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The formulation of a generalized expression for the thermal-wave field in an inhomogeneous
finite-thickness solid on a homogeneous semi-infinite substrate is discussed. This is based on the
Hamilton—Jacobi formulation of the thermal-wave problpf Mandelis, J. Math. Phy<6, 2676

(1985]. An algorithm to invert simulated photothermal frequency scan data in obtaining thermal
diffusivity profiles using this expression is reported. The tolerance of this inversion procedure to
noise in both simulated and experimental data is also discussed. 998 American Institute of
Physics[S0021-8976)02122-9

I. INTRODUCTION and for more general geometries than foregoing papers. In
this approach the well-known Hamilton—Jacobi formalism
Among the modern-day nondestructive evaluationfrom classical mechanics was introduced into the thermal-
(NDE) methodologies, thermal-wave detecfiois a tech-  wave problem by treating the ac temperature field as a ther-
nique growing in importance due to its ability to monitor mal harmonic oscillatofTHO)® and inverting the amplitude
subsurface structures and damage in materials, well beyorghd phase of the experimental data through matching to ex-
the optical penetration depth of illumination sources, i.e.plicit theoretical expressions for a semi-infinite solad lig-
below the range of optical imaging for opaque materials. Thaiid). The first experimental inversions were obtained from
amplitude and phase of the thermal wave generated by ae liquid crystal octylcyanobipheny(8CB)® using this
optical or other thermal energy source at the surface of amethod. Further inversions with semi-infinite laser-processed
opaque material are detected either in the back-scattering @olids were reported latéf An inversion procedure for a
in transmission mode using a variety of sensor probes. Ifinite thickness problem was also reported based on the same
inhomogeneous materials, these two thermal-wave signalHO approach. More recently, a newer modemotivated
channels carry information about any heat transport disrupby the approach described by Mandelis and co-wofk&rS
tion or change below the surface, which must be interpretedyas proposed, that assumed locally constant or linearly-
with appropriate models in order to yield reliable reconstruc-dependent thermal conductivity on depth. In that work the
tions of the spatially variant thermal diffusivity of the solid was divided up into a virtual incremental discrete-layer
sample. system and in each layer forward and reverse thermal-wave
One of the first theories of this kind of inversion was equations were set up for constant conductivity and solved
described by Vidberget al? This model pertains to the ysing computer-based matrix routines. The resulting equa-
thermal-wave surface signal obtained by measuring the rajons were inverted for the depth-dependent increments of
dial variation of the surface temperature of a continuousi\the value of the thermal conductivity using a commercially
inhomogeneous solid about a heated point at a single modiyailable nonlinear least-squares fit routine. It is well estab-
lation frequency. Both thermal conductivity and heat capactished that only true material discontinuities such as surfaces
ity profiles were reconstructed using Paafgproximants for  and not virtual incremental slices can generate reflected ther-
the inversion of spatial Laplace transforms. There is @ nummga| waves. This raises questions about the validity and/or
ber of constraints that limits the applicability of this model. ynjqueness of the inversions. Even if it is accurate for semi-
The most significant ones at@) it is only valid for a non-  infinite solids, the theory presents problems with the treat-
conventional experimental geometr{g) the reconstructed ment of finite-thickness materials, as it ignores the multiple
profiles are not always numerically reliabl@) the accuracy interreflections of the thermal wave between the two bound-
is limited to a depth reconstruction on the order of one ther-aries(surface$of the material. Fivez and Thoen reported yet
mal diffusion length; and4) the reconstruction algorithm is  gnother versiol of the foregoing inversion problem with a
relatively complex and is sensitive to small amounts of errorjjnear dependence of the lod@cremental thermal conduc-
In an earlier publication Jaarinen and LuukKatiscussed @ tiyity with depth. Explicit expressions were derived and
numerical analysis of the same experimental geometry basgfatched with experimental data and the results of the inver-
on the solution of the thermal-wave equation at a singléions were in good agreement with those obtained by the
r_n(_)dulgtlon freque_ncy. The analysis uses a tWO'd'me”S'O”f%ipproach by Maet al” The major shortcoming of this new
finite difference grid. _ approach is in its inability to treat semi-infinite solids, since
More recently, another major atterfiptas made 1o.ap- the explicit formulas depend on the boundedness of the de-
proach the thermal-wave inverse problem more rigorously;,eq Bessel and Neumann functions. Instead, their méthod
requires flat profiles in the bulk of the material under inves-
dElectronic mail: munidasa@me.utoronto.ca tigation. This is so because many of the combinations of
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gas investigated substrate where w is the angular modulation frequency of the laser

