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The formulation of a generalized expression for the thermal-wave field in an inhomogeneous
finite-thickness solid on a homogeneous semi-infinite substrate is discussed. This is based on the
Hamilton–Jacobi formulation of the thermal-wave problem@A. Mandelis, J. Math. Phys.26, 2676
~1985!#. An algorithm to invert simulated photothermal frequency scan data in obtaining thermal
diffusivity profiles using this expression is reported. The tolerance of this inversion procedure to
noise in both simulated and experimental data is also discussed. ©1996 American Institute of
Physics.@S0021-8979~96!02122-6#
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I. INTRODUCTION

Among the modern-day nondestructive evaluatio
~NDE! methodologies, thermal-wave detection1 is a tech-
nique growing in importance due to its ability to monito
subsurface structures and damage in materials, well bey
the optical penetration depth of illumination sources, i.e
below the range of optical imaging for opaque materials. T
amplitude and phase of the thermal wave generated by
optical or other thermal energy source at the surface of
opaque material are detected either in the back-scattering
in transmission mode using a variety of sensor probes.
inhomogeneous materials, these two thermal-wave sig
channels carry information about any heat transport disru
tion or change below the surface, which must be interpret
with appropriate models in order to yield reliable reconstru
tions of the spatially variant thermal diffusivity of the
sample.

One of the first theories of this kind of inversion wa
described by Vidberget al.2 This model pertains to the
thermal-wave surface signal obtained by measuring the
dial variation of the surface temperature of a continuous
inhomogeneous solid about a heated point at a single mo
lation frequency. Both thermal conductivity and heat capa
ity profiles were reconstructed using Pade´ approximants for
the inversion of spatial Laplace transforms. There is a nu
ber of constraints that limits the applicability of this mode
The most significant ones are~1! it is only valid for a non-
conventional experimental geometry;~2! the reconstructed
profiles are not always numerically reliable;~3! the accuracy
is limited to a depth reconstruction on the order of one the
mal diffusion length; and~4! the reconstruction algorithm is
relatively complex and is sensitive to small amounts of erro
In an earlier publication Jaarinen and Luukkala3 discussed a
numerical analysis of the same experimental geometry ba
on the solution of the thermal-wave equation at a sing
modulation frequency. The analysis uses a two-dimensio
finite difference grid.

More recently, another major attempt4 was made to ap-
proach the thermal-wave inverse problem more rigorous

a!Electronic mail: munidasa@me.utoronto.ca
5570 J. Appl. Phys. 80 (10), 15 November 1996 0021-8979

Downloaded¬18¬Jul¬2008¬to¬128.100.49.17.¬Redistribution¬subject¬
n

r
ond
.,
he
an
an
or
In
nal
p-
ed
c-

s

ra-
ly
du-
c-

m-
l.

r-

r.

sed
le
nal

ly

and for more general geometries than foregoing papers.
this approach the well-known Hamilton–Jacobi formalism
from classical mechanics was introduced into the therm
wave problem by treating the ac temperature field as a th
mal harmonic oscillator~THO!5 and inverting the amplitude
and phase of the experimental data through matching to
plicit theoretical expressions for a semi-infinite solid~or liq-
uid!. The first experimental inversions were obtained fro
the liquid crystal octylcyanobiphenyl~8CB!6 using this
method. Further inversions with semi-infinite laser-process
solids were reported later.7,8 An inversion procedure for a
finite thickness problem was also reported based on the sa
THO approach.5 More recently, a newer model9 motivated
by the approach described by Mandelis and co-workers4–8,10

was proposed, that assumed locally constant or linear
dependent thermal conductivity on depth. In that work th
solid was divided up into a virtual incremental discrete-lay
system and in each layer forward and reverse thermal-wa
equations were set up for constant conductivity and solv
using computer-based matrix routines. The resulting equ
tions were inverted for the depth-dependent increments
the value of the thermal conductivity using a commercial
available nonlinear least-squares fit routine. It is well esta
lished that only true material discontinuities such as surfac
and not virtual incremental slices can generate reflected th
mal waves. This raises questions about the validity and
uniqueness of the inversions. Even if it is accurate for sem
infinite solids, the theory presents problems with the trea
ment of finite-thickness materials, as it ignores the multip
interreflections of the thermal wave between the two boun
aries~surfaces! of the material. Fivez and Thoen reported ye
another version11 of the foregoing inversion problem with a
linear dependence of the local~incremental! thermal conduc-
tivity with depth. Explicit expressions were derived an
matched with experimental data and the results of the inv
sions were in good agreement with those obtained by t
approach by Maet al.7 The major shortcoming of this new
approach is in its inability to treat semi-infinite solids, sinc
the explicit formulas depend on the boundedness of the
rived Bessel and Neumann functions. Instead, their metho11

requires flat profiles in the bulk of the material under inve
tigation. This is so because many of the combinations
/96/80(10)/5570/9/$10.00 © 1996 American Institute of Physics
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FIG. 1. An illustration of the relationship between depth vs thermal diffu
sivity for a test sample having an investigation layer of arbitrary therm
diffusivity profile, and a substrate layer.
e

n

te-
.

