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An application is presented of the Hamilton-Jacobi formulation of thermal-wave physics 
[A. Mandelis, J. Math. Phys. 26, 2676 ( 1985)] to the problem of photoacoustic depth profiling 
of inhomogeneous solids with arbitrary, continuously varying thermal diffusivity profiles. 
Simple expressions for the modulation frequency dependence of the photoacoustic signal in the 
case of exponential thermal diffusivity profiles are obtained, and a working general 
method for solving the inverse problem and obtaining arbitrary diffusivity depth profiles is 
demonstrated through computer simulations. The method was found to possess 
excellent profile reconstruction fidelity. 

1. INTRODUCTION 

Photoacoustic depth profiling of inhomogeneous solids 
is a most important manifestation of the nondestructive 
evaluation (NDE) capabilities of this technique. Even 
though much experimental workI and some theoretical 
models215 have been published with discontinuously inho- 
mogeneous solids, theoretical implementation of realistic 
models addressing the equally important, ‘and frequently 
more common, problem of continuously inhomogeneous 
solids has been less fertile. Afromowitz et aL6 and Harata 
and Sawada have treated the problem of a solid with spa- 
tially continuously varying optical absorption coefficient 
and constant thermal properties. In both treatments a sig- 
nal inversion based on the spatial Laplace transform of the 
photoacoustic frequency response of the sample yielded 
approximate depth profiles of the optical absorption coef- 
ficient. Unfortunately, the same convenient Laplace trans- 
form formulation cannot be applied to the case of solids 
with continuously varying thermal/thermodynamic pa- 
rameters (thermal conductivity, specific heat, density); 
yet, this class of materials is encountered much more com- 
monly in nondestructive evaluation applications than the 
optically continuously inhomogeneous solids. Approxi- 
mate formulations of this thermal-wave problem have been 
presented in the form of series expansions for specific ther- 
mal conductivity profiles and constant specific heat and 
sample density by Thakur.’ However, the complexity of 
the final expressions for each profile and the lack of a 
criterion for the parameter ranges within which the infinite 
series expansions are well behaved may be an obstacle in 
the direct use of these expressions with photoacoustic data. 
Thakur further presented’ an integral formulation of the 
same problem based on the Wentzel-Kramers-Brillouin- 

Jeffreys (WKBJ) approximation9 and valid for slowly 
varying thermal conductivity profiles, a somewhat restric- 
tive assumption. Perturbation types of expansions for the 
thermal conductivity, k,(x), and specific heat, c,(x), about 
their surface values, k,(O) and c,(O), have been assumed 
for slightly inhomogeneous solids by Gusev et ~1.‘~ First- 
order regular perturbation theory was then used to obtain 
expressions for the thermal-wave field, but no attempt was 
made to invert the photoacoustic response. The most gen- 
eral and rigorous approach to the inverse thermal-wave 
problem has been given by Vidberg et al.” These workers 
addressed the rather special situation of thermal-wave sur- 
face signals obtained by measuring the radial variation of 
the surface temperature of a continuously inhomogeneous 
solid about a heated point at a single modulation fre- 
quency. Both thermal conductivity and heat capacity pro- 
files were reconstructed using PadC approximants for the 
inversion of spatial Laplace transforms; however, several 
constraints accompany the technique of Vidberg et al. The 
most important ones are the nonconventional experimental 
geometry for which it is only valid: the fact that the theo- 
retical problem is ill-posed and thus the reconstructed pro- 
files are not always numerically reliable; the limitation of 
the accuracy to a depth reconstruction on the order of one 
thermal diffusion length; and the relative complexity of the 
reconstruction algorithm, as well as its acute sensitivity to 
the presence of small amounts of error ( -2%, i.e., within 
a normal experimental standard deviation), which seem to 
yield a significantly altered heat capacity reconstruction 
profile. The same group I2 had. previously presented a nu- 
merical analysis of the same geometry based on the solu- 
tion of the thermal-wave equation, at a single modulation 
frequency, via a two-dimensional finite difference grid. 
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Thermal-wave phase-derived diffusivity profiles were thus 
obtained for surface-hardened steel. 