(air, g) layer (IL) o, Hayer(b) intensity where one-dimensional heat flow is assumed. The
%o local thermal effusivitye(x) of the solid at a depthx is
defined as
light
beam e(x)=vk(x)p(x)c(x). d
Oy | —
Herek, p, andc are thermal conductivity, density, and spe-
0 L depthx o cific heat, respectively. The exponent
X
FIG. 1. An illustration of the relationship between depth vs thermal diffu- H(x)= fo oy, w)dy, ()

sivity for a test sample having an investigation layer of arbitrary thermal

diffusivity profile, and a substrate layer. . .
P Y whereo, is defined as

w
these functions utilized in this approach become infinite in  o4(y,w)=(1+1i) \/2—), 4
value as the depth increases without bound. A very recent as(y

theoretical approacf;lby Laet al™“ combines the approaches \yhere a(y) is the thermal diffusivity distribution of the
of two prior papers:*! Therefore, it has improved strengths, sojig atx=y andp., and , are constants of integration and
yet it is subject to some combinations of their shortcomingscan pe determined by boundary and limiting conditions. The
a flat profile of the thermal conductivity at large distarlées material under investigation is assumed to be opagque.

(i.e., at “infinity” ), to induce boundedness, along with the In the limit x—oe, the ac temperatur@(x), generated by

lack of a theoretical basis to treat multiple thermal-wave rethe modulated laser should be zero. Applying this condition
flections from the opposite surfaces of finitely thick samplesyg Eq. (1) yields

In a most recent theoretical papeFivez and Thoen pre-

sented a new analytical approach to the inverse problem that ) 1+exg —2H(%)]

is valid for semi-infinite solids at sufficiently high frequen- ~ P7= "~ Vo exp(ild) 70( 1—exg—2H(=)]/" ®)
cies, but shows significant deviations of reconstructed ther-

mophysical profiles from the expected values at low frequenAt the interfacex=0, a net nonzero incideriphoto thermal

cies (equivalent to large depths in a sample heat flux is assumed:

In this article we formulate a complete generalized ex-
pression for the thermal-wave field in an inhomogeneous  _ ET (x) :1 Qo (6)
solid bounded by regions such as those shown in Fig. 1. This Sdx T2

expression can be used for the semi-infinite case just by tak-
ing the limit L—c. The formulas derived previouéh© whereQ, represents the thermal source fluence at the mate-
based on the THO approach were adequate for the specifid! surfa_ce_[W/mZ] assuming 100% laser power absorption.
geometries dealt with in those cases, but were found to haveifferentiating Eq.(1) and substituting in Eq(6) gives
several shortcomings. Those derived for the continuously in- )
homogeneousemi-infinitesample in Refs. 4 and 7 do not _ 70a(0)e’(0) _ %

oo : P, ve(0)+ - (7
converge to the appropriate limits at low frequencies. Also, 0 2/e(0) 2
thefinite-thickness problemeported in Ref. 10 does not con- o _ )
verge to the homogeneous limit smoothly. Substituting Eq(5) in Eq. (7) gives

Qo
IIl. THEORY 7075 Vo expli 7/4)Je(0)

A. Semi-infinite inhomogeneous solid

1—exg —2H(x)]
1+exgd —2H(x)]/"

®

In deriving Eq.(8) an approximation was made in neglecting
a flux component due to a second-order effect, namely, the
derivative of the thermal effusivity(x) was set equal to

From the Hamilton—Jacobi treatment of thermal-wave
physics as a thermal harmonic oscillatdor the ac tempera-
ture field generated by a modulated energy souecg., a

Zero:
laser beamin the material with a distributed thermal diffu-
sivity a(x) one may write d
e’ (0)=— e(x) ~0. (9)
dx B
T = — | 220 e~ ity 4 7o | exi HO0] "
s 2\e(x) \ Vo 0 This assumption amounts to a requirement for nonsteep local
variations of the effusivity; it is easily satisfied when the
1 ( 75 o(—imid) ) thermophysical field is evaluated at small incremental depth
———— | —=exp—inwld)— 7 ; P i
2\/@ Jo 0 sllce_s where it is not expected that local steep diffusivity
gradients may exist.
Xexg—H(x)]; 0=sx=<oxo, D Substituting Eqgs(5) and (8) in Eq. (1) gives
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QORl’Z(x) 1—exp[—2[H(*)—H(x)]} with constant diffusivitiesy, and «,,, respectively. Now us-