g
the

cal
e
th
ty
these functions utilized in this approach become infinite
value as the depth increases without bound. A very rec
theoretical approach by Lanet al.12 combines the approaches
of two prior papers.9,11 Therefore, it has improved strengths
yet it is subject to some combinations of their shortcoming
a flat profile of the thermal conductivity at large distances13

~i.e., at ‘‘infinity’’ !, to induce boundedness, along with th
lack of a theoretical basis to treat multiple thermal-wave r
flections from the opposite surfaces of finitely thick sample
In a most recent theoretical paper14 Fivez and Thoen pre-
sented a new analytical approach to the inverse problem t
is valid for semi-infinite solids at sufficiently high frequen
cies, but shows significant deviations of reconstructed th
mophysical profiles from the expected values at low freque
cies ~equivalent to large depths in a sample!.

In this article we formulate a complete generalized e
pression for the thermal-wave field in an inhomogeneo
solid bounded by regions such as those shown in Fig. 1. T
expression can be used for the semi-infinite case just by t
ing the limit L→`. The formulas derived previously4,7,10

based on the THO approach were adequate for the spec
geometries dealt with in those cases, but were found to ha
several shortcomings. Those derived for the continuously
homogeneoussemi-infinitesample in Refs. 4 and 7 do no
converge to the appropriate limits at low frequencies. Als
thefinite-thickness problemreported in Ref. 10 does not con
verge to the homogeneous limit smoothly.

II. THEORY

A. Semi-infinite inhomogeneous solid

From the Hamilton–Jacobi treatment of thermal-wav
physics as a thermal harmonic oscillator,5 for the ac tempera-
ture field generated by a modulated energy source~e.g., a
laser beam! in the material with a distributed thermal diffu-
sivity a(x) one may write

Ts~x!5
1

2Ae~x!
S pt0

Av
exp~2 ip/4!1t0D exp@H~x!#

2
1

2Ae~x!
S pt0

Av
exp~2 ip/4!2t0D

3 exp@2H~x!#; 0<x<`, ~1!
J. Appl. Phys., Vol. 80, No. 10, 15 November 1996
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wherev is the angular modulation frequency of the lase
intensity where one-dimensional heat flow is assumed. T
local thermal effusivitye(x) of the solid at a depthx is
defined as

e~x!5Ak~x!r~x!c~x!. ~2!

Herek, r, andc are thermal conductivity, density, and spe
cific heat, respectively. The exponent

H~x!5E
0

x

ss~y,v!dy, ~3!

wheress is defined as

ss~y,v!5~11 i !A v

2as~y!
, ~4!

where as(y) is the thermal diffusivity distribution of the
solid atx5y andpt0 andt0 are constants of integration and
can be determined by boundary and limiting conditions. Th
material under investigation is assumed to be opaque.

In the limit x→`, the ac temperature,T(x), generated by
the modulated laser should be zero. Applying this conditio
to Eq. ~1! yields

pt0
52Av exp~ ip/4!t0S 11exp@22H~`!#

12exp@22H~`!# D . ~5!

At the interfacex50, a net nonzero incident~photo! thermal
heat flux is assumed:

2ks
d

dx
Ts~x!U

x50

5
1

2
Q0 , ~6!

whereQ0 represents the thermal source fluence at the ma
rial surface@W/m2# assuming 100% laser power absorption
Differentiating Eq.~1! and substituting in Eq.~6! gives

2pt0
Ae~0!1

t0a~0!e8~0!

2Ae~0!
5
Q0

2
. ~7!

Substituting Eq.~5! in Eq. ~7! gives

t0'
Q0

2Av exp~ ip/4!Ae~0!
S 12exp@22H~`!#

11exp@22H~`!# D . ~8!

In deriving Eq.~8! an approximation was made in neglectin
a flux component due to a second-order effect, namely,
derivative of the thermal effusivitye(x) was set equal to
zero:

e8~0!5
d

dx
e~x!U

x50

'0. ~9!

This assumption amounts to a requirement for nonsteep lo
variations of the effusivity; it is easily satisfied when th
thermophysical field is evaluated at small incremental dep
slices where it is not expected that local steep diffusivi
gradients may exist.

Substituting Eqs.~5! and ~8! in Eq. ~1! gives

-
al
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T~x!5
Q0R

1/2~x!

2s~0!k~0! S 12exp$22@H~`!2H~x!#%

11exp@22H~`!# D
3exp@2H~x!#, ~10!

where

R~x!5
e~0!

e~x!
. ~10a!

Equation ~10! is the full expression for the thermal-wave
field in an inhomogeneous solid, therefore, in what follow
the subscript ‘‘in’’ will be used to indicate this fact. This
expression, however, does not adequately satisfy all poss
boundary conditions in composite~two-layer! solids.