In this work we have addressed the depth-profiling 
thermal-wave problem for continuously thermally varying 
solids in the conventional frequency-domain microphone- 
based photoacoustic spectrometry (PAS). Unlike the ear- 
lier treatments, well-posed, direct, simple and convenient 
expressions for the frequency dependence of the PA signal 
are obtained based on the classical mechanical concept of 
the Hamilton-Jacobi thermal harmonic oscillator 
(THO) .I3 Simple analytical inversions of simulated ampli- 
tude and phase data can yield thermal diffusivity spatial 
profiles by means of a self-adjusting method based on the 
experimental modulation frequency response of optically 
opaque continuously inhomogeneous samples; this method 
renders the diffusivity profile reconstruction largely inde- 
pendent of assumed specific mathematical profiles. 

II. THEORY 

A. The Hamilton-Jacobi THO 

It has been shown13 that the temperature field 

0(x$) = T(x)exp(iwt), 
i.e., the solution to the thermal-wave equation 

g k(x) g ecGt> 
i ) 

- p(x>c(x) & e(x,t) =o 

(la> 

(lb) 

in a semi-infinite solid medium with continuously variable 
thermal conductivity, k(x), density, p(x), and specific 
heat, c(x), which is excited by a photothermal source at an 
intensity modulation angular frequency, w, gives rise to a 
thermal harmonic oscillator (THO) field with the classical 
canonical Hamiltonian function: 

H(7,pJ =& + ;e 
where the following generalized functions are defined: 

7~[~(x)~(X)c(x)]“~T(x); (position) (3) 

pq -k(x) fg * , (momentum) (4) 

(5) 

KG - iwm - ‘; (spring constant), 
and 

(6) 

as(x) =k(x)/p(i)c(x) (7) 
is the thermal difIusivity of the solid at depth x from the 
surface (x=0). The THO Hamiltonian is a constant of the 
motioni and assumes the meaning of the total generalized 
energy E of the thermal-wave field: 

+;?=q-E, (8) 

where W(T,C~) is Hamilton’s characteristic function, re- 
lated to the principal function S(r,&ci) throughi 

~(~,!z,C* > = W(~,C,) - CJ (9) 

and 

(10) 

Equations (8) and (9) give 

S(&,)= &ii?? j- ($-rf’zchl, (11) 

so that the constant $ may be definedI 

(12) 

Upon defining the THO angular spatial frequency 

~2,~ (K/m) l/2 = ieir’4 G/m, (13) 

Eq. (12) yields 

(14) 

subject to an initial condition obtained from Eq. ( 11) : 

Pr(“=O)=~~TzT= @+-;KT;)~‘~. (15) 

Letting the thermal flux (momentum) at the surface x=0 
be Qa, Eq. ( 14) gives an expression for cl: 

cl=& & + i rn&$. (16) 

For simplicity and in analogy with the classical mechanical 
harmonic oscillator, we assume that the flux term at the 
surface is associated with exactly half the total energy 
cl = E of the THO; the other half is contributed by the term 
proportional to the boundary temperature: 

r(Jocc T(O). (17) 

NOW, Eq. (14) may be written as 

, (18) 

where 

e id4 6 
m g= J- mwM..=mx) (19) 

and a(~@) is the depth-dependent complex thermal diffu- 
sion coefficient13’15 

a(j7,w) = ( 1 + i) [a/2a,(y) ] 1’2. (20) 

Finally, expanding the hyperbolic sine term of Eq. ( 18) in 
terms of exponentials and noting that 
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.?+I4 $ +liz (; s,” ocy,w)dY)Ji 
= (a(w)>+=constant, 

one may write for the temperature field T(x), Eq. (3): 

e,(O) *‘2 
T(x) = T(O) e 

( 1 
[C,$icX) - c,e-H(“)], (21) 

s 
where CI, C2 are integration constants to be determined 
from boundary conditions, and 

e,(x) = [kb)p(xkb) 1 *‘2 (22) 

is the material thermal effusivity. 