T(x)= 25(0)k(0) Ttexg —2H(»)] ing the superposition principle, the general solution of the
thermal-wave field in the solid can be written
xexd —HX)l, (10 T(X)=aT(X) +bTe(X) +CTu(X), (14)
where wherea, b, and ¢ are constants to be determined by the
e(0) various limiting case requirements of the problem.
R(X) = % (103

Equation (10) is the full expression for the thermal-wave B. Determination of the constants (  a,b,c) and limiting
field in an inhomogeneous solid, therefore, in what follows,cases

the subscript “in” will be used to indicate this fact. This . .

expression, however, does not adequately satisfy all possibfe At /arge distances compared to the inhomogeneous
boundary conditions in compositevo-layep solids. region: x —

In formulating a complete expression for the thermal-  Since Eq.(11) gives a constant diffusivity profile of.,
wave field in an inhomogeneous solid bounded by regionat very large distances from the surfa@éx,w)=T.(X,)
such as those shown in Fig.(IL—ox, in this casg the con- in this limit. Therefore, Eq(14) leads to
cept of linear superposition of solutions of the heat- T, (%) To(X,)
conduction(thermal-waveg differential equation will be in- |imxﬂw(a( me ) bl =2 )+c] =1. (15)
voked: according to this principle, any complicated linear T (X, ) T (X, )
boundary-value problem can have a solution written as &ypstituting Eqs(12), (13a, and(13b) in Eq. (15)
linear combination of solutions to a number of simpler
boundary-value problems, so as to fully satisfy all boundaryaRl/z(oo) € expllim,_.[o.x—H(X)]}
conditions of the original problem. In the present case, the €o
group of simpler equations required to satisfy all boundary
conditions of the problem of Fig. 1 consists of all the equa- +p = exp{lim,_.[—(0o— o)X} +c=1. (16)
tions(and their solutionsvalid for the various constant, vari- €o
able, and limiting values of thermophysical properties of theSince ay>a., (i.e., |oy/<|0.|), the second term in Eq16)
geometry. Although it will be seen that the results are validwill become infinite. Therefore, to avoid that we can set
for arbitrary thermal diffusivity depth profiles, for this analy- p=0. It can be shown thét
sis let us assume a simple simulated functional dependence

of the solid thermal diffusivity in the form, exp{lim, . z[ o Xx—H(X)]} = explodz), (17)
14 Ae— |2 where
as(X)=ag —) : (113 1
1+4 O m(ﬂ) | 18)
2q A,

such thatag()=a,,, as(0)=ay and
Equations(16)—(18) lead to

A=Vagla,—1, (11b
whereay>a.,. The parameteq is a constant that determines a=(1-c) & expl— o.J..). (19
the rate of thermophysical decay. VR()

Insertion of the above two equations in the integral for
H(x), Eqg. (3), gives H(»)—x. Therefore, the temperature 2. Very high frequencies: w—»

field in the inhomogeneous field from EQL0) is In this limit the penetration depth of the thermal wave is

QoRYA(x) zero, hence the following limit is valid:
——exgd —H(x)], (12

200Ko T(0,0—)=Ty(0,w). (20)
where o(0)=0y, andk(0)=Kk,. The boundary values of the Substituting Egs(13a, (13b), (19), (20), andb=0 in Eq.
diffusivity involved inside the solid arey and ... The air—  (14), and sinceo.,— in the limit w—, it can be shown
solid interface will not be considered, because in most practhat
tical cases the thermal coupling coefficieRy; o<1 (near

Tin(x)=

To(0w) Kkeo,, 1
c= _

adiabatic conditions The other thermal-wave fields repre- L A — (22)
sented in Fig. AL—), are T.(0w) kooo R

To(X)= 5 ok e 70X (133 3. Very low frequencies: w—0

Toko Since the penetration depth is infinite in this limit

and T(0,.0—0)=T.(0,0). (22)

