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Nonlinear fundamental photothermal response in three-dimensional
geometry: Theoretical model
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A general three-dimensional theoretical model for fundamental and harmonic response generation
as a result of periodic heating of a system consisting of a nonlinear layer with
temperature-dependent thermal conductivity and specific heat and a linear substrate is developed.
Analysis of the fundamental component of the surface temperature shows that the nonlinear thermal
conductivity alone does not affect the phase of the thermal-wave field. The efficiency of the thin
nonlinear layer as an energy conversion filter that drives the harmonic response of the substrate is
shown by the analysis of the limiting cases of the theoretical model. ©1999 American Institute of
Physics.@S0021-8979~99!10403-1#
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I. INTRODUCTION

Over the past two decades, thermal waves have b
extensively used to study the optical, thermal, and electro
properties of various materials.1,2 As was first noted by Opsa
et al.,3 in these thermal-wave experiments dc and ac te
perature excursions can range from several degrees to se
hundred degrees depending on the sample’s thermal pro
ties. With such wide temperature variations, the depende
on temperature of the thermal, optical, and elastic parame
of the thermally excited medium has to be taken into acco
in the corresponding theoretical models.

Growing interest in nonlinear photothermal phenome
has been motivated by several experimental studies w
demonstrated that thermal-wave second harmonic detec
can provide better contrast in photothermal microscopy4,5

Rajakarunanayake and Wickramasinghe4 first described non-
linear photothermal deflection imaging experimental
where the pump beam is modulated at angular frequencv
and the signal is detected at 2v. Wetsel and Spicer5 also
demonstrated the nonlinear effect in photothermal deflec
imaging, and a theoretical model with special nonline
boundary conditions was developed. A more general the
with nonlinear bulk thermal parameters was proposed
Dokaet al.6 Wang and Li7 further developed a phototherm
inspection technique using the photothermal infrared rad
metric scheme to detect the second-harmonic response
nally, Gusevet al.8–10 published several papers with theore
ical analyses of the thermal-wave second harmo
generation induced by the modulated heating of media w
temperature-dependent thermophysical properties. The c
mon feature of all the previous theoretical and experime
nonlinear photothermal studies is that only second-harmo
detection has been formulated, and only in one-dimensio
geometry. To the best of our knowledge, no experimen

a!Electronic mail: asalnik@thermawave.com
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works or theoretical models have addressed the gen
boundary value problem of the full nonlinear phototherm
response of an overlayer on a linear substrate. Yet, the
velopment of such a theoretical framework is of practic
interest for thermal-wave nondestructive evaluation~NDE!
studies of materials exhibiting a very strong nonlinear beh
ior, such as, for example, tungsten. Another important fac
that modern thermal-wave NDE experiments employ sub
cron spatial resolution and very high excitation power de
sities ~on the order of MW/cm2!, thus requiring an adequat
three-dimensional theoretical treatment. Besides the prac
importance of a rigorous three-dimensional~3D! exact pho-
tothermal nonlinear theory, there is intrinsic value in t
physical insights one obtains when studying the extrao
nary behavior of thermally nonlinear media under inten
photothermal-wave excitation.

In this article we develop a general 3D theoretical mo
for the fundamental and harmonic response generation
arbitrary order as a result of periodic heating of a laye
structure consisting of an upper thin nonlinear layer in in
mate contact with a semi-infinite linear substrate. The up
layer is assumed to exhibit temperature-dependent the
conductivity and specific heat.

II. THEORETICAL MODEL

A. The thermal-wave problem of a nonlinear layer on
semi-infinite linear substrate

We start with the most general case where a layer w
nonlinear thermophysical properties overlies a semi-infin
linear substrate in intimate physical and thermal contact. T
assumed theoretical geometry is shown in Fig. 1. The up
layer is assumed to be fully opaque to the incident la
radiation.

A pair of conventional heat conduction equations can
written, one for the top layer with nonconstant, temperatu
1 © 1999 American Institute of Physics
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dependent thermophysical parameters and another for
linear substrate with boundary conditions of continuity
heat flux and temperature at the interfaces

¹@k1~T1!¹T1#2C1~T1!
]T1

]t
50, 0<z<L, ~1a!

with the complete combined dc and ac boundary conditio
z50:

2k1n̂¹T1uz505 1
2I v~11eivt!, ~1b!

and the continuity boundary conditions,

k1n̂¹T1uz5L5k2n̂¹T2uz5L , ~1c!