In formulating a complete expression for the therma
wave field in an inhomogeneous solid bounded by regio
such as those shown in Fig. 1~L→`, in this case!, the con-
cept of linear superposition of solutions of the hea
conduction~thermal-wave! differential equation will be in-
voked: according to this principle, any complicated linea
boundary-value problem can have a solution written as
linear combination of solutions to a number of simple
boundary-value problems, so as to fully satisfy all bounda
conditions of the original problem. In the present case, t
group of simpler equations required to satisfy all bounda
conditions of the problem of Fig. 1 consists of all the equ
tions~and their solutions! valid for the various constant, vari-
able, and limiting values of thermophysical properties of th
geometry. Although it will be seen that the results are val
for arbitrary thermal diffusivity depth profiles, for this analy
sis let us assume a simple simulated functional depende
of the solid thermal diffusivity in the form,

as~x!5a0S 11De2qx

11D D 2, ~11a!

such thatas~`!5a` , as~0!5a0 and

D5Aa0 /a`21, ~11b!

wherea0.a` . The parameterq is a constant that determines
the rate of thermophysical decay.

Insertion of the above two equations in the integral fo
H(x), Eq. ~3!, givesH~`!→`. Therefore, the temperature
field in the inhomogeneous field from Eq.~10! is

Tin~x!5
Q0R

1/2~x!

2s0k0
exp@2H~x!#, ~12!

wheres~0!5s0 and k(0)5k0 . The boundary values of the
diffusivity involved inside the solid area0 anda` . The air–
solid interface will not be considered, because in most pra
tical cases the thermal coupling coefficientRair,0!1 ~near
adiabatic conditions!. The other thermal-wave fields repre
sented in Fig. 1~L→`!, are

T0~x!5
Q0

2s0k0
e2s0x ~13a!

and

T`~x!5
Q0

2s`k`
e2s`x, ~13b!
5572 J. Appl. Phys., Vol. 80, No. 10, 15 November 1996
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with constant diffusivitiesa0 anda` , respectively. Now us-
ing the superposition principle, the general solution of th
thermal-wave field in the solid can be written

T~x!5aTin~x!1bT0~x!1cT`~x!, ~14!

where a, b, and c are constants to be determined by th
various limiting case requirements of the problem.

B. Determination of the constants ( a,b ,c ) and limiting
cases

1. At large distances compared to the inhomogeneous
region: x ˜`

Since Eq.~11! gives a constant diffusivity profile ofa`

at very large distances from the surface,T(x,v)5T`(x,v)
in this limit. Therefore, Eq.~14! leads to

limx→`H aS Tin~x,v!

T`~x,v! D1bS T0~x,v!

T`~x,v! D1cJ 51. ~15!

Substituting Eqs.~12!, ~13a!, and~13b! in Eq. ~15!

aR1/2~`!
e`

e0
exp$ limx→`@s`x2H~x!#%

1b
e`

e0
exp$ limx→`@2~s02s`!x#%1c51. ~16!

Sincea0.a` ~i.e., us0u,us`u!, the second term in Eq.~16!
will become infinite. Therefore, to avoid that we can se
b50. It can be shown that4

exp$ limx→`@s`x2H~x!#%5exp~s`J`!, ~17!

where

J`5
1

2q
lnS a0

a`
D . ~18!

Equations~16!–~18! lead to

a5~12c!
R`

AR~`!
exp~2s`J`!. ~19!

2. Very high frequencies: v˜`

In this limit the penetration depth of the thermal wave i
zero, hence the following limit is valid:

T~0,v→`!5T0~0,v!. ~20!

Substituting Eqs.~13a!, ~13b!, ~19!, ~20!, and b50 in Eq.
~14!, and sinces`→` in the limit v→`, it can be shown
that

c5
T0~0,v!

T`~0,v!
5
k`s`

k0s0
5

1

R`
. ~21!

3. Very low frequencies: v˜0

Since the penetration depth is infinite in this limit

T~0,v→0!5T`~0,v!. ~22!

Substituting Eqs.~20!, ~21!, andb50 in Eq. ~14!, and since
s`→0 in the limit v→0, it can be shown that
Mandelis, Funak, and Munidasa
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1

R`
D R`

AR~`!
5R`21

[R~`!51. ~23!

Finally, substituting all the determined constants from Eq
~21!, ~23!, andT0, T` from Eqs.~13a! and ~13b! at x50 in
Eq. ~14!, the surface temperature of a semi-infinite inhom
geneous medium is

T~0,v!5
Q0

2s0k0
@11~R`21!exp~2s`J`!#. ~24!

C. Solid of finite thickness on homogeneous
substrate

Here, Eq.~1! represents the ac temperature field in th
region 0<x<L. The constantspt0 andt0 can be determined
by boundary and limiting conditions.

At the interfacex50 the boundary condition Eq.~6! is
assumed. At the interfacex5L, continuity of heat flux and
temperature are assumed as

ks
d

dx
Ts~x!U

x5L

5kb
d

dx
Tb~x!U

x5L

, ~25a!

Ts~L !5Tb~L !, ~25b!

whereTs(x) is given by Eq.~1! in the region of 0<x<L,
andTb(x) is the temperature field in the semi-infinite bul
given by

Tb~x!5
Q0

2sbkb
exp@2sb~x2L !#. ~26!

