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A self-consistent integral formulation of Green’s functions in thermal wave-physics is presented in 
one, two, and three dimensions and for infinite, semi-infinite, and spatially bounded geometries. 
Furthermore, several applications are explicitly worked out based on either Dir&let or Neumann 
boundary conditions and resulting in well-known or novel integral expressions for propagating 
thermal-wave fields in thermally homogeneous media and in experimentally useful geometries. It is 
hoped that the Green’s functions methodologies will enhance their use by investigators who wish to 
take advantage of their elegance, mathematical simplicity, and computational power. 0 /995 
American Institute of Physics. 

could not foresee the modern-day wealth of their applica- 
tions in numerous areas of science and technology); the 
other, perhaps more fundamental reason is the nonpropagat- 
ing nature of the thermal-wave equation. As a pseudowave, 
the solution set to the thermal-wave Helmholtz equation’ is 
hampered by existence constraints along certain regions of 
the complex plane defined by the thermal wave vector of the 
scatterer,” 

I. INTRODUCTION 

Thermal waves are used extensively for nondestructive 
evaluation, subsurface defect imaging, denth profilometry, 
and tomography.“’ In all of these applications, detection of 
inhomogeneities and defect structures is based on the scat- 
tering of thermal waves, which is ultimately the result of 
local variations in the thermal diffusivity. It is we11 known 
that scatterer detection methodologies using propagating 
fields (e.g., acoustic, electromagnetic, optical, microwave) 
can best be quantified using Green’s function techniques, be- 
cause detailed knowledge of the distribution of the object 
(field) function inside a spatial region can be reconstructed 
by detailed knowledge of the field values on the boundaries 
surrounding the spatial region (volume). This important con- 
sequence of Green’s Theorem3 can be put in straightforward 
mathematical terms by use of Green’s functions appropriate 
for specific geometries. The advantage of Green’s function 
formalisms is, of course, that the function itself is the repre- 
sentation of a field response to an impulsive source in space 
or time, or both, which is the simplest kind of source. Sub- 
sequently, the field response to any arbitrary source distribu- 
tion can be represented as a convolution integral of the dis- 
tribution with Green’s function over the source coordinates. 

In the analytical theory of heat diffusion Green’s func- 
tion techniques have been utilized for some time4 with wide- 
ranging applications to problems in conduction heat 
transfer5 These problems are transient (time-domain) formu- 
lations and have found recent applications in photothermal 
systems using pulsed excitation (Ref. 2, Chap. 2, and Ref. 6) 
or impulse-response spectral correlation analysis.7 The de- 
velopment of Green’s function methodologies is by no 
means as advanced in the frequency-domain conduction heat 
transfer analysis, otherwise known as “thermal waves.” The 
reasons are mainly two: the absence of pre-existing Green’s 
function formalisms in this area in widely accepted “classic” 
books and treatises such as those by Carslaw and Jaeger5 or 
Arpaci,s (such older monographs have not dealt with the 
thermal-wave field extensively, most likely because they 
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(1) 
where quantities bearing a tilde are complex. The subscript 
set (+I,$ represents general Cauchy, contours in the scat- 
terer wave-vector domain, which must be used to define the 
spatial domain of Green’s function for a given~geometry.‘* 
The advantage of the inverse Cauchy contour approach to the 
thermal-wave Green’s function is the asscciated ability to 
define explicit, unambiguous ranges of the k, complex plane 
where solutions to the thermal-wave pseudopropagation 
problem exist and are bounded everywhere within the range. 
The price paid for this knowledge is the complicated analyti- 
cal procedure inherent in the requirement for familiarity with 
complex domain integral manipulations involving nontrivial 
Cauchy contours with flat segments along the lines 
(-- ,e+fd4,+me4’ . 1n’4) lo All of these complications are in- 
timately associated with the fact that the thermal-wave prob- 
lem belongs to a class of inverse problems of elliptical type 
equations known as “ill posed.” *I 

Nevertheless, several authors have successfully used 
analogies to propagating wave fields to express Green’s 
functions in thermal-wave problems, mainly by ad hoc re 
placing the real wave vector in the Helmholti equation (or its 
modifications) by its complex counterpart,9’12-‘4 