T1~r ,t !uz5L5T2~r ,t !uz5L , ~1d!

at z5L. Heren̂ is the unit vector normal to the surface pla
z50 in the direction inward to the material volume und
consideration. For bounded behavior of the thermal-w
field T2(r ,t) it is required that

T2~r ,t !ur→`50. ~1e!

The response of the linear substrate is governed by

¹2T22
1

a2

]T2

]t
50. ~1f!

In the boundary-value problem of Eqs.~1a!–~1f!, k1 is the
upper layer thermal conductivity,C1 is the product of the
layer density and the specific heat,I v is the intensity of the
pump-beam irradiation modulated at the angular freque
v, anda2 is the substrate thermal diffusivitya25k2 /C2 .

Let us suppose that external heating produces dc
modulated increases in layer temperatureT1d and T1a , re-
spectively,

T1~r ,t !5T1d~r !1T1a~r ,t !. ~2!

Furthermore, the assumption is made that

C1~T!>C10~T1d!1S ]C1

]T U
T5T1d

D T1a

[C10@11d1T1~r ,t !# ~3a!

and

FIG. 1. Schematic representation of the two-layer sample consisting
nonlinear layer and a semi-infinite linear substrate. The layer is photot
mally excited by a Gaussian laser beam of spot sizew, intensity modulated
at angular frequencyv.
Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP
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k1~T!>k10~T1d!1S ]k1

]T U
T5T1d

D T1a

[k10@11d2T1~r ,t !# ~3b!

adequately describe the behavior of the specific heat
thermal conductivity of the layer in the temperature interv
of interest, where, by definition,

d1[
1

C1~T1d! S dC1~T1!

dT1
U

T15T1d

D
5

d

dT1
ln@C1~T1!#U

T15T1d

~3c!

and

d2[
1

k1~T1d! S dk1~T1!

dT1
U

T15T1d

D
5

d

dT1
ln@k1~T1!#U

T15T1d

. ~3d!

Under the conditions of Eqs.~2! and~3!, Eq. ~1a!, subject to
boundary condition~1b! and under the uniform backgroun
~dc! temperature conditions“T1d5¹2T1d50, transforms to

¹2T1~r ,t !2
1

a10

]

]T
T1~r ,t !

52
1

2 S d2¹22
d1

a10

]

]t DT1
2~r ,t !, 0<z<L, ~4a!

wherea105k10/C10 is the unperturbed thermal diffusivity o
the upper layer at temperatureT1d . For the linear substrate

¹2T2~r ,t !2
1

a2

]

]t
T2~r ,t !50, L<z,`. ~4b!

Nonlinear boundary conditions can be written from Eqs.~1b!
and ~1c! as follows:

2k10

]

]z
@T1~r ,t !1 1

2d2T1
2~r ,t !#uz505 1

2I v~11eivt!, ~5a!

and

k10

]

]z
@T1~r ,t !1 1

2d2T1
2~r ,t !#uz5L5k2

]

]z
T2~r ,t !U

z5L

. ~5b!

Note that both the temperature-dependent specific heat
the conductivity contribute to nonlinear terms in the nonl
ear heat conduction equation~4a!, whereas onlyk1(T) con-
tributes to the nonlinearity in the boundary conditions, E
~5!.

Since there is intimate contact between the nonlin
layer and the substrate at the interfacez5L, and since the
nonlinear layer will produce multiple harmonics of the fu
damental, the substrate will also exhibit multiple harmon
due to the thermal-wave field conducted past the interfa
Therefore, let the solution to Eqs.~4! be in the form of the
superpositions,

a
r-
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T1~r ,t !5 (
n52`

`

T1n~r !einvt, ~6!

and

T2~r ,t !5 (
m52`

`

T2m~r !eimvt. ~7!

Correspondingly, upon insertion of Eqs.~6! and ~7!, Eqs.
~4a! and ~4b! become

(
n52`

` H ¹2T1n~r !2
inv

a10
T1n~r !J einvt

52
1

2 S d2¹22
d1

a10

]

]t D S (
n52`

`

T1n~r !einvtD 2

, ~8a!

and

(
m52`

` H ¹2T2m~r !2
imv

a2
T2m~r !J eimvt50. ~8b!

The representation of the foregoing summations to
clude negative harmonics is preferred in order to simplify
calculation of complex quantities and harmonic orders.
identifying the boundary-value problem for each harmo
order, a redefinition of the amplitudesTi j (r ) is made in what
follows, based on

(
n52`

`

einvt5112(
n50

`

cos~nvt !.