B. Solids with constant and finite optical absorption 
coefficient p: Continuously inhomogeneous 
thermal properties 

Considering Eq. (21) as the (complementary) solu- 
tion to the homogeneous thermal-wave problem, Eq. (2), 
it is straightforward to approach the solution to the inho- 
mogeneous problem:15 

& k(x) 2 T(x) 
( 1 

- iwp(x)c(x) T(x) 

1 
=- 2 WO exp(h>; -=-3X (23) 

where 77 (/2) is the nonradiative (optical-to-thermal) con- 
version eficiency, p(n) is the constant optical absorption 
coefficient, and IO is the amplitude of the modulated optical 
intensity incident on the sample surface. Assuming a par- 
ticular solution of E?q. (23) of the form 

qJ(x) -F(x) 
( 

exp W(x) I 
Jzz5zcF 1 - ( + G(x) 

subject to 
(24) 

dF(x) 
7 exp[H(x) 1 + 

dG(x) 
- exp[ - H(x)] =O, dx (25) 

and making the approximation 

g [k(x)4x)p(x)] -l/4=0( i.e., &e,- ‘12(x) =O) , 

one finds 
C26) 

ewHcx) (27a) 

and 

dG(x) 1 /3e@ 
di =z Q4l Wb) 

where 

QO+?b (28) and 

The complete solution for the inhomogeneous thermal- 
wave problem is given from Eqs. (21), (24), (27): 

T(x)= +&I 
( I 

x 
exp [fix’ - H(x’) ] 

0 

- 

i 
C2 - 5 Q& r exp[W’-t H(x’) ] 

0 

E”2(x’)dx’ exp[ --H(x)] 
x k(x’)a(x’) E”2(x) ’ (29) 

where we defined 

E(x) =e,(x)/e,(O> (30) 
and the constant T( 0) in Eq. (21) was absorbed in the 
constants C1 and C,. For a semi-infinite solid in thermal 
contact with ti semi-infinite carrier gas, as in a photoacous- 
tic cell, the boundary conditions are: 

(i) For x-+ - CO, T(x)+O, i.e., e-H(X) -+ 00, which 
requires 

C2= - i QOp Jy o. exp[W + Wx’) 1~~~~~~~~~ . 

(31) 
(ii) At x = 0 (interface) and assuming for the gas15 

T,(x) =o&P$c, (32) 

where 

og= ( 1 + i) (w/~cI,)“~, 

continuity of temperature requires 

c, - c2=0, 

and continuity of heat flux requires 

(33) 

(34) 

h% c’ + c2= -se& g=k(0)o(O) ’ 

Therefore, 

c,= - 1-g 
( 1 
- c2 1+&T 

and Eqs. (29) and (32) give, respectively: 

T(!)=iQ$(1 (s) Jo, expWx’+fW)l 

E”2(x’)dx’ 
x k(x’)a(x’) + s 

0 
exp [fix’ - H(x’) ] 

x 

(35) 

E’12(x’)dx’ exp[H(x)] 1 (I x 
x k(x’)o(x’) E”2(x) + 

exp W 
-m 

(36) 

+ HWI 
E1’2(x’)dx’ exp[ -H(x)] 
k(x’)a(x’) E”2(x) 1 

; x<o 

(37) 
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T,(x) =zg ( Jo exp[Px’ +‘H(x’)] 
The factor l/2 appears in order to account for adding 

-co twice the fluxes from the medium with aS = a, plus that 

E1’2(x’)dx’ 
with as = a, + ha. Furthermore, the term M may be 

Xk(x’)a(xt) e-“p’; x>o’ 
) 

(38) 
written as a fraction of the flux at x=0, where a, 
= a,(O) =a0 > a,(x). This fraction is set equal to fti and 

In the special case where k(x), p(x), and c(x) are con- 
remains to be determined from the prescribed value of Eq. 

stant and not functions of depth, Eqs. (37) and (38) yield 
(21) at x=0. With Q. being the thermal energy flux at the 
surface, Eq. (28), the second boundary condition must be 

T(x) = 2k($!& [ (s)ea-gx]; x<o (39) 

and 

T,(x) = rlpI0 

2W2--) 
where r+/a. Equations (39) and (40) are precisely 
those obtained by the Rosencwaig-Gersho (RG) modelI 
in the limit of semi-infinite solid and gas. 

Since our main interest in this theory is in its applica- 
tion to the simpler case of photoacoustically saturated15 
condensed phase media, such as strongly absorbing liquid 
crystals, l6 the full Eqs. (37) and (38) will not be consid- 
ered further here; however, the only approximation (26) 
will be taken up again in Section IV. 