~(o)=(1+i)(w/2~)1’2, G9 

where w is the angular modulation frequency of the thermal 
wave and cr is the thermal diffusivity of the medium in which 
the thermal wave is excited and pseudopropagates. Owing to 
the lack of a consistent Green’s function formalism with re- 
gard to thermal waves, several proposed Green’s functions in 
the literature are incomplete or inconsistent (compare Refs. 
9, 12, and 13). 
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In this article, the equivalence between time t- and 
frequency-domain thermal diffusion in terms of representa- 
tions by a Fourier transform pair is exploited to derive inter- 
nally consistent Cartesian-coordinate thermal-wave Green’s 
functions for infinite, semi-infinite, and finite-size domains in 
one, two, and three dimensions. Then the thermal-wave 
fields are expressed in terms of integrals of the derived 
Green’s functions in specific applications to the most com- 
mon experimental photothermal geometries. This can be 
called the %ermal-wave Huyghens’ Principle,” in analogy 
to conventional wave fields.15 The present time/frequency 
Fourier transform pair approach enormously simplifies the 
derivation of the frequency-domain Green’s functions from 
well-known time-domain representations via a Fourier trans- 
formation. The Cauchy contour approach” requires the ex- 
istence of appropriate contours in wave-vector space; that 
requirement is simpIy and efficiently transposed here into the 
requirement for the existence of the Fourier transform of the 
time-domain Green’s function, a far easier task usually as- 
sessed by the result of the integration. It is thus hoped that 
Green’s functions obtained in this article will form a math- 
ematically rigorous and useful reference set for experimental 
and theoretical workers in the field of thermal-wave diagnos- 
tics by virtue of the uniqueness, rapidity of convergence/ 
closed-form representations, and globality of Green’s func- 
tions for all physically acceptable boundary conditions under 
a fixed geometry. Furthermore, arbitrary source distributions 
obtained as convolution integrals will be considered, con- 
forming to particular experimental configurations, a powerful 
generalization of the utility of the present approach. 

II. THERMAL-WAVE GREEN’S FUNCTIONS 

A. Preliminaries 

The starting point is a slight modification of the well- 
known Green’s function for transient diffusion of thermal 
energy in n dimensions (Ref. 4, Eq. 7.4.10), 

dr-rd-t0)=( 2d&)n 

Xq( - &~~:,iffO-t0, (3) 

where r (ro) is the coordinate of the observation (source) 
point with respect to the origin; t (to) is the observation 
(source appearance) time; and H is the Heavyside function. 
An impulsive thermal source of unit strength is assumed lo- 
cated at r. and acting at the instant to. Equation (3) is the 
solution to a diffusion equation, the most general (three- 
dimensional) form of which is 

V’g(r-rs,t-to)- k & g(r-rs,t-to) 

It should be noted that the normalization factor (l/o;) on the 
right-hand side of Eq. (4) has been inserted so as to yield 
temperature fields with the right dimensional units. Defining 
the Fourier transform of Eq. (3) as 

I 

m 
G(r-ro,to;w)= g(r-r,,,t- tojeAio dt (5) -co 

and taking similar Fourier transforms of the various terms in 
IQ. (4) yields 

V”G(r-r,,t,;m)- z G(r-ro,to;o) 

= - k S(r-ro)e-iOtO. 

Equation (6) can be derived using the boundedness 
sality properties of Green’s functions, 

lim g(r-q,t-to)=0 (boundedness), 
t--r- 

g(r-rs,t-to)=0 for t<to (causality). 

(6) 

and cau- 

An arbitrary stationary, time-dependent thermal diffusion 
field generated by a source function s(r,t) obeys, by analogy 
to Eq. (4), the following equation: 

V%,t)- k & T(r,t)= - k q(r,t), 

where k is the thermal conductivity of the region containing 
the source. The Fourier transform of T(r,t) (assumed exist- 
ing), 

&r,w)= I 

m 
T(r,t)eeiot dt, (8) --m 

is the solution to the inhomogeneous thermal-wave equation 

V2~(r,0)-~2(w)~(r,0j=-~ fj(r,w), 

where c(w) is given by Eq. (2). g(r,o) is the Fourier trans- 
form of q(r,t), i.e., the spectrum of the source distribution 
&,t). Interchanging the coordinates r and r. in Eq. (6) and 
replacing r by r. in Eq. (9) is consistent with the definition of 
co as the source coordinate,Then multiplication of Fq. (6) by 
O(r,,ai) and of Eq. (9) by G(r,-,-r,to;o), and subtraction and 
integration over the thermal-wave source volume V. yields 

ii(r,o)e -iwt0= ” 
k 111 

C?(ro,w)@ro--w>dVo 

“0 

+ff 111 [G(ro-r,W)V~&rO,~) 