B. Harmonic order boundary-value problem
formalism

The exact solution of the system of master equations~8!,
coupled through boundary conditions~5!, can be conve-
niently decomposed into an infinite set of nonlinear eq
tions for each modulation frequency harmonic order, inclu
ing the fundamental,v, n51, and the background dc term
n50. Experimentally, the fundamental is the most import
term, as it can be directly monitored through a conventio
spectral filter arrangement, such as a lock-in analyzer.

1. n 50 (dc) term

In the case ofn50 the dc component of problem~8!
transforms to the following set of equations:

¹2@T10~r !1 1
2d2T10

2 ~r !#50, ~9a!

¹2T20~r !50. ~9b!

The boundary conditions, Eqs.~5!, can also be spectrally
decomposed into summations of the dc term, the fundam
tal, and the harmonics. For the dc term we obtain

2k10

]

]z
@T10~r !1 1

2d2T10~r !#uz505 1
2I v , ~9c!

and

k10

]

]z
@T10~r !1 1

2d2T10~r !#uz5L5k2

]

]z
T20~r !uz5L , ~9d!

for heat-flux continuity, as well as
Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP
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T10~r !1 1
2d2T10~r !uz5L5T20~r !uz5L ~9e!

for temperature continuity atz5L. To simplify the notation,
we use the following definition:

F10~r ![T10~r !1 1
2 d2T10

2 ~r !; ~10!

then the system of Eqs.~9a!–~9e! becomes

¹2F10~r !50, ~11a!

with the boundary condition atz50,

2k10

]

]z
F10~r !U

z50

5 1
2I v5 1

2I 0e2r2/w2
, ~11b!

assuming a Gaussian laser beam source of spot sizew, and
r 25r21z2 ~Fig. 1!. Also atz5L:

k10

]

]z
F10~r !U

z5L

5k2

]

]z
T20~r !U

z5L

, ~11c!

F10~r !z5L5T20~r !uz5L . ~11d!

The partial differential boundary-value problem of Eq
~9b!–~9e! and ~11a!–~11d! can be solved by use of the
Fourier–Bessel~Hankel! transforms, reflecting the cylindri
cal symmetry of the geometry of Fig. 1:

t̃20~l,z!5E
0

`

J0~lr!T20~r,z!rdr, ~12!

and

f̃ 10~l,z!5E
0

`

J0~lr!F10~r,z!rdr. ~13!

Substituting the Hankel transforms in Eqs.~9b! and ~11a!
gives, in cylindrical coordinates, the following solutions:

f̃ 10~l,z!5A~l!e2lz1B~l!elz, 0<z<L, ~14!

t̃20~l,z!5C~l!e2l~z2L !, z>L. ~15!

Performing the Hankel transformation of boundary co
ditions ~11b!–~11d! we obtain the algebraic system,

k10l@A~l!2B~l!#5I 0w2e2l2w2/4, ~16a!

k10@A~l!e2lL2B~l!elL#5k2C~l!, ~16b!

A~l!e2lL1B~l!elL5C~l!. ~16c!

Solving this system of equations and substituting back in
inverse Hankel transforms of Eqs.~12! yield the solution for
the dc temperature rise due to the Gaussian laser-beam
ing of the composite layer of Fig. 1:

F10~r,z!5
I 0w2

k10
E

0

`S e2lz1g21e
2l~2L2z!

12g21e
22lL D

3e2l2w2/4J0~lr!dl, 0<z<L, ~17!

and

T20~r,z!5
2I 0w2

k10~11b21!
E

0

`S e2lz

12g21e
22lLD

3e2l2w2/4J0~lr!dl, L<z,`, ~18!
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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where b215k2 /k10 is the dc-field thermal coupling coeffi
cient between the upper layer and the substrate, andg21

[(12b21)/(11b21).
Finally, from the defining equation~10!, the dc tempera-

ture increase of the nonlinear thin layer is

T10~r,z!5
1

d2
~A112d2F10~r,z!21!. ~19!

Note that this dc term is affected by the temperatu
dependent thermal conductivity only. It is easy to see tha
the limit d2F10(r,z)!1 T10(r,z)→F10(r,z), the solution
for a linear medium given by Eq.~17!. This is, indeed, the
solution of Eq.~10! for d2T10

2 !1 ~which impliesd250!.

