since these steps are small in magnitude
and occur at early times in the pressure pulse development,
their presence does not influence the determination of the
excited-state relaxation time from the position of the inflec-
tion point in the p(t) curve.

The most important limitation on the determination of
7 is that provided by the transfer function of the pressure
detector. The high-frequency rolloff of typical commercial
devices introduces a time delay in the electrical output and
probably restricts measurements of 7 to times larger than
10 ~ ’sec. This restriction is similar to that imposed by the
uniform pressure approximation of the present model since
the acoustic transit time of a photoacoustic cell of the dimen-
sions normally employed for solid studies is on the order of
10-50 us. It was found that the }-in.B&K microphone dis-
cussed above was capable of tracking the pressure pulses
computed by Aamodt and Murphy®; however, the 1-in mi-
crophone (4145 B&K) had a poorer high-frequency re-
sponse and tended to distort these pressure steps.

As indicated above, nonradiative lifetimes may also be
measured using frequency-domain PAS techniques and de-
termining the phase’ of the system response with respect to
the stimulating radiation. In order to make such measure-
ments, data must be taken over a range of frequencies and
theamplitudeofthesignalvariesasw ~ '(orw ~ *? depend-
ing upon the relative values of the optical-absorption depth
and the thermal diffusion length in the material). Since high
modulation frequencies are needed for the determination of
short relaxation times, this decrease in signal amplitude im-
poses a restriction on the use of this method for the determi-
nation of such short relaxation times.

In the time domain the signal amplitude is not depen-
dent upon the relaxation time provided energy loss to the cell
windows is unimportant. This means that the technique is
good for the measurement of short relaxation times. This
behavior can be understood by examining the formalism
leading to the PAS signal expressions in the two cases.

In the time domain, the expression for the signal in-
volves an integration over the whole frequency spectrum.
Energy is associated with each frequency interval and the
distribution peaks in a different interval of the frequency
space as ¢ varies. The energy associated with each interval is
AE, = 2rl,(dw, "); however, the sum (integral) over all
modes ©, remains constant, and the signal is largely insensi-
tive to locality changes in the energy distribution in  space.
Thus, even at early times there is a constant amount of ener-
gy averaged over all frequencies, which leads to a “short-
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time signal strength” behavior. In the case of a fast relaxing
optically opaque thermally thick sample, the signal level is
the same at t = 10 ~*sec asitisatf = 10 ~>sec.” In the
frequency domain, however, the formalism selects the mod-
ulation frequency w, through the action of the § function in
the Fourier space integral for the pressure.® The signal,
therefore, follows the same frequency dependence as its
Fourier transform, and the one mode alloted all of the energy
is that at @, for which the energy varies as E (@)

= 2ml,(wy '). Despite its advantage in short time signal
strength, the time-domain technique is still limited by the
finite velocity of sound and the occurrence of cell reson-
ances. Both frequency- and time-domain methods that em-

stricted to measurements of nonradiative lifetimes greater
than about 10 ~ > sec; however, both the insensitivity of the
signal magnitude to the relaxation time of the nonradiative
processes and the availability of high-powered pulsed-laser
sources make the time-domain technique attractive.
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ploy a gas as the information transfer medium will be re- I

APPENDIX
a. The function J [Y,t;7,7,4]:
J[Yrnr =2 " exp(— YVs)sts+r) (Vs 41/ \/;) = T\/;{erfc(Yﬂ\/t—)

—(T/7) exp[(t/rﬂ) + Y/\/:,:] erfc[Y/Z\/t— + \/t—/rB] —lexp( — Y?%/4t)
X {(T /745)[Re{exp(Z?) erfcZ } + Refexp[(Z *)?] erfc(Z *)}]

— (T /V 77, Yim{exp(Z?) erfeZ } — Im{exp[(Z *)] erfe(Z*) 11,
where
[ZZ*} —Y/2Vt N t/r, Toi=r 41,0

b. Computational aids for the evaluation of J. Error function of a complex argument, polar coordinate representation:
By definition
PN ¥/
effZ=2/V J- exp( — x?) dx, (A
0

where Z = |Z | exp(i0) in polar coordinates.
(i) In the sectors — lr<0<!m and 37<6<;}m, erfZ converges and can be computed from consideration of the function

Z
F(Z)= J exp(x?) dx (A2)
0
by setting'?
erfZ = —Zi/\/_fr_F(iZ ). (A3)
Then,
erfcZ=(1 —erfZ) =1 42i/ V 7 F(iZ). Ad)
Defining erfcZ = Re(erfcZ ) + i Im(erfcZ), taking real and imaginary parts of Eq. (A4), and using Ref. 12 gives,
4 —_— o 2n +1
1—2/ V7 § (112177 cosl@n+1)6] (Taylor)
R ( er) ) n=0 n'(2n+1)
e(erfcZ ) =
— « —1m 2. .
wVr exp( — |Z [*cos28) > (—1)" (2n 1M Coszlnli I|ZSX|23€‘+ (2n +1)6] (Asymptotic)
n=0
) (A5)
r — 2n +1 3
V7 ¥ -1y 2l ‘(s;“[fl”)“ i (Taylor)
n=0 ni(zn
Im(erfcZ ) = 4 _ . " 2.
2V exp( — |Z |* cos26) 2 (=1)" 2n =N smz[’!illzsﬁiﬁj_ (2n+1)61 (Asymptotic)
- "t (A6)
r<Oym,  Jm<O<im.

(ii) In the sectors i <3m and jw <0<, the erfcZ diverges. The inverse transform J can be evaluated by use of the function
exp(Z?) erfcZ, which converges in these sectors, and the Dawson function'*:
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4
D (Z) = exp( —Zz)f exp(x?) dx (A7)
0
in the combination
W(Z)=exp(—Zz)+2i/\/1rD(Z). (A8)
Then,*
W (iZ) = exp(Z?) erfcZ. (A9)
Taking real and imaginary parts of Eq. (A9) and using Ref. 13 gives
Re[exp(Z?) erfcZ |
r —_— n 2n 41
exp(lZ|2c0520)cos(|lesin29)—2/\/7r 2|z cos[ (27 + O] (Taylor)
n=0 (2n 4+ ! (A10)
= <
& (2n— Nlcos[(2n 4+ 1)0 ] )
vV (=" (Asymptotic),
L nZO 2an |2n + 1 p )
Im[exp(Z?) erfcZ ]
r — n 2n + 1 o5
exp(|Z | cos26) sin(| Z |*sin20) —2/V 7 § ZIZLT_sinl@n DOL - gy
=0 (2n 4+ DN (A11)
= {
— ® — " <1
-1V > (—nr (2n — Dltsin((2n + 1)6 ] (Asymptotic),

2n ,Z I 2n+ 1
Ir<O<Gm,  r<0<in.

Computationally, the point |Z | = 3.9 was found to be a good transition point from the Taylor to the asymptotic expansions,
even though the exact number varies slightly for different s throughout the complex plane.
. Nontrivial integrals appearing during the inversion of the Laplace transform of J (Ref. 15).

Jl (dx/\/ﬂ_x) exp(x/7) = — \/; Im [erfc (1\/t_/;) ];

J x "% exp[ — (a*/x) + b’x] dx
0

= Re((\/7/2a){exp(2iab ) erfc[(a/\/:) +ib \/-t’] + exp( — 2iab) erfc[(a/\/t_) —ib \/?]}),

f x~"2expl — (@*/x) + b*x] dx
0

= Re((z’\/;_/Zb ){exp(Ziab ) erfc[(a/\/t—) +ib \/t_] — exp( — 2iab) erfc[(a/\/t_) ~— ib \/t_]})
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