“0 

- &ro,~)~~~(ro-r,w)]dVo. (10) 

Using the reciprocity property of Green’s functions4 

E(r,-r,w)=G(r-ro,O), 

and Green’s theorem,3 we obtain 
1 =-- 
a S(r-rd)&t-to). 
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2ij(r,wj= g 
f-f-f 

&r~,w>do(r-ro,o>dVo 

“0 

+a [Go(r-r$,w)VoG(tio,w) 
.I 
SO 

- ~(r~,wjVo~o(r-r~,o)]dSO, ill) 

~o(r-rg,W)rcT;(r-rO,w)efofo (12) 

and So is the surface surrounding the source volume V,; I$ is 
a coordinate point on So. The thermal diffusivity CY and con- 
ductivity k were assumed to be constant throughout V,. A 
subtle but conceptually important question arises over the 
existence of the spectrum e{w} of Green’s function 
g(r-ro,t -to), which includes, in principle, all frequencies. 
Similarly, the “thermal-wave” equation (9) encompasses the 
entire spectral bandwidth in which the Fourier transform 
8(r,w), Eq. (8), exists. To obtain the conventional thermal- 
wave behaviorI the wideband spectral equation (9) must be 
reduced to a single spectral component form by assuming 
harmonic thermal excitation at some specific frequency 
~;;w”“+rr. The temperature function can be written from Eq. 

7 

&(r,o)eiwf do= 6(r,wojeioof, (13) 

where go is the required thermal-wave kernel function to 
give the single-frequency component &r,oo). Inverting Eq. 
(13) readily yields 

~o(r~~)=27ri(r,oo)6(wo-o). (14) 
Therefore, once the wideband Fourier spectrum thermal- 
wave equations (6) and/or (9) have been solved, the single- 
frequency counterparts can be obtained immediately by re- 
placing 0 with wo, or formally 

$$~@--;;;;;) = /;j “‘&-z;‘i S(w- wo)eiot do. 

(1% 
An important implication concerning the difference- between 
the wideband and single-component versions of G and 3 in 
Eq. (15) is that, whereas &r-r,,w) and @r,o) may not 
exist or be ill defined in some regions of the entire spectrum 
--cd<w<m, the 8(r-ro,cq,) and t?(r,oo) are always assumed 
to exist and be well defined at wo. 

B. Three-dimensional infinite Green’s function 

Setting n=3 in Eq. (3) and using Eq. (5) yields 

&r-rO,tO;W)= 
1 

e-ff)3’Z I 
= dt 
to (t-to)3’2 i 

-fiqo)lr-x.01 ,-ao)lr-r;l 

=& ’ Ir-rol - ]r-r-61 i . 

ir-r0Y . 
i 

In terms of the coordinate system of Fig.’ 1 
4a(t-to)-zot Ir-r0l= (~--o)2+(y-y0)23-(~-~O)Z~ROr 

m 
X 

I i 
exp -p- 

io(r- ro)’ 
4a$ dSy 1 i16) 

0 

where &“= (r- r,#/4a(t - to). 
Completing the square inside the parentheses of the in- 

tegrand in Eq. (16) and manipulating finally gives 

&r-rs,t,;o)= 
ze -iat 

T3/2alr-rol exd-%dlr-r0ll 

.,,( Wlyol), 

where it was defined 

Jl(A)=/omexp[ -(n-t)‘]dx. W-9 

It can be easily shown that, for any A real” or complex, 
dJ,(A)/dA=O, i.e., Jt is independent of A. Setting A=0 
gives JI(A) = G. Therefore, from Eqs. (17) and (12) the 
thermal-wave Green’s function for an infinite three- 
dimensional space is 

Go(r-ro,w)= 
,44lr-qll 
mxlr- rol . (19) 

This representation is essentially in agreement with ear- 
lier forms,‘2~‘3 except for the constant factor l/rrcz which was 
replaced with12 1/47r orI 1/4r&, where k is the thermal 
conductivity of the propagation medium. 