C. Condensed phase media in the photoacoustic 
saturation regime: Continuously inhomogeneous 
thermal properties 

expressed as a limit-taking process: 

limF(x)=+ lim [e-“mx+fxOe-H(x)]. (4.4) 
x--cc x-a, 

In the limit x=0 in Eq. (21), letting T(0) be interpreted 
as the surface temperature of the condensed medium with 
homogeneous a, = a0 profile due to the incident flux Qo, we 
obtainr3,” 

T(0)=Qo/ko~o=To~w).~ 

Equations (41), (42), (44) yield 
(45) 

1 
C2= -44R”2(~)lim{exp[ -a,x+H(x)] 

x-+cw 
+fAexp[ -H(x) +WUJ)II; a0>a, 

(464 
where 

RYE-‘(x)=e,(o)/e,(x). i (46b) 

We are interested in the exact homogeneous solution, The form of C’2 will only be determined by the specific 
Eq. (2 1 ), subject to appropriate boundary conditions for functional dependence a, = as(x), as it is contained in the 
photoacoustically saturated media. The heat flux at any integral H(x). 
depth x may be written: In the case of monotonically increasing as(x), as 

F(x) = - k(x) ; T(x) 
x -+ CO the second boundary condition for F(x-+ ~13 ) must 
be the difference of the two terms on the right-hand side of 
Eq. (43 ) . This results in the form: 

--$‘) k(x)c(x)[Cl$i(x) + C2emHcx)l, 
=E (x) C2=i Rr”( Co ) lim {exp[ - 0,x + N(x) ] - ffl 

x-2 
(41) Xexp[ --H(x) +M~)l3; aO<am. (47) 

where a second term has been omitted, assumed negligible 
compared to the term above. This approximation amounts, Now, the following specific convenient a,(x) profile will be 
as before. to discussed: 

(26) 
as(X)=ao(’ :piqx)‘; A-(z)‘“- 1. (48) d 

ze3 - 1’2 (x) z.0. 

One boundary. condition for semi-infinite media is This is a decreasing profile (a, < ao) and Eq. (46) is ap- 

lim T(x)=0jCl=C2e-2H(ar). 
propriate. Upon taking the indicated limit: 

(42) 
x--co 

The other condition pertains to the thermal flux as x-, M) 
lim r,x - (1 +i>(w/2)1” 

J-r m 
and depends on the general functional dependence, a, 

( .lY a&k) 

= a,(x), of the thermal diffusivity: for monotonically de- 
creasing as(x), as ,-+ CO the flux must be equal to that 

=Qili[x- s,” (&)1’2dx’]=o,J, (49) 

resulting from a linear superposition of a homogeneous 
medium with as = a,( CO ) =a, < as(x), plus a contribution 

where 

due to the excess flux of the higher diffusivity medium: 

F(x-+ 00) =i{F(x- ~;a,.,,) + hF[x+ ~;aJx)]). 
J= 1 [ 1 - (--$$)ln]dx’=$l,(a,,/aw). (50) 

(43) Therefore, 
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c 
2 
= -RL’2bJ) 

4 (f,0 + ewo4. (51) 

Since lim,,,H(x) = a for our choice of as(x), Eqs. 
(21), (42) and (51) yield 

T(x) = - To ( 
@GPm 

4 1 
(fwo + e -uJ) 

X{exp[ --~WCO) +HCx)l 

--wE --H(x)11 (52) 

so that T(0) = T,(w) requires that 

f,o=4R”2( ccl), (53) 

where f,c is fixed such that if a,(x) is set equal to ao, 
then J-, CO, and the temperature becomes that of a homo- 
geneous sample with thermal diffusivity a0 throughout, as 
per IQ. (45). 

Finally, the surface temperature can be written as 

T(O;o,ao,a,)=To(o> 1 +;R1%J) 
I 

The following limits are easy to verify: 

lim T( 0) = To(w); (surface domination), 
O-m 

(554 

limT(0)=To(w) 1 ++R112(m) 
W--O ( 1 

> To(w); (bulk domination), (55b) 

lim T(0) =limT(O) 
~,“Qo PO 

=Tob(QJ);. 

[homogeneous profile; a,(x) =ao]. (55c) 

III. THE INVERSE PROBLEM AND a,(x) PROFILE 
SIMULATIONS 

In this section a versatile technique is presented, which 
reconstructs thermal diffusivity depth profiles quantita- 
tively from the frequency responses of continuously inho- 
mogeneous condensed phases, when normalized by the re- 
sponse of a homogeneous (reference) sample of 
temperature profile To(o) given by Eqs. (28) and (45). 
The approach to the inverse problem, i.e., the a,(x) recon- 
struction, depends on the incremental frequency depen- 
dence of the thermal-wave amplitude and phase and is 
directly adaptable to front-detection photothermal meth- 
ods, ideally PAS. 