T.(X)= & e TX (13b) Substit_uting E_qs_(20), (21_), andb=0 in Eq.(14), and since

20K o.,—0 in the limit «—0, it can be shown that
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( 1 R whereR(x) was defined in Eq(10g and o(x) was defined
1——) ~_-R,—1 in Eq. (4).
R JR() Now let us assume a simple simulated functional depen-
~R(2)=1. (23) dence of the solid thermal diffusivity in the form of Ed.1a

) o i for the region bounded by=0 and x=L, such that
Finally, substituting all the determined constants from EqSuS(L)=aL, a(0)=ap, and

(21), (23, andT,, T, from Eqgs.(138 and(13b atx=0 in

Eqg. (14), the surface temperature of a semi-infinite inhomo- 1— e lag
eneous medium is = 31
9 : Jalap—e (
0
T(0,w)= [1+(R.—1)exp(—0.Jd.)]. (24 Insertion of the above equation and Efj13 in the integral
200Ko -
for H(L), Eq. (3), yields
C. Solid of finite thickness on homogeneous g
) —-e
substrate H(L)=(1+i) . ( _qL)
Here, Eq.(1) represents the ac temperature field in the A \1-V(ag/ay)e
region Gsx=<L. The constantp,, and 7, can be determined
L . 1 (4 7))
by boundary and limiting conditions. x| L= — In(—) 1 (32
At the interfacex=0 the boundary condition Ed6) is 2q aL

assumed. At the interface=L, continuity of heat flux and

temperature are assumed as Therefore, the boundary values of the diffusivity involved

inside the solid areyy and ¢ .

The air—solid interface will be considered to be adiabatic
as discussed before. The various thermal-wave fields repre-
sented in Fig. 1, with the definition afs(x) given by Eq.

To(L)=Tp(L), (25D (114 and Eq.(3), are
whereT¢(x) is given by Eq.(1) in the region of Bx=<L,

d
=kp 7= Tp(X)

d Ts(X)
X
s L dx

Ks 4% , (259

x=L

—209(L—X)
apd Tp(x) is the temperature field in the semi-infinite bulk To(X) = Qo (1+¥noe _; LX e 00X, (33)
given by 200kg | 1— e %0
QO Q 1+ =20 (L—x)
= - - 0 YoL€ o
600 = 5k, ¥~ (X~ L)) 29 M= 51 | e )e (34
Differentiating Eq.(1), substituting in Eq(6), and evaluating h
atx=0 yields where
Qo _ 1R, R =P 34
pTO__Z\/?O)' (27) YW=TR, ¢ RS (34a

In deriving Eq.(27) the same approximatiomle(x)/dx=0,  The backing material is also involved in terms of the thermal
discussed earlier, has been made. Similarly, evaluating Egoupling coefficient at the interface= L, therefore, the form
(259 at x=L and then substituting fop., from Eq. (27)  of the thermal-wave field due to the backing is also required
gives the following expression: [Eqg. (26)]. Now, using the superposition principle, the gen-
eral solution of the thermal-wave field in the finite solid can

—inl4 —2H(L

rom Qoe '™ 1+ yp e 2HEL;> (2g bewitten

2\/e(0)ow | 1= yo)e” ’

(O “ T(x)=aTin(X) +bTo(X) +CT,(X), (35)
where
1-R e where a, b, andc are constants to be determined by the
b(L) b ; P ;

=—_—~: =——, 29 various limiting case requirements of the problem.

Yb(L) 1+Rb(L) b(L) e(l) (29

andey,, e(L) represent the thermal effusivities, respectively,
at the top of the substrate layéwrhich is assumed to have
constant thermophysical propertieand at the directly adja-
cent and contacting bottom of the solid material layer with
variable thermophysical properties. Finally, using E)
with the derived values of the parametegandp,, gives an 1. At the interface: x —L
expression for the thermal-wave field in the inhomogeneous

D. Determination of the constants (  a,b,c) and limiting
ses

In this limit T(x—L)—T,(L). Evaluating Eq.(35) at

solid:
CH(L x=L and dividing byT,(L) from Eq.(26), renders the value
T (%)= QoVR(X) [ 1+ yp)e (R =HG0] o HO) of this ratio equal to 1 according to the boundary condition
in(X) = 20(0)k(0) 1— yp e 2" ’ Eqg. (25b). This gives an equation among the constants
(30  (a,b,c); solving fora yields
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Downloaded-18-Jul-2008-t0-128.100.49.17.-Redistribution-subject-to-AlP-license-or-copyright;~see-http://jap.aip.org/jap/copyright.jsp