Differentiating Eq.~1!, substituting in Eq.~6!, and evaluating
at x50 yields

pt0
52

Q0

2Ae~0!
. ~27!

In deriving Eq.~27! the same approximation,de(x)/dx50,
discussed earlier, has been made. Similarly, evaluating
~25a! at x5L and then substituting forpt0 from Eq. ~27!
gives the following expression:

t05
Q0e

2 ip/4

2Ae~0!v
S 11gb~L !e

22H~L !

12gb~L !e
22H~L !D , ~28!

where

gb~L ![
12Rb~L !

11Rb~L !
; Rb~L ![

eb
e~L !

, ~29!

andeb , e(L) represent the thermal effusivities, respectivel
at the top of the substrate layer~which is assumed to have
constant thermophysical properties!, and at the directly adja-
cent and contacting bottom of the solid material layer wi
variable thermophysical properties. Finally, using Eq.~1!
with the derived values of the parameterst0 andpt0 gives an
expression for the thermal-wave field in the inhomogeneo
solid:

Tin~x!5
Q0AR~x!

2s~0!k~0! S 11gb~L !e
22@H~L !2H~x!#

12gb~L !e
22H~L ! De2H~x!,

~30!
J. Appl. Phys., Vol. 80, No. 10, 15 November 1996
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whereR(x) was defined in Eq.~10a! ands(x) was defined
in Eq. ~4!.

Now let us assume a simple simulated functional depe
dence of the solid thermal diffusivity in the form of Eq.~11a!
for the region bounded byx50 and x5L, such that
as(L)5aL , as~0!5a0, and

D5
12AaL /a0

AaL /a02e2qL
. ~31!

Insertion of the above equation and Eq.~11a! in the integral
for H(L), Eq. ~3!, yields

H~L !5~11 i !A v

2aL
S 12e2qL

12A~a0 /aL!e2qLD
3FL2

1

2q
lnS a0

aL
D G . ~32!

Therefore, the boundary values of the diffusivity involve
inside the solid area0 andaL .

The air–solid interface will be considered to be adiabat
as discussed before. The various thermal-wave fields rep
sented in Fig. 1, with the definition ofas(x) given by Eq.
~11a! and Eq.~31!, are

T0~x!5
Q0

2s0k0
S 11gb0e

22s0~L2x!

12gb0e
22s0L De2s0x, ~33!

TL~x!5
Q0

2sLkL
S 11gbLe

22sL~L2x!

12gbLe
22sLL De2sLx, ~34!

where

gbL[
12RbL

11RbL
; RbL[

eb
eL
. ~34a!

The backing material is also involved in terms of the therm
coupling coefficient at the interfacex5L, therefore, the form
of the thermal-wave field due to the backing is also requir
@Eq. ~26!#. Now, using the superposition principle, the gen
eral solution of the thermal-wave field in the finite solid ca
be written

T~x!5aTin~x!1bT0~x!1cTL~x!, ~35!

where a, b, and c are constants to be determined by th
various limiting case requirements of the problem.

D. Determination of the constants ( a,b ,c ) and limiting
cases

1. At the interface: x ˜L

In this limit T(x→L)→Tb(L). Evaluating Eq.~35! at
x5L and dividing byTb(L) from Eq.~26!, renders the value
of this ratio equal to 1 according to the boundary conditio
Eq. ~25b!. This gives an equation among the constan
(a,b,c); solving fora yields
5573Mandelis, Funak, and Munidasa
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Rb

AR~L !
F12

b

Rb
S 11gb0

12gb0e
22s0LDe2s0L

2c
RL

Rb
S 11gbL

12gbLe
22sLLDe2sLLG

3S 12gb~L !e
22H~L !

11gb~L !
DeH~L !. ~36!

Substituting back into Eq.~35! the value ofa above gives

T~0!5U0~v!H Rb

AR~L !
S 11gb~L !e

22H~L !

11gb~L !
D

3F12b
1

Rb
S 11gb0

12gb0e
22s0LD e2s0L

2c
RL

Rb
S 11gbL

12gbLe
22sLLD e2sLLGeH~L !

1bS 11gb0e
22s0L

12gb0e
22s0LD 1cRLS 11gbLe

22sLL

12gbLe
22sLLD J ,

~37!

where the following definition was made:

U0~v![
Q0

2s0k0
, ~38!

reminiscent of the thermal-wave field at the surface of a so
with ~constant! thermophysical propertiesa0 andk0.

2. Very high frequency limit: v˜`

In the limit of very high laser-beam-intensity modulatio
frequency~v→`! the thermal wave probes only the surface
Therefore,T~0,v→`!→U0~v!. In this limit, Eq. ~32! shows
thatH(L)→`. Therefore, to keep the expression in Eq.~37!
finite asv increases without bound, one sets

deH~L !511gb~L ! . ~39!

Here,d is another constant to be evaluated. Substituting E
~39! in Eq. ~37! yields

T~0!5U0~v!
Rb

dAR~L !
~11de2H~L !2e22H~L !!