2. n 51 (fundamental) term

Proceeding as in then50 case with Eqs.~8a! and ~8b!
and boundary conditions~5a! and ~5b!, and making use of
the superposition principle of the diffusion-wave field
n51 term of Eq.~8a!, we obtain the equivalent system o
two equations,

¹2H1~r !2s11
2 H1~r !50, 0<z<L, ~20a!

¹2H2~r !2S d2

d1
Ds11

2 H2~r !50, 0<z<L, ~20b!

for the upper layer, where

H1~r ![T11~r !1~d11d2!T10~r !T11~r !, ~21a!

and

H2~r ![T10~r !T11~r !. ~21b!

For the substrate

¹2T21~r !2s21
2 T21~r !50, L<z,`. ~22!

Here,T11(r ) andT21(r ) are defined in the context of mast
equations~8a! and ~8b! subject to the following heat-flux
boundary conditions:

2k10

]

]z
H1~r !U

z50

1d1k10

]

]z
H2~r !U

z50

5
1

2
I v , ~23a!

k10

]

]z
H1~r !U

z5L

2d1k10

]

]z
H2~r !U

z5L

5k2

]

]z
T21~r !U

z5L

,

~23b!
and the temperature continuity boundary condition,

H1~r !2d1H2~r !uz5L5T21~r !uz5L . ~23c!

The following definitions of the thermal wave vectors we
also made:

s11
2 5 iv/a10, s21

2 5 iv/a2 . ~24!

Hankel transforms of Eqs.~20! and ~22! yield

h̃1~l,z!5A~l!e2j11z1B~l!ej11z, ~25!

h̃2~l,z!5C~l!e2q11z1D~l!eq11z, ~26!

and

t̃21~l,z!5E~l!e2j21~z2L !, ~27!
Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP
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where

j11[Al21s11
2 , q11[Al21~d2 /d1!s11

2 ,

j21[Al21s21
2 . ~28!

After Hankel transformations of the boundary conditions
obtain the algebraic system,

k10$j11@A~l!2B~l!#2d1q11@C~l!2D~l!#%

5I 0w2e2l2w2/4, ~29a!

k10$j11@A~l!e2j11L2B~l!ej11L#2d1q11@C~l!e2q11L

2D~l!eq11L#%5k2j21E~l!, ~29b!

A~l!e2j11L1B~l!ej11L2d1@C~l!e2q11L

1D~l!eq11L#5E~l!. ~29c!

Two more equations are required to solve the system~A, B,
C, D, andE!. From the defining Eqs.~21a! and~21b! we find

H1~r,z!5T11~r,z!1~d11d2!H2~r,z!. ~30!

Unfortunately, lettingT11(r,z)5H2(r,z)/T10(r,z) does not
provide a second equation betweenA(l) and B(l), as the
Hankel transform of the ratio of two functions is not equal
the ratio of Hankel transforms. Therefore, a stepwise
proach must be taken with Eq.~30! in order to solve for
T11(r,z).

It should be recalled that the original boundary-val
problems for the two layers, linked with the interfaci
(z5L) boundary conditions and leading to master equati
~8a! and ~8b!, have resulted in the infinite number o
boundary-value problems~n50, n51, n52, etc.!, the super-
position of which is equivalent to the original problems u
der the first-order Taylor expansions fork1(T) andC1(T).

C. Stepwise approximation

The stepwise approach to Eq.~30!, akin to the multiple-
order Born approximation familiar from scattering fie
theory, differs from classical perturbation treatments in t
there is no small parameter involved, powers of which
equated. The fieldT11(r,z) in Eq. ~30! can be determined to
any degree of approximation by making sequential appro
mations of the value of the fieldH2(r,z), which, in turn,
impact the calculation of the integration constantsC(l) and
D(l) in Eq. ~26!.

As the first approximation, lettingH2(r,z)50 in Eq.
~30! we obtain from its Hankel transform

E
0

`

@C~l!e2q11z1D~l!eq11z#J0~lr!ldl50. ~31!

This equation implies that the expression in brackets wit
the integrand must be identically zero for all values ofz.
Therefore, takingz50, L, and solving for the coefficientsC
and D gives C(l)5D(l)50. Equations~29a!–~29c! now
can be unambiguously solved and they give

A~l!5
g~l!