1+ vmo

ZGOL) e 7ot

Ry [1 b (
a= —— _— —_—
Ry \ 1— ypoe

VR(L)

R
“Re

1+ ool
1—ype “ot"

(1— Yoy

el 36
1+ vp) ) 39

Substituting back into Eq35) the value ofa above gives
Ry
VR(L)

1 ( 1+’}/b0

1-p — | ———— — —opl
b Rp | 1— ?’boez%L) ¢

1+ ,yb(L)e—ZH(L)>

T<0>=eo<w>{ Ty

X

i
1— ypoe™ 70"

1+ ’Yb097 200L )

where the following definition was made:

Go(w)E%;ko, (39)

reminiscent of the thermal-wave field at the surface of a soli

with (constank thermophysical properties, andkg.

2. Very high frequency limit:

W—®

cfl' The very low frequency limit:

3. Semi-infinite limit: L —o

Equation(40) should remain bounded &s—x, yielding
the expression Eq24) for the semi-infinite solid. Ad —oo,
thenH (L) —oc. Now, making the following definition

o L—H(L)=0J, (41)
gives
R S— ((kW)Le‘qL
1—Jag/a et
1
+ﬁ (1—e_q")|n(a0/a|_)). (42)

In the limit of very largel, Eq.(42) becomes identical to Eq.
(18), as expected,

1
I(=)= 55 In(ao/a)=3... (43)

As stated above, wheh—o, Eq. (40) must conform with
Eq. (24) for the semi-infinite solid. Thus, in the limit—oo,
the right-hand sides of Eq§40) and (24) must be equal:

Ry
dvR(L)
At this stage two more equations are required to relate con-

stantsd, b, andc. These can be obtained in the following
limits.

+b+cR =1+(R —1)e o), (44)

w—0
In this case it can be shown that
H(L)~J.(L)—0. (45)

Since the thermal diffusion length becomes infinitevat0,
the effect of the investigated layer becomes negligible.

In the limit of very high laser-beam-intensity modulation Therefore

frequency(w—x) the thermal wave probes only the surface.
Therefore,T(0,0—%)—0Oy(w). In this limit, Eq. (32) shows

thatH(L)—c. Therefore, to keep the expression in E2j7)
finite asw increases without bound, one sets

deH(L)=l+ ’),b(L)' (39)

Here,d is another constant to be evaluated. Substituting Eq.

(39 in Eq. (37) yields

Rp
T(0)=6¢(w) (1+de M —g 2H(L))
™ dVR(D)
1 1+ Ybo L
X|1l1—-b—|—————1]e 9
1-b Rp (1_%09_200" ¢
Ry 1+ v oL
—_ _ — aL
c Rb (1_ybLe_20LL € +60((l))
1+ ypoe 270 1+ yp e 27t
(40)

5574 J. Appl. Phys., Vol. 80, No. 10, 15 November 1996

szb(O,w). (46)

Equating the right-hand side of E@0) in the limit «—0 to
Eq. (46) yields

(b+c—1)=0. (47)

1
1_ [E—
( VR(L)
Since the main purpose here is to solve ioandc, let us
choose

b+c—-1=0. (48
Substituting forb in Eq. (44) gives

Rp

dyVR(L)

5. Homogeneous limit:

=(R.—1)(e “t—c). (49

a(X)= ay= e, =constant

In this caseR =1. Inserting this result into the updated
version(with b=1-c) of Eq. (40) results in the following
simplified expression:

Mandelis, Funak, and Munidasa
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T(OL,w)=0¢(w) (50

1+ ?’boez”OL)

—77 .
1— ypoe 270

7. Q— -+

In this limit the profile is flat witha(x)=«, except at

This equation is, as expected, the well-known expression fok =0, Where it is equal tay. This requires that

the thermal-wave field at the surface of a solid of constant

thermophysical paramete(diffusivity a; and conductivity
ko) and thicknesd., surrounded by aiffront surface and

supported by a semi-infinite backing material(afso con-

stant thermophysical parameters,(ky); see, for instance,
Ref. 1, Eq.(27).