C. Three-dimensional semi-infinite Green’s function 

Two special cases must be considered when a semi- 
infinite geometry occurs with a dividing surface/interface at 
the observation coordinate z=O, Fig. 1. If the thermal-wave 
(temperature) field is prescribed at z=O, Green’s function 
must satisfy homogeneous Dir-i&let boundary conditions in 
the source coordinate, i.e., at zo=O, 

C30(r-rO(r-r~,i3)(zoeo=0. (20) 

As seen in Fig. 1, the coordinate z. coincides with the 
direction normal to the dividing interface. In general, condi- 
tion (20) must be generalized to involve the normal source 
coordinate to the tangent plane of any curvilinear coordinate 
system used. From analogy to the infinite-domain Green’s 
function, an impulsive image source must be placed at ro, 
such that condition (20) is validated. The appropriate combi- 
nation is 

(22aj 
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FIG. I. Coordinate system for three-dimensional (x0 .yo ,zO) 
geometry with ro=O plane (So) separating two half-spaces. 
(x,Y,z): observation coordinates; (x~,Y~,z~): source coordinates. -._-. -. 
Ro=I%IBlr-roi=\I(x-.~o)2+(y-yo)2+(z-z~)Z; R&=(Gj=,l%lr-r;] 
= \I(x-xo)~+(~-~~)‘+(z+zo)~; i&: unit outward vector to volume V,; 

iii : unit inward vector to volume V,. 

Ir-rJ= (x-xo)2+(y-yo)2+(~+~g)Z,R;1. (22b) 

At z,,=O we obtain 

Ir-roJ=Ir-r~l=~(X--~~)2+(y-y0)2-tZZ~~. (23 

Equation (21) is similar to a generalization of the infinite 
domain Green’s function derived independently’ using a 
thermal-wave diffraction integral formalism, with the excep- 
tion of the exponential terms which in that treatment appear 
as eizb-rOl and e “l’-‘hl. The cause of this apparent discrep- 
ancy is the choice of the sign of the Fourier component of 
the temperature field as eiot in the framework of Eq. (8). 
This choice renders positive the sign of the G-dependent term 
in Eq. (9). Overall this remark is meant to emphasize the 
importance of sign conventions in thermal-wave physics as a 
possible source of error, unlike in the conventional Helm- 
holtz equations obtained with propagating wave fields, where 
the sign of the time-harmonic term e”O’ is immaterial due to 
the second time derivatives from which tFie Helmholtz equa- 
tions are derived. 

If the thermal-wave flux is prescribed at the interface 
z=O, Green’s function must satisfy homogeneous Neumann 
boundary conditions in the source coordinate at z=O, 

V. indicates the normal derivative of co along the normal 
source coordinates z. at the interface. The impulsive image 
source argument applies here with the requirement that the 
thermal-wave fluxes cancel out at the interface. The appro- 
priate combination is 

‘[2gI [ZJ [gJ 1 hz) . . 

/~~~- 
I-... 

L IX :3L j 4L 

FIG. 2. Image source locations in three-dimensional application of the 
method of images to thermal-wave Green’s function formulation. 

~!o(r-rolr-r~ ,w) 

i 

-3(w)lr-41 ,-+l)(r-rJ 
=- 

7ia e jr-rol + lr-r&l ’ t25) 

corresponding to the situation shown in Fig. 1. A different 
version of Green’s function Eq. (25) has been previously 
presented independently,i3 but without derivation. The main 
differences appear in the exponents in the form e”l’-‘ol and 
eiolr-ril and, in view of the earlier discussion, they are likely 
to be traced in the sign of the time-harmonic term e’? 

D. Three-dimensional Green’s function for finite 
geometries: Method of images 

The method of images is well suited for situations where 
Green’s function is known for an infinite geometry and it is 
required for a geometry with finite boundaries. In that case 
the infinite-geometry function may be used as a basis, ex- 
tended by inclusion of a multiple infinity of source terms, 
each infinite sum representing “reflections” with respect to a 
particular boundary in order to satisfy prescribed boundary 
conditions. In that sense, the foregoing three-dimensional 
semi-infinite Green’s function Eq. (25) can be viewed as the 
result of the application of the method of images at the in- 
terface which defines the semi-infinite geometry. Historically 
Thomas et aZ.‘2v13 and Mandelis and Power17 have presented 
analytical solutions to thermal-wave problems involving 
angled or tlat boundaries of finite dimensions using the 
method of images. The results of the method of images to be 
presented below are mathematically strictly valid and yield 
correct Green’s functions which can also be derived indepen- 
dently from the governing differential equation. 