12G21~l!e22j11L
, ~32!
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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B~l!5
G21g~l!e22j11L

12G21~l!e22j11L
, ~33!

and

E~l!5
2g~l!e2j11L

~12B21!~12G21~l!e22j11L!
, ~34!

where the following definitions in Hankel space were ma

g~l![
I 0w2

k10j11
e2l2w2/4, ~35!

and

B21~l![b21S j21~l!

j11~l! D , G21~l![
12B21~l!

11B21~l!
. ~36!

Therefore, from Eqs.~25! and~30!, the inverse Hankel trans
form gives the first approximation to the stepwise treatm
of the fundamental componentT11(r,z,v) of the nonlinear
thermal-wave field:

T11~r,z,v!>H10~r,z,v!

5
I 0W2

k10
E

0

`S e2j11z1G21~l!e2j11~2L2z!

j11~l!~12G21~l!e22j11L! D
3J0~rl!e2l2w2/4ldl. ~37!

This equation is the linear~exact! solution to then51
boundary-value problem in the upper thin layer when o
setsd15d250. Therefore, to the extent of the validity of th
first stepwise approximation, settingH2(r,z)50 is equiva-
lent to a conventional perturbation treatment of the nonlin
thermal-wave problem in the upper layer, where the sm
magnitude parametersd1 andd2 can be set equal to zero an
the formalism produces the same results.

As the second approximation, from the definition
H2(r ), Eq. ~21b!,

H2~r,z!5T10~r,z!T11~r,z!>T10~r,z!H10~r,z!, ~38!

we obtain the Hankel transforms

h̃2~l,0!5E
0

`

f ~r,0!J0~lr!rdr5C~l!1D~l!, ~39a!

and

h̃2~l,L !5E
0

`

f ~r,L !J0~lr!rdr5C~l!e2q11L1D~l!eq11L,

~39b!

where f (r,0)[T10(r,0)H10(r,0), and f (r,L)[T10(r,L)
H10(r,L).

Solving Eqs.~39a! and ~39b! for C(l) andD(l),

C~l!5
1

12e22q11L
@ h̃2~l,0!2h̃2~l,L !e2q11L#, ~40!

and

D~l!5
e2q11L

12e22q11L
@ h̃2~l,L !2h̃2~l,0!e2q11L#. ~41!

Finally, solution of the system of Eqs.~29! now becomes
possible, giving
Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP
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A~l!5
1

12G21~l!e22j11L H g~l!1
d1

11B21~l F S q11

j11
D

3@M ~l!2N~l!e2j11L#

1B21~l!h̃2~l,L !e2j11LG J , ~42!

B~l!5
G21~l!e22j11L

12G21~l!e22j11L H g~l!e2j11L1d1F S q11

j11
D

3S M ~l!e2j11L2
N~l!

12B21~l! D
1

B21~l!

12B21~l!
h̃2~l,L !G J , ~43!

and

E~l!5
1

~11B21!2~12B21!e
22j11L H 2g~l!

ej11L

1d1F2S q11

j11
D M ~l!e2j11L2S q11

j11
D

3~11e22j11L!N~l!2h̃2~l,L !~12e22j11L!G J ,

~44!

where the following definitions were made for convenien

M ~l![
1

12e22q11L
@ h̃2~l,0!~11e22q11L!

22h̃2~l,L !e2q11L#, ~45a!

and

N~l![
1

12e22q11L
@2h̃2~l,0!e2q11L

2h̃2~l,L !~11e22q11L!#. ~45b!

According to the definition off (r,0), use of the expres
sions forA(l) andB(l) in Eq. ~25! and the inverse Hanke
transformations yields

f ~r,0!5
I 0w2

k10d2
@A112d2F10~r,0!21#

3E
0

`S 11G21~l!e22j11L

j11~12G21~l!e22j11L! D
3e2l2w2/4J0~lr!ldl. ~46!

Finally, the nonlinear thermal-wave field can be found us
Eq. ~30! and the stepwise approximation, Eq.~38!, for
H2(r,z):

T11~r,0!5H1~r,0!2~d11d2! f ~r,0!, ~47!

with
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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H1~r,0!5E
0

`

h̃1~l,0!J0~lr!ldl

5E
0

`

@A~l!1B~l!#J0~lr!ldl. ~48!