6. No upper layer: L =0
Using the definitions

Qo
2k|_0'|_

T(0g—>,w)— (53
except whenw—oe,

It can be shown that in this limil (L) — o L. Therefore
Eqg. (41) yields o J. —0. Using these results from the up-
dated versiorjsubstituting forb from Eq. (48) andd from
Eq. (49)] of Eq. (40), it can be easily verified that to satisfy
the condition in Eq(53) one must set

I+ Ry c=1. (54)
1=y R
1+ Yoo ~ (51) 8. q——>
1=y > In this limit the profile is flat witha(x) = ay except at
x=L, where it is equal tay, . This requires that
and Eq.(48), it can be shown that, in the limit—0, the q L q
general field Eq(40) now reduces to Qo
T(0,g— —,w)— m~eo(w). (55)
oY o

T(0,0,0)=R,0¢(w)= &sz(O,w), (52 o .
2kpoy In the limit g— — it can be shown that (L)— oL. There-

i.e., it yields the expression for the surface value of thefore

thermal-wave field in the semi-infinite solid of thermophysi-

cal parameters equal to those of the substrate. This is as

expected since, wheln=0, the geometry is that of a single- Substituting Eqs(55) and(56) in the latest versiofic=1) of

layer, homogeneous semi-infinite solid: the substrate. Eq. (40) yields

o J — (o —ap)L. (56)

—20pL —20 L —[H(L)—0oglL]
deHLI— iﬂboe R iwme i LL) e RO .
~ Ypo€ “7° —YpL® ot o L + VoL _
_ (o —og)L _ N R oL
(RL 1)(e l)|:l Rb (1_ ,ybLeZ(TLL)e }
+ e Lol +HL)]_ g=[H(L)~ooL], (57)
|
Then the final expression far(0,w) takes the form old =0 |L—A, (59)
T(0,0)=O(w)(R.—1)(e " ~1)(1+de Hb where
RL 1+ ’}/bL 1_e_qL 1 [£79)
— e 2HWL) [1__ (—2_ g0t A= L——In[—|]|. 60)
N R | T qpe 20 1= Jadane )| " 20 M a (
‘o R 1+ y, e 2ot 58 This can be shown from Eq#4), (32), and(41).
ol@)R 1— yp e 2°L) (58) Validity of Eq. (58).Equation(58) is valid for arbitrary

exponential(in principle) profiles a4(x), wherein at every

wherede ") is given by Eq.(57). Therefore, the general frequencyw; the surface ac temperature response of a mate-
Eq. (58) satisfies all the physical limiting requirements for rial structure gives two data channels, namely, amplitude and
the thermal-wave field at the surface of an exponentially inphase. In practice, the validity of E458) is much more
homogeneous material of finite thickness on a homogeneowgeneral than the assumed exponential profile of(Efjd, as
substrate. it is possible to update the fitted exponential profile at each

The foregoing derivation assumed a decreasing thermadxperimental angular frequenay; through a new pair of
diffusivity profile. It can be shown numerically from simu- values(«g,q) or («, ,q). Here, the thicknesk and the ther-
lated data that, by defining, J, with a positive magnitude, mal properties of the substrate are assumed to be known
Eq. (58 satisfies both increasing and decreasing profilesparameters. Thus entirely arbitrary depth profiles may be re-
That is, constructed by numerically determining the optimal pair of
5575
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. COMPUTATIONAL AND NUMERICAL

o,(x)
METHODOLOGY

Ay,
- Eaﬁj,f’é,_,) The surface temperature response to the incident light
beam on the investigated system or sample is nhormalized by
wo) | &\_ the surface temperature response to the same beam of _the
k) b AV same frequency on a semi-infinite homogeneous material
j-thslice (reference This gives for each frequency a data pair,
_ <— namely, amplitude ratio and phase difference between
sample and reference. The normalizing procedure is neces-
sary for the correct accounting of all frequency dependencies
in the apparatus other than that due to the investigated
sample(Fig. 1) that is the instrument transfer function. Theo-

FIG. 2. A graph illustrating the method of determining the thermal diffu- '€tical values of the data pair are calculated by &§).
ivi file by virtual “slicing.” ; . .
sivity profile by virtual “slicing IM(w)|e'2#(@ =right-hand side of Eq(58). (61)

IM (w)| is the amplitude ratio and ¢(w) is the phase differ-
ence at angular frequenay.