*@l-1 “2 =uZ2[ 1 - (Sw/2w,)]. (61) 

Separation of Eq. (57) in real and imaginary parts leads to 
the following exact expressions for the thermal-wave am- 
plitude ratio and phase difference: 

IM(o)]‘=l +$R1”(co)e-Cficos(cJZ> 

+&R(im)e-2CJz; (624 

and 

$p2(~)e- ‘@sin(c J;;) 
A#(w)= -tan-’ 

1 + iR1’2( co )epCJ;cos(c 6) . 

(62b) 
We define the ratio of the continuously inhomogeneous In addition, expansion of the exponential in Eq. (57) ac- 

temperatures T(O), Eq. (54), to the homogeneous temper- cording to the approximation (61), evaluated at angular 
ature To, Eq. (45): frequency o, _ I < 0, 

M(w)-T(O;w,ao,a,)/To(w). (56) 

Taking the case of a monotonically decreasing a=(x) pro- 
file, the normalized thermal-wave signal corresponding to 
the profile (48) is given by 

p&l) IdA+) = 1 + $R1”( co ) 

Xexp - 1 (1+2)&G’ 1 as 
2vTq &-In z ( )I ’ 

(57) 

where ]&Z(w) 1 is- the amplitude ratio and A&w) is the 
phase difference. In order to reconstruct the profile (48) 
with prior knowledge of the surface value a0 (the same as 
that of the reference sample), one needs to calculate the 
parameters q and a, from the data. Let 

c=& (&--)l”ln(z) . (58) 

Furthermore, from the definition of R(x), JZq. (46b), as- 
suming that the effusivity ratio at x= 00 and x=0 is ade- 
quately represented by the respective conductivity ratio, 
one obtains 

a mzaao/R2(co). (59) 

The adequacy of this approximation was tested and found 
to be sufficient from the fidelity of numerically recon- 
structed a,(x) profiles (see Sec. IV below). 

The essence of our technique lies in its treatment of 
differential subsurface layers corresponding to a measure- 
ment at modulation frequency fj = Oj/2r, with local 
a,&&) values determined by redefining (updating) the 
values for c and R ( co > found at a neighboring modulation 
frequency f/+ r = Oj+ i/23r, differing from fj by Sf 
= fj + 1 - fj Q f,-. For small frequency decrements 

cd, _ 1=6.& - so; 60(0, 
we can write to a high degree of accuracy: 

(60) 
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1.0 
(a) ‘O F G-1 1000 

-0.25 I I t / I I I , I 

-5.5 I 

(b) lo F (Hz) 1000 

(cl 5.64 x (Pm) 43.62 

FIG. 1. (a) Amplitude ratio and (b) phase difference between a sample 
with a,, = 1 X  10m7 m2/s, a, = 5X10m8 m2/s, q = lo5 m-*, h. 
(48) 1, and a homogeneous reference with aS = a,,. The thermal diffusivity 
profile is shown in (c). Sf=O.l Hz for this simulation. 

exp[ - (1 +i)cj/GZl 
zexp[ - (1 +i)c&lexp[(l +i>cS0/2&], 

(63) 
gives a relation linking signals at the two neighboring fre- 
quencies w, and o,- 1, when applied to Eq. (57) at o 
=wm- 1: 

exp(c,- 1S~/l13JCI)=S2(Wm- r)/S2(w,), (64) 
where 

S2(o> = IM(o) I2 + 1 - 2]M(w) ]cos[A9(u)]. 

Therefore, 

(65) 

C--l=(% ) ln(s~~~;‘) (664 

1 W W (a,>,-d 
=a qm--l(am)Xll * (66b) 

(al 5.64 xp (pm) 43.61 

1 
“7 

2 
zp; or. 
L b 2 x 8 2 

0 -LII1__..-* I 3 
lb) 5.64 XP (Pm) 

FIG. 2. Reconstruction of the thermal diffusivity profile from (a) ampli- 
tude data [Fig. l(a)] and (b) phase data [Fig. l(b)]; Sf=O.l Hz. 