In order to calculate the inverse Hankel transforms, the va
of h̃2(l,L) will also be required. From Eqs.~42! and~43! we
derive the sumA(l)1B(l) and, when taking Hankel trans
forms, we note that

h̃2~l,0!5E
0

`

f ~r,0!J0~lr!rdr, ~49a!

and

h̃2~l,L !5E
0

`

f ~r,L !J0~lr!rdr, ~49b!

where f (r,0) is given by Eq.~46! and a similar treatmen
using Eq.~25! and inverting the Hankel transforms yields

f ~r,L !5
2I 0w2

k10d2
@A112d2F10~r,L !21#

3E
0

`S 1

j11~l!@11B21~l!#@12G21~l!e22j11L# D
3e2l2w2/4J0~lr!ldl. ~50!

For computational purposes, for each value of the H
kel variablel in Eqs.~49a! and~49b!, the entire spectrum o
the functionsf (r,0) andf (r,L) must be calculated under th
integral signs for 0<r,`. Also, Eqs.~46! and ~50! show
that each such value off (r,0) and f (r,L) is the result of
complete numerical integrations over the Hankel variablel.
Therefore, operationally, the calculation ofH1(r,0) requires
numerical computation off (r,0) andf (r,L) for eachr from
Eqs.~46! and~50!, respectively, followed by integration ove
r, Eqs.~49a! and~49b!, to produce each value of the spect
h̃2(l,0) and h̃2(l,L) which are needed for computin
h̃1(l,0). Finally, integration over alll yields the desired
H1(r,0) value. Symbolically,

h̃2~l,0!5E
0

`

f 1~r!F E
0

`

f 2~l8!J0~l8r!l8dl8GJ0~lr!rdr,

and

h̃2~l,L !5E
0

`

f 1~r!F E
0

`

f 3~l8!J0~l8r!l8dl8GJ0~lr!rdr,

wheref 1(r) is the~common! functional form off (r,0), Eq.
~46! and f (r,L), Eq. ~50!, before the integral sign, an
f 2(l), f 3(l) are thel-dependent terms in brackets under t
integral signs off (r,0) and f (r,L), respectively.

Finally, for the nonlinear thermal-wave field at the fu
damental angular frequencyv we obtain from Eq.~47!,

T11~r,0!5@12~d11d2!T10~r,0!#H10~r,0!1d1R~r!, ~51!

whereH10(r,0) is given by Eq.~37! with z50; T10(r,0) is
the dc term given by Eq.~19! with z50 and
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R~r![E
0

` J0~lr!ldl

12G21~l!e22j11L H S q11~l!

j11~l! D
3FM ~l!~11G21~l!e22j11L!2

2N~l!

11B21~l!
e2j11LG

1
2B21~l!

11B21~l!
h̃2~l,L !e2j11LJ , ~52!

where M (l) is given by Eq.~45a!, N(l) is given by Eq.
~45b!, h̃2(l,0) is given by Eqs.~49a! and~46!, andh̃2(l,L)
is given by Eqs.~49b! and ~50!.

Equation~51! is the central result of the present wor
Along with the corresponding formulas, Eqs.~37!, ~19!, and
~52!, it describes the radial distribution of the fundamen
temperature field on the surface of a thin layer with nonlin
thermal conductivity and specific heat. In Sec. III we discu
some very interesting features and limiting cases of the g
eral theoretical model.

Note, that by using master equations~8a! and ~8b! for
the nonlinear thermal-wave field, the governing equations
all higher harmonic responses~second, third, etc.! can be
found. For instance, the second harmonic field is descri
by the boundary-value problem comprising

¹2$@11d2T10~r !#T12~r !1 1
2d2T11

2 ~r !%

2s12
2 $@11d1T10~r !#T12~r !1 1

2d1T11
2 ~r !%50 ~53a!

for the upper layer, and

¹2T22~r !2s22
2 T22~r !50 ~53b!

for the substrate. HereT10(r ) andT11(r ) are the fields given
by Eqs.~19! and~51!, respectively. The harmonic wave ve
tors are given by

s12
2 52iv/a10, s22

2 52iv/a2 . ~54!

The flux boundary condition atz50 can be derived from Eq
~5a!:

2k0

]

]z
$T12~r !1 1

2 d2@T11
2 ~r !12T10~r !T12~r !#%uz5050.

~55!