Based on the mathematical convenience of the method 
of images, the infinite-domain Green’s function Eq. (19) can 
be extended to accommodate plane bounding surfaces at 
z= 0,L with infinite radial dimensions. In a manner similar 
to the derivation of Eq. (21) for semi-infinite domains, image 
sources must be placed at source coordinates as shown in 
Fig. 2, so as to satisfy either Dirichlet or Neumann boundary 
conditions at z = 0, L. The resulting Green’s functions are 

i$r-rolr-r~,w) 

’ CW 
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where (7) corresponds to Dir&&let/Neumann boundary con- 
ditions and, upon combination of the coordinate system of 
Fig. 1 with the array of image sources of Fig. 2, 

Ir-ronl=Jt~-~0)2~(y-yoj2+[~-(2aLfzoj]Z (27a) 
and 

~r-r,&~=~(x-x,,)2+(y-yo)2+[z-(2nL-zo)]2. (27b) 

E. Two-dimensional Green’s functions 

Setting n=2 in Eq. (3) and inserting in Eq. (5) gives 

G(r-ro,to;w) 

=A ly & exp( - 4@(i~~~)-iWf). (28) 

Using a change of variable similar to Eq. (16) results in the 
following representation: 

6,(r-r,,w)= 

(29) 
This integral has been tabulated (Ref. 18, entry 3.478.4) and 
yields 

where Ka is the Kelvin function of order zero. This Green’s 
function has been derived independently” using a complex 
Cauchy contour and it has been shown” that the integration 
path of its integral representation is different from the one 
conventionally used in the treatment of Bessel functions of 
complex argument,lg owing to the rotated Cauchy contour in 
thermal wave-vector space. In practice, the real and imagi- 
nary parts of Green’s function Eq. (30) may be separated out 
easily for computations in terms of Thomson functions,‘g 

Go(r-ro,o> = & [ker[ (:)liz/r-rOl] 

+i kei[ (E)‘“/r--roj]]. 

Series expansions and asymptotic representations for the 
Thomson functions can be found in Ref. 18, entries 8.564 
and 8.566. Green’s function (30) has been used in the gen- 
eration of computational algorithms for thermal-wave slice 
diffraction tomography (TSDT)?‘**’ A problem with the two- 
dimensional thermal-wave Green’s function is the strong sin- 
gularity encountered at the origin, which makes it difficult to 
use for field descriptions in the neighborhood of point 
sources commonly occurring with highly focused laser heat- 
ing. The strong singularity at the origin is not particular to 
the thermal-wave field, but is endemic to two-dimensional 
Green’s functions describing steady waves.4 For this reason, 
it is computationally preferable to use three-dimensional 
forms of Green’s function along a fixed coordinate to de- 
scribe two-dimensional thermal-wave fields. Therefore, the 
development of two-dimensional expressions for bounded 
geometries, albeit central to the TSDT problem”0~2’ and to 

applications of photothermal beam deflection methods,‘a9”” 
will not be pursued further here. It can be easily approached 
in a straightforward manner by use of extensions of Eq. (30) 
in combination with the method of images. 

F. One-dimensional Green’s functions 

Setting n=l in Eq. (3) and following the same proce- 
dure yields for the infinite-domain Green’s function 

1 * dt 
G(x-xo,to;w)= 

-7-f 2 Tff to (t--oYZ 

(32) 

where the spatial coordinate was assumed to be along the x 
axis. Transformation of the variable to ,$2=(x-xo)2/ 
4a(t-to) gives 

f20(x-xo,+ p! e-~(o)lx-nolJ, 
2 3-a 

2( wly,l)) 

(331 
where it was defined that 

Jz(A)=fr$exp[-(x-$)*1. (34) 

It can be easily shown by the change of variable y = A/x that 

dJz(Aj 1 
-= - -jp J,(A), dA (35) 

where J,(A) is given by Eq. (18) and has the value4 
J1 (A ) = m. Therefore, J1(A)= &?!%i and Green’s 
function becomes 

l-i 
Go(x-X&O)= ~ e -ir(o)ln-x0] 