Equation (66a) can be used to determine c, _ r, i.e., the 
local value of c, from amplitude and phase data at frequen- 
cies w, and w, _ r. Then, either Eq. (62a) or Eq. (62b) 
may be used at ‘w = w, _ t in order to determine the other 
unknown parameter R ( CO ) m  _ r. Once R ( CO ) is calculated, 
Eqs. (59) and (66b) evaluated locally at w = o, _ i yield 
values for qmml and (a,),-*: 

(a,)m--l=ao/R2(oC,),-1 (674 

and 

The versatility of the aforementioned technique lies in its 
ability to redefine the pair of values (q,a o. > at every mod- 
ulation frequency, which allows for local variations of 
a,(x), as manifested by normalized experimental signal 
differences between neighboring frequencies. From this 
point of view, the original single exponential decay for 
a,(x), Eq. (48) is solely used to supply local values for 
(q,a,)+as(xl,,d), and becomes irrelevant in the determi- 
nation of the global depth profile, which is determined as 
an inverse problem from successive values of the entire set 
of the experimental data dependences on Wj and can be any 
function of x, decreasing or increasing, numerical or in 
closed form. In the following simulations we test the fi- 
delity of the reconstruction of a known a,(x) depth profile 
from local values and, implicitly, the validity of the ap- 
proximations (59) and (63). As a sample reference value 
ao, a typical thermal diffusivity of the liquid crystal 4’-n- 
octyl-4-cyanobiphenyl (8CB) was chosen’* in the nematic 
phase at -37 “C: 

aozall= 1 X lo-’ m2/s, 
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2 

.pz 
vk- 
2b 22 
8 
2 

0 1 
(a) 5.64 xp (pm) 44.56 

1, ( , I , , I I , I 1 

2 
;$ 
27 
“0 
5s 

8 
V  

E  

01 , ( , , , I , , I I 

(b) 
5.64 

xp (pm) 
36.43 

FIG. 3. Reconstruction of the thermal diffusivity profile from (a) ampli- 
tude data, pig. l(a)] and (b) phase data, pig. l(b)]; Sf= 10 Hz. 

where a11 indicates a direction along the director of the 
liquid crystal. 

Figure 1 shows the amplitude ratio IM(w) 1 and phase 
difference Am as a function of frequency, due to a hy- 
pothetical sample with thermal diffusivity profile given by 
Eq. (48) with 

ac=lX10:‘m2/s, a, =5X10A8 m2/s, 
and 

q=105 m-l. 
These frequency responses were obtained using Eqs. (62a) 
and (62b) and the actual a,(x) profile [Eq. (48)] is also 
shown. Then, using Eqs. (65)-(67) with IM(w$ J and 
A$(@,) determined from the forward problem, with 1 
kHz>fl > 10 Hz and S, = 0.1 Hz, the inverse,problem was 
solved and a&c) was reconstructed as shown in Fig. 2. It 
should be noticed that the aJ:,(xj) obtained from the inverse 
problem, with either R ( CO ) from amplitude data, Fig. 
2(a), or from R ( CO ) phase data, Fig. 2 (b), is in excellent 
agreement with the original profile. The calculation of the 
depth parameter xP is performed based on the fact that as 
modulation frequency decreases, the thermal-wave probing 
depth (thermal diffusion length) /Q = p( Wj) increases.15 
Starting the experiment at the highest practical frequency 
w,, i.e., the shortest x, - p,,’ forj=n we can write. 

x,=pFL,dp,= (2afJco,)‘n, (68) 
where we approximate a surface slice with a,(x) 
;=: aJO) = ac. The next (lower) modulation frequency, 
o,- i, corresponds to an increased thermal-wave depth: 

x,-I=P~-I=P,+AP,-~, (69) 
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FIG. 4. (a) Amplitude ratio and (b) phase difference between a sample 
with a,, = 1 x low7 m ’/s, CZ, = 1X10-* m*/s, q = 10’ m-l, [I$. 
(48)], and a homogeneous reference with a, = CQ. The thermal dilTusivity 
profile is shown in (c). Sf-0.1 Hz for this simulation. 