III. DISCUSSION

A. Temperature-dependent thermal conductivity or
specific heat

Equation~51! gives the fundamental nonlinear therma
wave profile for the case where both the thermal conductiv
and the specific heat of the upper layer are temperature
pendent. Let us assume now that only the thermal cond
tivity varies with temperature. Lettingd150 in Eq. ~51! and
using Eq.~19! for T10(r,0) we obtain, after a few algebrai
operations,

TNL~r,0!5TL~r,0!@22A11d2F10~r,0!#, ~56!

whereTNL(r,0) is the nonlinear temperature fieldT11(r,0),
TL(r,0)5H10(r,0), etc. This term represents the linear fu
damental thermal-wave field, andF10(r,0) is defined by Eq.
~17! with z50.
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SinceF10(r,0) is a real function, the first important con
clusion is that the nonlinearities in the upper layer therm
conductivity do not affect the phase of the fundamen
thermal-wave field. BothTNL(r,0) andTL(r,0) temperature
fields have the same~linear! phase.

Another interesting observation for thek(T)-only case is
that, if the unperturbed layer conductivityk10 and substrate
conductivityk2 are equal and so are the corresponding th
mal diffusivitiesa10 anda2 , then the two layers merge the
mally into one, semi-infinite nonlinear layer. Indeed, if w
let k105k2 and a105a2 , then from the definition of the
dc-field thermal coupling coefficientb21 we obtaing2150
and from the ac-field thermal coupling coefficient, Eq.~36!,
it follows that B21(l)51, G21(l)50. Therefore, the result
ing nonlinear thermal-wave fieldTNL(r,0)5T11(r,0) be-
comes independent ofL.

In other words, if only the thermal conductivity exhibi
nonlinear behavior, and if the unperturbed thermal cond
tivity and diffusivity of the upper nonlinear layer are equal
those of the substrate, there is no way to define the cha
teristic depth of the thermal conductivity nonlinearities~e.g.,
layer thicknessL!. The entire system behaves like one sem
infinite nonlinear layer.

Figure 2 illustrates the aforementioned behavior of
nonlinear thermal-wave field in the case of temperatu
dependent thermal conductivity only. With fixed thickness
the overlayer the nonlinear thermal-wave amplitude has
tinct lateral profiles as long ask10Þk2 and becomes identica
to that of a semi-infinite nonlinear sample with the sa
parameters whenk105k2 @curve~4! in Fig. 1#. The amplitude
minima seen in Figs. 2 and 3 are due to thermal-wave in
ference in the radial direction when the upper nonlinear la
confines the thermal energy. This interference pattern
comes narrower with decreasing ratiok10/k2 ~Fig. 2! and

FIG. 2. Fundamental thermal-wave amplitude lateral profiles calculated
ing Eq.~56! for different ratios of the thermal conductivities of the nonline
layer (L50.5mm) and the linear substrate:~1! k10 /k250.7; ~2! 0.8; ~3! 0.9;
~4! 1.0; ~5! 1.1; ~6! 1.2; and~7! 1.3. The points represent a semi-infini
nonlinear sample. The parameters used for the calculations werek10

51.7 W/cm K, I 052 MW/cm2, w50.6mm, f 51 MHz and d255
31023 K21.
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decreasing thickness of the nonlinear overlayer~Fig. 3!. For
different thermal conductivities between the overlayer a
the substrate, the resulting nonlinear thermal-wave fi
maintains its dependence onL, as expected~Fig. 3!.

It is interesting to note that the thinner the nonline
layer is, the stronger its effect on the thermal-wave amplitu
becomes. This occurs due to the more effective confinem
of thermal energy within a thinner layer, which enhanc
~amplifies! the nonlinear nature of the layer. Experimental
this feature of the thermal-wave response of nonlinear s
face layers should make their laser photothermal diagnos
easier than their linear counterparts. This signal amplificat
property of confined nonlinear thermal waves has alre
been established in preliminary experimental studies.4,11

In the case of temperature-dependent specific heat o
by letting d250 in Eq. ~51! we obtain

TNL~r,0!5TL~r,0!~12d1F10~r,0!!1d1R8~r!, ~57!

whereR8(r) is defined by Eq.~52! with q11(l)5l. Since
R8(r) is a complex function, unlike the previous case
nonlinear thermal conductivity only, nonlinearities in th
specific heat of the upper layer affect both the amplitude
the phase of the fundamental thermal-wave field. Cor
spondingly, any experimentally observed deviation in t
phase behavior with respect to that predicted by a lin
model will indicate the contribution from the temperatur
dependent specific heat.