The analytical separation of magnitude and phase of Eq.

fche foregomg values so that the profile sought chally reSUIFTSS) would be a difficult process. Also, finding an analytical
in the experimentally observed thermal-wave signal amplisq)tion to Eq.(61) is not possible. Therefore a numerical

tude and phase data. In what follows, the symigolill be  go1ytion was obtained by using the following steps.

used in lieu of eitherag or «, unless stated otherwise. Step one is to initialize theoretical amplitudes. If the
Where all system parameters are known except for the pagxperimental data amplitude rafid ()| differs from the

(@ ,q) in Eqg. (113, the pair of local valuesd, ,q) may be  theoretical one, one of the rati¢kor numerical reasons the
determined from two data values, amplitude and phase, &ata values are chosemust be multiplied by a “scaling
modulation frequencyw; . In computations, frequency; is  constant” that is calculated as a ratio between theoretical and
decremented fronw;— w;,; and a new parameter pair will experimental data amplitudes for the highest frequency, us-
be calculated ¢, ,q);j—(@_,q);+1. Therefore at eacl; a  ing initial values ofa (1) andqy). Since the initial values of
system of two equations with two unknown parameters mayy ;) and g, for the highest frequency are unavailable, an
be solved. The solution yieldsy( ,q); and these values are approximate set of initial values can be obtained by fitting
inserted in Eq.(11a to obtain ag(x;), wherex; represents the extrema of the dathto theoretically simulated data cor-
the root-mean-square thermal probe depth in the solid at fre€sponding to a single exponential profilgiven by Eq.
quencyw;, determined in terms of the local thermal diffu- (118]. Then the following steps are executed. If no satisfy-
sion lengthg;(x;). ing solution is founQaL(l) is mcreasgd by 1%.

Therefore the present method for obtaining the inverse ~ Step two is to fine-tune the scaling constant. In order to
thermal wave fits into every material “slice,” an exponential ehmmate data error for the highest frequency that are caused
function of the type of Eq(11a for a(x;). The thickness of by improperag, @, (1), andqy, values, roundoff errors, and
that slice depends o w;=w;~w,; as shown in Fig. 2. inhomogeneities in the reference sample, and most impor-

The depth of the slice depends on the frequengyand tantly the effect of reflectivity and/or emissivity of the sur-
ag(X) faces of both the reference and the sample, a scale constant is
S\Aj/-

Based on the amplitude and phase data at a giyehe used that is in the range of5% of the initial one. The
solution to the numerical algorithm described below yieldsprocess is started with the lower value and then step three is

. . C . . applied. If no satisfactory solution is found, the scaling con-
the best fit values 4, ,q); at the local slice }) which, in stant is increased by 1%. Combined with the range of initial

tu.rn, determines a local diffusivity value in best agreemenkh,jllu(_:‘S ofay (1, of step one by which the scaling constant was
with the_ photothermgl data. Therefore as already d',scussegetermined, all practical possibilities of data amplitudes are
the profile assumed in E¢L13 is only used for convenience tried.
ka;mo_l apglytlcal c_:on5|ste_ncy. The true dt_epth_ profile is built up St?p three is to search for local , and g, . In this

y individual slice profiles, each of which is best fitted t0 @, ,merical search for solutions to E(9), the search for
local Eq.(1138. Any other profileag(x) would be just as (@, ,q) is chosen over dap,q) search because ax(,q)
acceptable, provided the integrhll(L) can be calculated. gearch finds solutions much faster and is tolerant to noise in
The exponentially decreasing profile has the advantage qhe data. To be able to calculate the thermal diffusivity
Superior Sensitivity to local changesdlg values that can be as(x)(j) and depthx(j) Corresponding to frequenay(j) one
easily accommodated as changesjjras compared to alge- has to find unknown parametesg;;, andqy;, . A customized
braic profiles. two-dimensional Broyden methttwas used. The procedure

Accordingly, any arbitraryrs(x) profile can therefore be was customized to avoid run time errors and singularities in

reconstructed by “slicing” inhomogeneous layers into local Broyden's two-dimensional line search procedure so that the
thin layers in which the local diffusivity value coincides with procedure may be used in conjunction with E§8). The
the value ofag(x) given by Eq.(113 at that depth. method looks fora ;) andq;, to satisfy the minimum con-

0 Xy X X1 L
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if([temp-x1|<10)

FIG. 5. A graph illustrating the phase frequency dependence for the simu-
| lated profile of Fig. 4. The solid line represents original data. The jagged
line represents the data with 0.3° random noise added.