2I.lzz 

It follows that the semi-i&rite domain Green’s function is 

&(x- ~~olx+xo?4 

2& (,-a(o)ln-xol~e-~,(,)(n+x”)), (37) 

where the use of -t- signifies that the function satisfies the 
Dirichlet/Neumann boundary conditions. Finally, direct -ap- 
plication of the method of images, Fig. 2, gives Green’s 
function for a thin rod of material bounded by x=O,L, 

Go(xIxortij= -&$ jj (e-~~o)lx-~2nL+xo)l 
m 

7e-“(w)ln-(2nL-xo)l). (38) 

III. SOME APPLICATIONS OF GREEN’S FUNCTIONS 

A. One-dimensional thermal-wave fields 
1. Case I: A semi-infinite rod with temperature at x=0 
given by B(O,t) = Tbei+ 

This problem has been previously treated4 using the 
time-domain Green’s function, Eq. (3) with n=l. The 
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thermal-wave Green’s function must satisfy a homogeneous 
Dir&let condition at the source coordinate x,=0. From Eq. 
(11) in one dimension, with Q(xe, w) 40 (no bulk/volume 
sources), and Eq. (37) with ea(x - ~“0, w) =0 (homogeneous 
Dirichlet boundary condition), we obtain 

B(x,w)=-aij[no=O,w)[V,c;,(x-Jo,O)lx,=o]’~i, (39) 

where the boundary surface integral over So has degenerated 
to a single point x,=0 and the vector normal to the surface 
&a has been replaced by fi, the inward unit vector parallel to 
the z axis indicating the in-flow of thermal energy. In the 
same spirit we define 

Vo=& $=-hi $7 
0 0 

where lFio is the outward unit vector. Therefore, Eq. (39) be- 
comes 

l5(X,O)=ae(O,t) -& Go(x-xo,w) xo’o , i I 1 (41) 
0 

and from Eq. (37), 

-& ~oi~-~o,4 
0 

(I -i)(T(o) _- = 
2Ji-z 

ce 0(4(x-x0) + e -~fo)(x+~oj) (42) 

where the lx---x0] was replaced by (x-xa), because 
n>x;=O for all observation coordinates x>O along the 
semi-infinite rod. For the same reason, in evaluating 
dGoldxo we must set d~x-xo~ldxo= - 1. Collecting terms, 

~(X,W)=e(o,t>e -j(,)x=Toeiw”t-~(0)n. (43) 
It should be recalled that 5(x,0) is the wideband Fourier 
spectrum of the required thermal-wave field. 

Finally, using the transformation indicated by Eqs. (13) 
and (14) yields 

~~x,~)=~oei~o~-~(~o)~~~~x,oo). (44) 
This equation represents the semi-infinite one-dimensional 
thermal-wave field and is identical to Morse and Feshbach’s 
Eq. (7.4.14): 

2, Case II: The same semi-infinite rod with prescribed 
thermal-wave surface flux at x=0 given by 
+(O,t) = &eimOf 

Green’s function must satisfy a homogeneous Neumann 
condition at the source coordinate x,=0, i.e., 

Therefore, Eq. (11) in the absence of bulk sources becomes 

~(x,o)=n[.~o(x-xo,o)l,,=o][Vo~(~o,~)l,oLol.i;i (46a) 

i4W 

In deriving Eq. (46) the same 6 and V. conventions used in 
Case I were applied. To evaluate the d&dn, at x0=0, the 
incident flux +(O,t) must be introduced in the source coordi- 
nate no. From the definition of thermal flux one obtains 

where k is the thermal conductivity of the rod. 
Therefore, Eqs. (46) and (47) yield the thermal-wave 

spectrum 

B(x,w)= il-G&o e-&O)X+iWot 
kJ20 

(48) 

or, upon inversion, 

& 1 
Uw)=dJo k J;;1; ( 1 eio0t-I~(m0)x+(i~/4)l~~(x,Wo). 

(49) 
The resulting thermal-wave field T(x,wo) exhibits the well- 
known 7r/4 phase lag with respect to the input thermal-wave 
flux predicted for semi-infinite geometries (Ref. 5(a), Chap. 
2.6). 