where p,, is given by Eq. (68), and 

A~,-1=(2a,_1/~,-1)1’2- (2~r,-~/w,)“~, (70) 

and so on, for x, _ 2, x, _ 3 ,..., X,J. As shown by comparison 
of the abscissas of Figs. 1 (c) and 2, the above (approxi- 
mate) calculation leads to a reproduction xj of the actual 
depth parameter x better than 0.07%, which is the worst 
case resulting from the accumulated error at the lowest 
available frequency f. = 10 Hz. Figure 3 shows o,(Xj) re- 
constructions from amplitude and phase data when Sf = 10 
Hz. Upon comparison with Fig. 1 (c), we note that the 
fidelity of the amplitude-data reconstruction is stihvery 
high, except at the very lowest frequencies/greatest depths. 
On the other hand, the phase-data reconstruction appears 
to be poor throughout the entire frequency range. It is to 
be expected that as the condition 6w ( w, breaks down, 
the- expansion Eq. (63) may no longer be valid. Figure 3 
indicates that amplitude-data reconstructions may be more 
tolerant to the violation of this condition than phase-data 
reconstructions. 
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FIG. 5. Reconstruction of the thermal difisivity profile from (a) ampli- 
tude data, [Fig. 4(a)] and (b) phase data, [Fig. 4(b)]; Sf=O.l Hz. 

If a steeper decay of the thermal diffusivity profile is 
chosen, as in Fig. 4, the monotonic behavior of the fre- 
quency response in Fig. 1 is replaced by a more compli- . cated behavior characterized by the appearance of extrema 
in both amplitude and phase. It is interesting to note that 
these features are qualitatively similar to plots of the sur- 
face temperature frequency response from a discrete two- 
layered solid, in the case where the thermal conductivity of 
the substrate is lower than that of the overlayer (Ref. 2, 
Fig. 4). We hypothesize that the steeper the as(x) decay, 
the closer the similarity of the continuously inhomoge- 
neous sample to a step-functional distribution, as the lim- 
iting value aoo is reached at relatively shallower depths 
(higher frequencies). Figure 5 shows the reconstructed 
aJxj) from both data channels. It was observed that at 
values of mj in the vicinity of zeros of the function 
tan Ac$(o), Eq.. (62b), or IM(w)I=l, Rq. (62a), discon- 
tinuities appear in the reconstructed profiles due to the 
indeterminacy of those equations. These anomalies are 
worse in the amplitude-data reconstruction and further 
simulations showed that they spread out over much of the 
profile as the 60 ( w, condition is relaxed. For Sf=O, 1 
Hz, the phase-data reconstruction is excellent. 

Finally, we briefly examine ,the case of a monotonically 
increasing as(x) profile, such as the case 

,(~)=a~(; ;r;“)‘; Azl- (z)IR. (71) 

This is an increasing and saturating profile (am > a,,). 
Figure 6 shows the normalized amplitude and phase 

frequency response for such an a,(x) profile obtained by 
an increasing and saturating depth dependence. Figure 7 
shows reconstructions of the diffusivity profile from both 

1.1 
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-2s em 
.% z 

(c) 5.64 
x @ml 

161.29 

FIG. 6. (a) Amplitude ratio and (b) phase difference between a sample 
with a, = 1 X lOi m’/s, a, = 1X10P6 m’/s, q = 10' m-‘, [Eq. 
(71)], and a homogeneous reference with a, = a,,. The thermal diffusivity 
profile is shown in (c). Sf=O.l Hz for’this simulation. 

amplitude and phase data. In this case, too, the quality and 
fidelity of the reconstruction is excellent for Sf =O. 1 Hz. It 
is important to point out that Eqs. (57) and (62), which 
were derived for a decreasing a,(x) depth profile, are -ca- 
pable of high fidelity reconstruction of general protiles, in- 
creasing or decreasing, due to the redefinition of recon; 
strutted a,(x; fj> values locally, in terms of the actual 
experimental amplitude and phase profiles. Larger Sf in- 
crements result in poorer (x,(x) reconstruction, with that 
from the phase data being more susceptible to distortions, 
especially’ at low frequencies/great depths. Steeper diffu- 
sivity profiles than that assumed in Fig. 6(c) lead to non- 
monotonic signal behavior, qualitatively similar to a dis- 
crete two-layer model, with the underlayer being a better 
thermal conductor than the overlayer (Ref. 2, Fig. 3). 