X; =X +X1-x2
1+A,.0% 42
o) = e[ —5i7—]

diffusivity profile of the sample is calculated. Starting at the
FIG. 3. Flow chart showing the algorithm of determining the thermal dif- highest frequencyw;), where a solution was found, the cor-
fusivity a(x); and the corresponding dep#. Here =1 represents the  responding (1) and gy, are used for determining the ther-
highest frequency. mal diffusivity and the shallowest depth using the algorithm
or schematic diagram shown in Fig. 3. In this algorithm a
smooth continuity is applied whereindf(x) ; significantly
differs from the neighboringrs(X); 1), the scaling constant

. ) . is increased by 1%, and the program returns to step two. If
in C++, so that library functions could be used to separatedepthszl_ is reached, no other frequency is needed and the

real and imaginary parts of the right-hand side of E@ to program plots the thermal diffusivity in the desired layer.
calculate]M(w;)| andAd(w;). The procedure starts with the 11,5 entire procedure takes a few seconds on a PC with 100

highest frequencyp, . If no solution is found for some of the  \;11, pentium provided that a reasonable set of initial param-
frequencies, the scaling constant is increased by 1% and trbqers is given

procedure returns to step two above. If the scaling constant By choosing a numerically very large value for the

reaches the upper boundary of the allowed range and still NicknessL . the same software program can be used to per-
solution has been found for each of the frequencies, the Pr9%rm inversions for semi-infinite samples. Here, since

cedure returns to step one where the initigf; |s increased «.(=a) is generally knowr(a homogeneous bulk matebial
by 1%. When solutions are found for a specified humber ogt is more convenient to search fag

frequencies, the procedure advances to step four.
Step four is the calculation akg(x) ;) and depthx;y .
After all local values ofy () andq;) are known, the thermal

ditions Mgy @))|—[M(®;)|=0 and Agefw;) —Ad(w))
=0 for each angular frequeney, . The program was written

7.00 Reconstruction of simulated data —
8.22 ' Reconstruction of simulated noised data e
6.48
7.96 o
—_ :; 5.96
2 7.70 >
S Es5.44
S 7.44 3
£
®© 4,92
7.18]4 Simulatedamplitude — 4
d Simulatedand noised el A 4.40
6.92 amplitude == I 0 100 200 300 400 500

0.04 085 1.66 247 3.27 4.08 depthx [um]

frequency " [Hz "*]x10™"
FIG. 6. A graph illustrating the depth dependence of the thermal diffusivity
reconstructed profiles from the data shown in Figs. 5 and 6, without extra-
FIG. 4. A graph illustrating the amplitude frequency dependence for a simuneous noisgsolid line), and with added random noise to these d@%
lated exponential diffusivity depth profile. The solid line represents originalnoise to the amplitude and 0.3° noise to the pha3&e original input
data. The jagged line represents the data with 2% random noise added. diffusivity depth profile coincides with the noiseless reconstructed profile.
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homogeneous layer. The increase in thermal diffusivity to-

5.3
wards the surfaces may be due to the machining process
data obtainedfromside 1 aw . . . .
5.1 data obtained from side 2=+ causing tensile damage, manifested as a region of decreased
. material density.
=49
N3 V. CONCLUSIONS
£
54-7 The Hamilton—Jacobi formulation of the thermal-wave
1 problem together with the concept of linear superposition of
4.5 = D solutions of the heat diffusion boundary-value problem was
2 3 found to provide a generalized expression for the surface ac
4‘30 50 100 150 200 250 temperature of an inhomogeneous opaque solid on a homo-
depthx [um] geneous substrate that could also be used for a continuously

inhomogeneous semi-infinite solid. Using this expression, a
FIG. 7. Reconstructed thermal diffusivity profiles obtained from both sidesSUCCessful inversion procedure to reconstruct thermal diffu-
of a machined stainless steel plate 25 thick. sivity profiles was described. Its sufficient insensitivity to

artificial noise in the data was also confirmed. This method

could be used to analyze the level of homogeneity of coat-
IV. RESULTS FROM SIMULATED AND ings on substrate or free standing thin layers as shown by the
EXPERIMENTAL DATA steel plate example. A more detailed description of the ex-

To test the above reconstruction procedure, we useB€rimental results with several examples will be presented in
simulated data for the forward problem generated with arft forthcoming article?®
exponentially decreasing profile of the type of H4la,
with random noise added to it. Figures 4 and 5 show the A\ CKNOWLEDGMENT
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