3. Case l/l: The thermal-wave problem of case II for a 
thin rod of length L and flux +(O,t) at x=0 

Green’s function must satisfy homogeneous Neumann 
conditions at x= 0,L. Owing to the finite length of the rod, 
the appropriate Green’s function is given by Eq. (38) (+ 
sign). For convenience the summation can be split up into 
two components Osn <co, - 1 an > --OO and redefined, 

l-i 
dO(xlxo,w)= ~ 

ZJZLYW ( 
e -rrjojlx-xol+e-~-(w)(x+xo) 

m 

+ e -G(o)(x+2d+xoj) . 

1 

The thermal-wave spectrum is given by Fq. (46a), although 
formally a similar term evaluated at x0 = L must be added to 
account for the “other side” of the bounding surface So. 
However, Vo&xo , w)lx02L = 0, because incident flux oc- 
curs only at x,=0. Using Green’s function Eq. (SO) and Fqs. 
(47) and (46a) yields 

+ e -G(o)(znL+x)) .; 
1 61) 

Performing the infinite summations and inverting the result- 
ing thermal-wave spectrum finalIy gives 
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xeiloat-(vM)l 62) 

This equation readily simplifies to Eq. (49) in the limit 
L-+m, as expected. It is familiar from other solution meth- 
odologies, usually by direct solution of the thermal-wave 
equation,% Fq. (9), for applications in backscattered (x=0) 
or transmission (x=L) photothermal diagnostics. 

B. Three-dimensional thermal-wave fields 

1. Case I: A semi-infinite (half-space) region with 
thermal-wave flux prescribed over the interface plane 
zo=o 

In this case, 

9(w) = $0e- 5 r’lw2eioor 
2 (53) 

generated by a Gaussian laser beam of spot size W. In this 
case Green’s function must satisfy a homogeneous Neumann 
boundary condition on the source plane zO=O and is given by 
Eq. (25). It is further assumed that no volume sources exist 
in the half-space (x0 ,yo ,zo) where the thermal-wave field is 
sought, Fig. 3. Therefore, the solution Eq. (11) becomes 

iQr,co)=a 
1 

~O(r-r~~r-r~S,ir))Vo~(r~,cojdSo, 

s 0 

(54) 
where &a must be replaced by dSi=iii dxo dye pointing in 
the direction inside the half-space V. to indicate in-flow of 
thermal energy. The surface So is the plane zc=O. Further- 
more, 

.I? AJ 
vo=no dzo = -ni -jg? 

so that from the definition of thermal flux 

or 

(55) 

Equations (25), (54), and 

exp( - (x!-r;~)). (57) 

(57) give the spectrum of the 
thermal-wave field in form of an integral over the bounding 
interface So (x0 ,yo); 

m 

a 
240 r,w)= x eroQ’ 

J-I 
dxo dY0 ~ 

R 
-co 

i 
(4fY3 

Xexp - W2 (58) 

where R was defined in Bq. (23). A change of variabIes 
x--x0= 17 and y-yo=[ recasts Eq. (58) in the form 

f(r,w)= 2 t?’ lWot exp( -,(X2~~‘))J~(x,y,r), (59) 

co 

~,ky,z)= 
do dt 

xm-i?G 

Xexp - 
i 

[~2+~2-2(77X+5Y!] - 1 w2 . (60) 

A final variable change to p’= $+$’ can separate out the 
two components of the surface integral, so that 

I 

a pdp 
2 

c. 
J&,y,z)= ~ exp 

Oh=? 
-6Cw,Jp~-$ 

x de e2p(X COS efY Sin o)iW2 161) 

The angular integral can be readily evaluated from (Ref. 18, 
entry 3.937.2, p. 488) 

I 
2T 

0 
ep ‘Osx+q sinx dx=h-Zo( dm), (62) , 

where IO is the modified Bessel function of order zero. The 
resulting integral is 

s 
m pdp 2 

-7&,Y,z)=2~ o - $-whw 

xzo(g Pq. (63) 

The thermal-wave field represented by Eqs. (59) and (63) is 
in a compact form which can be easily evaluated numerically 
using the polynomial approximation for lo(x) given in Ref. 
25, entries 9.8.1-9.8.4. The relatively simple expression for 
the spectrum &r,w) and, by extension, for the thermal-wave 
field T(r,t)=T(x,y,z; wo) is in the form of a single integral 
by virtue of Green’s function analysis. This approach should 
be compared with the complexity of the eigenfunction ex- 
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FIG. 4. Buildup of thermal-wave field at an arbitrary depth z inside a region 
bounded by plane interfaces z= O,L, by use oy mathematically convenient 
thermal ray “reflection” and superposition. 