3F12b
1

Rb
S 11gb0

12gb0e
22s0LDe2s0L

2c
RL

Rb
S 11gbL

12gbLe
22sLLDe2sLLG1U0~v!

3FbS 11gb0e
22s0L

12gb0e
22s0LD1cRLS 11gbLe

22sLL

12gbLe
22sLLD G .

~40!
5574 J. Appl. Phys., Vol. 80, No. 10, 15 November 1996
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3. Semi-infinite limit: L ˜`

Equation~40! should remain bounded asL→`, yielding
the expression Eq.~24! for the semi-infinite solid. AsL→`,
thenH(L)→`. Now, making the following definition

sLL2H~L ![sLJL ~41!

gives

JL5
1

12Aa0 /aLe
2qL S ~12Aa0 /aL!Le2qL

1
1

2q
~12e2qL!ln~a0 /aL! D . ~42!

In the limit of very largeL, Eq.~42! becomes identical to Eq.
~18!, as expected,

JL~`![
1

2q
ln~a0 /aL!5J` . ~43!

As stated above, whenL→`, Eq. ~40! must conform with
Eq. ~24! for the semi-infinite solid. Thus, in the limitL→`,
the right-hand sides of Eqs.~40! and ~24! must be equal:

Rb

dAR~L !
1b1cRL[11~RL21!e2sLJL~`!. ~44!

At this stage two more equations are required to relate co
stantsd, b, andc. These can be obtained in the following
limits.

4. The very low frequency limit: v˜0

In this case it can be shown that

H~L !;JL~L !→0. ~45!

Since the thermal diffusion length becomes infinite atv→0,
the effect of the investigated layer becomes negligibl
Therefore

T~0!→
Q0

2kbsb
5Tb~0,v!. ~46!

Equating the right-hand side of Eq.~40! in the limit v→0 to
Eq. ~46! yields

S 12
1

AR~L !
D ~b1c21!50. ~47!

Since the main purpose here is to solve forb andc, let us
choose

b1c2150. ~48!

Substituting forb in Eq. ~44! gives

Rb

dAR~L !
5~RL21!~e2sLJL2c!. ~49!

5. Homogeneous limit: a(x )5a05aL5constant

In this caseRL51. Inserting this result into the updated
version~with b512c! of Eq. ~40! results in the following
simplified expression:
Mandelis, Funak, and Munidasa
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T~0,L,v!5U0~v!S 11gb0e
22s0L

12gb0e
22s0LD . ~50!

This equation is, as expected, the well-known expression
the thermal-wave field at the surface of a solid of consta
thermophysical parameters~diffusivity a0 and conductivity
k0! and thicknessL, surrounded by air~front surface! and
supported by a semi-infinite backing material of~also! con-
stant thermophysical parameters (ab ,kb); see, for instance,
Ref. 1, Eq.~27!.

6. No upper layer: L 50

Using the definitions

11gbL

12gbL
5
Rb

RL
,

~51!
11gb0

12gb0
5Rb ,

and Eq.~48!, it can be shown that, in the limitL→0, the
general field Eq.~40! now reduces to

T~0,0,v!5RbU0~v!5
Q0

2kbsb
5Tb~0,v!, ~52!

i.e., it yields the expression for the surface value of th
thermal-wave field in the semi-infinite solid of thermophys
cal parameters equal to those of the substrate. This is
expected since, whenL50, the geometry is that of a single-
layer, homogeneous semi-infinite solid: the substrate.
J. Appl. Phys., Vol. 80, No. 10, 15 November 1996

Downloaded¬18¬Jul¬2008¬to¬128.100.49.17.¬Redistribution¬subject¬
for
nt

e
i-
as

7. q˜1`

In this limit the profile is flat witha(x)5aL except at
x50, where it is equal toa0. This requires that

T~0,q→`,v!→
Q0

2kLsL
~53!

except whenv→`.
It can be shown that in this limitH(L)→sLL. Therefore

Eq. ~41! yields sLJL→0. Using these results from the up
dated version@substituting forb from Eq. ~48! andd from
Eq. ~49!# of Eq. ~40!, it can be easily verified that to satisfy
the condition in Eq.~53! one must set

c51. ~54!

8. q˜2`

In this limit the profile is flat witha(x)5a0 except at
x5L, where it is equal toaL . This requires that

T~0,q→2`,v!→
Q0

2k0s0
;U0~v!. ~55!

In the limit q→2` it can be shown thatH(L)→s0L. There-
fore

sLJL→~sL2s0!L. ~56!

Substituting Eqs.~55! and~56! in the latest version~c51! of
Eq. ~40! yields
de2H~L !5F S 11gb0e
22s0L

12gb0e
22s0L

2RLS 11gbLe
22sLL

12gbLe
22sLLD e2@H~L !2s0L#

~RL21!~e2~sL2s0!L21!F12
RL

Rb
S 11gbL

12gbLe
22sLLDe2sLLG

1e2@s0L1H~L !#2e2@H~L !2s0L#. ~57!
te-
nd

ch

wn
re-
f

Then the final expression forT~0,v! takes the form

T~0,v!5U0~v!~RL21!~e2sLJL21!~11de2H~L !