IV. CRITIQUE OF THE APPROXIMATIONS TO THE 
THEORY 

The high fidelity of the diffusivity reconstructions for 
decreasing and increasing a,(x) profiles is a strong indica- 
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tion that the approximations Eqs. (59), (63) are valid 
throughout the tested frequency range. Approximation Eq. 
(59) implicitly assumes, in principle, the constancy of the 
heat capacity product c(x) p(x) by equating its values at 
x=0 and x= CO. In the actual application of the formula, 
however, its value is updated at every new frequency fj, so 
that Rq. (59) becomes readjusted from data values. As a 
result the impact of the approximation is negligible. Ap- 
proximation Eq. (63) is controllable by designing the ex- 
periment so that Sf ( fmh, where fmin = fe is the lowest 
usable frequency. In our simulations Sf/fe = 10 m-2 gave 
excellent reconstructions, whereas Sf/fo = 1 resulted in 
poor fidelity at the deep end of the reconstructed a,(x) 
profile, especially from phase data. 

The only approximation in the formulation of the the- 
oretical development leading to the key equations (41), 
(44) was Rq. (26), i.e., the assumed negligible contribu- 
tion to the temperature profile from a term proportional to 
the spatial rate of change of the inverse square root of the 
thermal effusivity e,(x). If that term is included in the 
calculation of the heat flux, Eq. (41), an extra term will 
appear in the expression for dT(x)/dx: 

(C@(“) - C2epH(“)). 

Therefore, a comparison with Eq. (41) shows that the 
above term will be negligible only if and when 

I+)1 d --1,2t > eln(x)Q3 x- (72) 

Relation (72) amounts to comparing [w/cz,(x)]“~ to 
- (l/2) (d/dx) ln[e,(x)]. Assuming that the heat capac- 

FIG. 8. Comparisons of magnitudes of Ft(o), (75b), and Fr(x), (75~) 
for thermal diffusivity parameters a, = 1 X  lo-’ m*/s, a, = 1 X lo-* 
m ’/s, q = lo5 m-‘, and 10 Hz g<l kHz. (F,): solid line; (FJ: dashed 
line. Abscissas correspond to typical experimental depths in 8CB with 
frequency-to-depth conversions from Fq. (69). 

ityp( --p(O)c(O), which was well justified from the 
fidelity of our simulations, we obtain: 

-~-& lnIe,(x)l “, -%‘“[a”(x)l. (73) 

Using the decreasing a,(x) profile, Eq. (48), the compar- 
ison to Rel. (72) amounts to comparing 

(;)‘“( 1 ~~e!qx)4 1 p’;e:qx). (74) 

Use of the definition of A, Eq. (48)) yields the requirement 

J7l(@)>FZ(X), (7%) 

where 

.,,d=(;),l +A)=(;)ln (75b) 

and 

F2(x) =2qAe-qX. (75c) 
Condition (75a) is always satisfied as x+ CO, with worst 
case at x=0. To establish its general validity many com- 
puter simulations were performed with q-+0, q+ 03, am 
---, a0, am + 0. In all cases, Rel. (75a) was always found to 
be satisfied, and within the frequency range 10 HzG< 100 
kHz. Figure 8 shows plots of our worst identified case, 
where F,(x) is relatively large. It can be seen that through- 
out the extended frequency range from 10 Hz to 100 kHz, 
F2(x) is always at least one order of magnitude smaller 
than Fi. We conclude from these considerations that our 
approximation Eq. (26) is definitely valid for all our re- 
constructions and thus the presented forward theory and 
inverse problem are internally consistent. 

V. CONCLUSIONS 

The Hamilton-Jacobi formulation of the thermal-wave 
problem for a continuously inhomogeneous semifinite and 
optically opaque condensed phase specimen was found to 
provide a simple, well-defined, versatile and internally con- 
sistent method to approach the inverse problem of thermal 
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diffusivity depth profile reconstruction from both photoa- 
caustic signal amplitude and phase channels. Increasing 
and decreasing diffusivity profiles in the value range of the 
liquid crystal 8CB were accurately reconstructed. The ver- 
satility of the reconstruction method lies in its ability for 
self-adjustment based on information in the actual experi- 
mental data. Many applications can be envisaged, such as 
with surface-treated materials, high-temperature and metal 
quenching processes, radiation damage in solids, etc. A 
tirst application to liquid crystals in the presence of an 
applied transverse magnetic field is presented elsewhere. l6 
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