FIG. 3. Geometry for calculation of semi-infinite thermal-wave field gener- 
ated by a Gaussian laser beam totally absorbed at the surface plane zO=O. 

pansion solution to the thermal-wave differential equation 
(9) in terms of infinite series which is frequently of slow g(r,w)= 2 e 

convergence.26 It should also be compared with thermal- 
W exp( - (x2Jz2j) (Js(x,y ,z) 

wave (photoacousticj Green’s function formulations based 
on infinite series of eigenfunction expansions,14 where also + i [S~)(x,y;2nL-;2nL-)+.qqx,y;2nL+z)] 
series complexity and speed of convergence can be primary 

n=l 

disadvantages. It is the enormous advantage of the elegance (66) 
and numerical simplicity of single integrals such as 5s in Eq. 
(63) that ultimately justifies the use of integral Green’s func- for the thermal-wave field spectrum. The backscattered 
tion analysis in problems of higher dimensions than one. thermal-wave field Eq. (13) becomes 

2. Case II: The thermal-wave problem of case I, 
bounded by plane interfaces at z. = 0, L 

In a manner similar to case I, and in the absence of bulk 
(volume) sources, the field equation is given by Eq. (54) 
where So encompasses only the plane zo=O, because at 
zo= L the thermal-wave flux is zero (no source). The rel- 
evant Green’s function now is Eq. (26) satisfying homoge- 
neous Neumann conditions at the two interface planes. Equa- 
tion (54) gives 

1 
@tr,m)= - ; dzo 

l 
2ff- &J,Yo,zo;~o) q)‘O 

I :i 

e-&41r-~0nl e-&41’-‘;nl 

n=-co Ir-4 + k&l zo=o’ 
(64) 

where d&dzo is given by Eq. (56). Now defining integrals 

jp’(x y-A 3 3 n 

and splitting up the summation in Eq. (64) results in the 
expression 

2’o T(x,Y,O;~o)= x e i”Of exp( - (x*iz2j) (.?s(x,y ,Oj 

(674 

and the transmitted thermal wave field is 

240 T(x,y,L;wo)= x eioof exp 

x ji(x,Y,L)+n~l {~y)[~,Y;~2~+ INI 
( 

+.qqx Y’(2rz-- l)L]} 1 > Wb) 

These three-dimensional field summations cannot be 
represented by compact formulas such as Eq. (52) for the 
one-dimensional geometry of finite thickness. A convenient 
mathematical (but physically heuristic) interpretation is that 
of Fig. 4 in terms of infinite “reflections” of thermal “rays” 
at the interfaces z=O,L. In Fig. 4 the double index n: (i,j) 
corresponds to specific terms (i) and (j) of the first summa- 
tion ~~=,~f)(x,y;2iL-z) and of the second summation 
XT= ,J$Q(x,y;2jL +z), respectively, in Eq. (66). 
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IV. CONCLUSIONS 

Consistent Green’s function representations of homoge- 
neous thermal-wave fields were formulated for one, two, and 
three spatial dimensions in Cartesian coordinates and infi- 
nite, semi-infinite, and bounded geometries. The formalisms 
were based on integral equations for the thermal-wave fields 
and some applications were presented in one and three di- 
mensions. Two-dimensional cases can be easily treated using 
the three-dimensional analysis with one spatial coordinate. 
fixed. Several inconsistencies of Green’s functions published 
in the thermal-wave literature were thus addressed and new 
integral formulas suitable for computer implementation fea- 
turing rapid convergence (tested in this laboratory) in the 
case of three-dimensional fields generated by laser photo- 
thermal excitation were derived. It is hoped that the forego- 
ing treatment will stimulate the use of Green’s function ap- 
proaches to various thermal-wave problems by future 
investigators who wish to take advantage of their elegance, 
simplicity, and general power in closed-form (albeit as an 
integral) description of diverse geometries under arbitrary 
boundary conditions. Extensions of the present Green’s func- 
tions derivations in curvilinear coordinate systems are under 
consideration. 
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