2e22H~L !!F12
RL

Rb
S 11gbL

12gbLe
22sLLDe2sLLG

1U0~v!RLS 11gbLe
22sLL

12gbLe
22sLLD , ~58!

wherede2H(L) is given by Eq.~57!. Therefore, the general
Eq. ~58! satisfies all the physical limiting requirements fo
the thermal-wave field at the surface of an exponentially i
homogeneous material of finite thickness on a homogene
substrate.

The foregoing derivation assumed a decreasing therm
diffusivity profile. It can be shown numerically from simu-
lated data that, by definingsLJL with a positive magnitude,
Eq. ~58! satisfies both increasing and decreasing profile
That is,
r
n-
ous

al

s.

sLJL5sLuL2Au, ~59!

where

A5F 12e2qL

12A~a0 /aL!e2qLGFL2
1

2q
lnS a0

aL
D G . ~60!

This can be shown from Eqs.~4!, ~32!, and~41!.
Validity of Eq. (58).Equation~58! is valid for arbitrary

exponential~in principle! profiles as(x), wherein at every
frequencyvi the surface ac temperature response of a ma
rial structure gives two data channels, namely, amplitude a
phase. In practice, the validity of Eq.~58! is much more
general than the assumed exponential profile of Eq.~11a!, as
it is possible to update the fitted exponential profile at ea
experimental angular frequencyvi through a new pair of
values~a0,q! or (aL ,q). Here, the thicknessL and the ther-
mal properties of the substrate are assumed to be kno
parameters. Thus entirely arbitrary depth profiles may be
constructed by numerically determining the optimal pair o
5575Mandelis, Funak, and Munidasa
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FIG. 2. A graph illustrating the method of determining the thermal diffu
sivity profile by virtual ‘‘slicing.’’
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the foregoing values so that the profile sought locally resu
in the experimentally observed thermal-wave signal amp
tude and phase data. In what follows, the symbolaL will be
used in lieu of eithera0 or aL , unless stated otherwise
Where all system parameters are known except for the p
(aL ,q) in Eq. ~11a!, the pair of local values (aL ,q) may be
determined from two data values, amplitude and phase,
modulation frequencyvj . In computations, frequencyvj is
decremented fromv j→v j11 and a new parameter pair will
be calculated (aL ,q) j→(aL ,q) j11. Therefore at eachvj a
system of two equations with two unknown parameters m
be solved. The solution yields (aL ,q) j and these values are
inserted in Eq.~11a! to obtainas(xj ), wherexj represents
the root-mean-square thermal probe depth in the solid at f
quencyvj , determined in terms of the local thermal diffu
sion lengthmj (xj ).

Therefore the present method for obtaining the inver
thermal wave fits into every material ‘‘slice,’’ an exponentia
function of the type of Eq.~11a! for as(xj ). The thickness of
that slice depends onDv j5v j2v j11 as shown in Fig. 2.
The depth of the slice depends on the frequencyvj and
as(xj ).

Based on the amplitude and phase data at a givenvj the
solution to the numerical algorithm described below yield
the best fit values (aL ,q) j at the local slice (j ) which, in
turn, determines a local diffusivity value in best agreeme
with the photothermal data. Therefore as already discuss
the profile assumed in Eq.~11a! is only used for convenience
and analytical consistency. The true depth profile is built u
by individual slice profiles, each of which is best fitted to
local Eq. ~11a!. Any other profileas(x) would be just as
acceptable, provided the integralH(L) can be calculated.
The exponentially decreasing profile has the advantage
superior sensitivity to local changes inas values that can be
easily accommodated as changes inq, as compared to alge-
braic profiles.

Accordingly, any arbitraryas(x) profile can therefore be
reconstructed by ‘‘slicing’’ inhomogeneous layers into loca
thin layers in which the local diffusivity value coincides with
the value ofas(x) given by Eq.~11a! at that depth.
5576 J. Appl. Phys., Vol. 80, No. 10, 15 November 1996
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III. COMPUTATIONAL AND NUMERICAL
METHODOLOGY

The surface temperature response to the incident lig
beam on the investigated system or sample is normalized
the surface temperature response to the same beam of
same frequency on a semi-infinite homogeneous mate
~reference!. This gives for each frequency a data pai
namely, amplitude ratio and phase difference betwe
sample and reference. The normalizing procedure is nec
sary for the correct accounting of all frequency dependenc
in the apparatus other than that due to the investiga
sample~Fig. 1! that is the instrument transfer function. Theo
retical values of the data pair are calculated by Eq.~58!.

uM ~v!ueiDf~v!5right-hand side of Eq.~58!. ~61!

uM ~v!u is the amplitude ratio andDf~v! is the phase differ-
ence at angular frequencyv.

The analytical separation of magnitude and phase of E
~58! would be a difficult process. Also, finding an analytica
solution to Eq.~61! is not possible. Therefore a numerica
solution was obtained by using the following steps.

Step one is to initialize theoretical amplitudes. If th
experimental data amplitude ratiouMexp~vj !u differs from the
theoretical one, one of the ratios~for numerical reasons the
data values are chosen! must be multiplied by a ‘‘scaling
constant’’ that is calculated as a ratio between theoretical a
experimental data amplitudes for the highest frequency, u
ing initial values ofaL(1) andq~1!. Since the initial values of
aL(1) andq~1! for the highest frequency are unavailable, a
approximate set of initial values can be obtained by fittin
the extrema of the data14 to theoretically simulated data cor-
responding to a single exponential profile@given by Eq.
~11a!#. Then the following steps are executed. If no satisf
ing solution is foundaL(1) is increased by 1%.

Step two is to fine-tune the scaling constant. In order
eliminate data error for the highest frequency that are caus
by impropera0, aL(1), andq~1! values, roundoff errors, and
inhomogeneities in the reference sample, and most imp
tantly the effect of reflectivity and/or emissivity of the sur
faces of both the reference and the sample, a scale consta
used that is in the range of65% of the initial one. The
process is started with the lower value and then step three
applied. If no satisfactory solution is found, the scaling co
stant is increased by 1%. Combined with the range of initi
values ofaL(1) of step one by which the scaling constant wa
determined, all practical possibilities of data amplitudes a
tried.

Step three is to search for localaL( j ) and q( j ) . In this
numerical search for solutions to Eq.~58!, the search for
(aL ,q) is chosen over a~a0,q! search because a (aL ,q)
search finds solutions much faster and is tolerant to noise
the data. To be able to calculate the thermal diffusivi
as(x)( j ) and depthx( j ) corresponding to frequencyv( j ) one
has to find unknown parametersaL( j ) andq( j ) . A customized
two-dimensional Broyden method15 was used. The procedure
was customized to avoid run time errors and singularities
Broyden’s two-dimensional line search procedure so that t
procedure may be used in conjunction with Eq.~58!. The
method looks foraL( j ) andq( j ) to satisfy the minimum con-

-
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FIG. 3. Flow chart showing the algorithm of determining the thermal d
fusivity as(x) j and the corresponding depthxj . Here j51 represents the
highest frequency.
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ditions uMexp(v j ) u2uM (v j )u50 and Dfexp(v j )2Df(v j )
50 for each angular frequencyvj . The program was written
in C11, so that library functions could be used to separa
real and imaginary parts of the right-hand side of Eq.~58! to
calculateuM (v j )u andDf~vj !. The procedure starts with the
highest frequencyv1. If no solution is found for some of the
frequencies, the scaling constant is increased by 1% and
procedure returns to step two above. If the scaling const
reaches the upper boundary of the allowed range and still
solution has been found for each of the frequencies, the p
cedure returns to step one where the initialaL( j ) is increased
by 1%. When solutions are found for a specified number
frequencies, the procedure advances to step four.

Step four is the calculation ofas(x)( j ) and depthx( j ) .
After all local values ofaL( j ) andq( j ) are known, the thermal
y
a-

.

FIG. 4. A graph illustrating the amplitude frequency dependence for a sim
lated exponential diffusivity depth profile. The solid line represents origin
data. The jagged line represents the data with 2% random noise added
J. Appl. Phys., Vol. 80, No. 10, 15 November 1996

Downloaded¬18¬Jul¬2008¬to¬128.100.49.17.¬Redistribution¬subject¬
FIG. 5. A graph illustrating the phase frequency dependence for the sim
lated profile of Fig. 4. The solid line represents original data. The jagg
line represents the data with 0.3° random noise added.
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diffusivity profile of the sample is calculated. Starting at th
highest frequency,v~1!, where a solution was found, the cor
respondingaL(1) andq~1! are used for determining the ther-
mal diffusivity and the shallowest depth using the algorithm
or schematic diagram shown in Fig. 3. In this algorithm
smooth continuity is applied wherein ifas(x)( j ) significantly
differs from the neighboringas(x)( j11), the scaling constant
is increased by 1%, and the program returns to step two
depthxj>L is reached, no other frequency is needed and t
program plots the thermal diffusivity in the desired laye
This entire procedure takes a few seconds on a PC with 1
MHz Pentium provided that a reasonable set of initial param
eters is given.

By choosing a numerically very large value for th
thicknessL, the same software program can be used to p
form inversions for semi-infinite samples. Here, sinc
a`~5aL! is generally known~a homogeneous bulk material!,
it is more convenient to search fora0.

f-
u-
al
.

FIG. 6. A graph illustrating the depth dependence of the thermal diffusivit
reconstructed profiles from the data shown in Figs. 5 and 6, without extr
neous noise~solid line!, and with added random noise to these data~2%
noise to the amplitude and 0.3° noise to the phase!. The original input
diffusivity depth profile coincides with the noiseless reconstructed profile
5577Mandelis, Funak, and Munidasa
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FIG. 7. Reconstructed thermal diffusivity profiles obtained from both side
of a machined stainless steel plate 250mm thick.
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IV. RESULTS FROM SIMULATED AND
EXPERIMENTAL DATA

To test the above reconstruction procedure, we us
simulated data for the forward problem generated with
exponentially decreasing profile of the type of Eq.~11a!,
with random noise added to it. Figures 4 and 5 show t
simulated data and the data with added random noise~2% to
amplitude and 0.3° to phase! corresponding to the profile of
Eq. ~11a! with q53000 m21, a05731026 m2 s21,
aL5531026 m2 s21, L5500 mm, with air ~ab52231026

m2 s21, kb52631023 W m21 K21! as the substrate. This
amounts to the simulation of a free standing steel plate.

Figure 6 shows the corresponding reconstructed pro
from the noisy data using the above computational proced
as well as the reconstructed noiseless profile and the orig
input profile. This result shows that the reconstruction alg
rithm has sufficient insensitivity to noise and it reconstruc
the original profile quite well. It should be pointed out tha
the noise levels assumed here are worse than the experim
tally attainable levels that are reported in a forthcomin
article.16

Figure 7 shows the reconstructed profiles obtained fro
the experimental data taken from both sides of a machin
stainless steel plate 250mm thick. This sample could be
treated as a layer of thicknessL~5250 mm! on a homoge-
neous substrate~air!. The experimental procedure is de
scribed elsewhere8 and will not be repeated here. This recon
struction demonstrates the precision of this technique, with
the experimental noise limits, in reconstructing an essentia
5578 J. Appl. Phys., Vol. 80, No. 10, 15 November 1996
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homogeneous layer. The increase in thermal diffusivity t
wards the surfaces may be due to the machining proc
causing tensile damage, manifested as a region of decrea
material density.

V. CONCLUSIONS

The Hamilton–Jacobi formulation of the thermal-wav
problem together with the concept of linear superposition
solutions of the heat diffusion boundary-value problem w
found to provide a generalized expression for the surface
temperature of an inhomogeneous opaque solid on a hom
geneous substrate that could also be used for a continuou
inhomogeneous semi-infinite solid. Using this expression
successful inversion procedure to reconstruct thermal dif
sivity profiles was described. Its sufficient insensitivity t
artificial noise in the data was also confirmed. This metho
could be used to analyze the level of homogeneity of co
ings on substrate or free standing thin layers as shown by
steel plate example. A more detailed description of the e
perimental results with several examples will be presented
a forthcoming article.16

ACKNOWLEDGMENT

The support of the Manufacturing Research Corporati
of Ontario ~MRCO! is gratefully acknowledged.

1G. Busse and H. G. Walther,Progress of Photothermal and Photoacoustic
Science and Technology, edited by A. Mandelis~Elsevier, New York,
1992!, Vol. 1, pp. 205–298.

2H. J. Vidberg, J. Jarrinen, and D. O. Riska, Can. J. Phys.64, 1178~1986!.
3J. Jaarinen and M. Luukkala, J. Phys.~Paris! C6-44, 503 ~1983!.
4A. Mandelis, S. B. Peralta, and J. Thoen, J. Appl. Phys.70, 1761~1991!.
5A. Mandelis, J. Math. Phys.~N.Y.! 26, 2676~1985!.
6A. Mandelis, E. Schoubs, S. B. Peralta, and J. Thoen, J. Appl. Phys.70,
1771 ~1991!.

7T.-C. Ma, M. Munidasa, and A. Mandelis, J. Appl. Phys.71, 6029~1992!.
8M. Munidasa, T. C. Ma, A. Mandelis, S. K. Brown, and L. Mannik, Mater
Sci. Eng. A159, 111 ~1992!.

9C. Glorieux, J. Fivez, and J. Thoen, J. Appl. Phys.73, 684 ~1993!.
10F. Funak, A. Mandelis, and M. Munidasa, J. Phys.~Paris! III C7-4, 95

~1994!.
11J. Fivez and J. Thoen, J. Appl. Phys.75, 7696~1994!.
12T. T. N. Lan, U. Seidel, and H. G. Walther, J. Appl. Phys.77, 4739

~1995!.
13T. T. N. Lan, U. Seidel, H. G. Walther, G. Goch, and B. Schmitz, J. App
Phys.78, 4108~1995!.

14J. Fivez and J. Thoen, J. Appl. Phys.79, 2225~1996!.
15W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery
Numerical Recipes in C, 2nd ed. ~Cambridge University Press, Cam-
bridge, 1992!, p. 398.

16M. Munidasa, F. Funak, A. Mandelis, and S. B. Peralta~unpublished!.

s

Mandelis, Funak, and Munidasa

to¬AIP¬license¬or¬copyright;¬see¬http://jap.aip.org/jap/copyright.jsp


	I. INTRODUCTION
	II. THEORY
	III. COMPUTATIONAL AND NUMERICAL
	IV. RESULTS FROM SIMULATED AND
	V. CONCLUSIONS
	ACKNOWLEDGMENT