Unlike the previousk(T)-only case, it can be shown tha
the nonlinear thermal-wave field here is alwaysL dependent
and that the nonlinearities in the specific heat of the up
layer have a characteristic depth regardless of the ra
k10/k2 and a10/a2 . As an example, if we putd250 and
k105k2 , then from the definition of the corresponding fun
tions in Eq.~52! we obtain

s-FIG. 3. Fundamental thermal-wave amplitude lateral profiles calculated
ing Eq. ~56! for a system of a linear substrate and a nonlinear overla
@k(T) only, d150# of various thicknesses:~1! L510, ~2! 2.5, ~3! 1.0, ~4!
0.5, ~5! 0.25, and~6! 0.1 mm and ~7! 500, ~8! 100, and~9! 10 Å. The
parameters used for the calculations werek1051.7 W/cm K and k2

50.85 W/cm K. The other parameters are the same as in Fig. 2.
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R~r!5E
0

` J0~lr!l2dl

j11~l!
Q~l,L !,

whereQ(l,L) is a dimensionless function that always d
pends onL.

In Fig. 4 the nonlinear lateral profiles of the therma
wave amplitude calculated fork105k2 are plotted for various
thicknesses of the overlayer. As expected from the forego
considerations, in the case of temperature dependent spe
heat only, the nonlinear thermal-wave field is alwaysL de-
pendent, even withk105k2 and a105a2 . This feature is
expected to improve the laser photothermal sensitivity o
nonlinear thin layer over a geometrically similar linear th
layer. It can be concluded that bothk(T) andC(T) nonlin-
earities tend to enhance the contrast between thin sur
layers and substrates, thus improving the dynamic reserv
photothermal detection.

Preliminary experimental results validating the pres
theoretical model have been obtained using a photothe
experimental system12 that measures the lateral profile of th
thermal-wave field using the photomodulated thermorefl
tance technique. Thermal-wave lateral scans have been
sured on a set of silicon wafers containing tungsten over
ers of various thicknesses at different intensities of the pu
beam at a modulation frequency of 1 MHz.

Figure 5 shows the experimental amplitude lateral sc
recorded for the thinnest tungsten layer of 3000 Å. The n
linearities introduced by the thin tungsten overlayer resul
dramatic changes in the shape of the amplitude lateral s
which exhibit a characteristic wave-like behavior as p
dicted by the theoretical model. The increasing nonlinea
tends to couple more power into the harmonic spectrum
out of the fundamental, so the amplitude of the fundame
photothermal response in Fig. 5 decreases with increa
intensity of the pump beam.

FIG. 4. Fundamental thermal-wave amplitude lateral profiles calculated
a system of a linear substrate and a nonlinear overlayer@C(T) only, d2

50# of various thicknesses:~1! L5500, ~2! 50, and~3! 25 Å. The param-
eters used for the calculations werek105k251.7 W/cm K and d151
31025 K21. The other parameters are the same as in Fig. 2.
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The results of the best fit to the present theoretical mo
are also shown in Fig. 5. All amplitude lateral scans record
at different pump beam intensities have been fitted simu
neously using the same set of fitting parameters. As can
seen from Fig. 5, the experimental and theoretical results
in very good agreement. It has been found that the nonlin
behavior observed for this sample is mostly due to the n
linear thermal conductivity of the tungsten layer. Fitting r
vealedd254.531023 K21 andd15231025 K21. The same
nonlinear behavior of the thermal-wave field with decreas
effective nonlinear parameterd2 ~and practically unchanged
d1! was observed for the rest of the wafers from this set~Fig.
6!. A more complete experimental study of the nonline
tungsten layers will be presented in a separate publicatio

orFIG. 5. Experimental fundamental thermal-wave amplitude lateral profi
obtained for a 3000 Å tungsten layer at different pump beam intens
~points!, and the results of fitting to the theoretical model~lines!.

FIG. 6. Effective nonlinear parameterd2 as a function of tungsten laye
thickness obtained by fitting of the experimental lateral scans.
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B. Limiting cases of the model

1. L˜`

For a semi-infinite nonlinear upper layer Eq.~51! and the
accompanying formulas can be simplified. Taking the lim
L→` after some algebra we obtain

T11~r,0!5@12~d11d2!T0~r,0!#H0~r,0!

1d1E
0

` q1~l!G~l!

j1~l!
J0~lr!ldl, ~58!

where, from Eq.~19!,

T0~r,0!5
1

d2
@A112d2F0~r,0!21#, ~59!

with

F0~r,0!5
I 0w2

k10
E

0

`

e2l2w2/4J0~lr!dl ~60!

from Eq. ~17!, and

H0~r,0!5
I 0w2

k10
E

0

` J0~rl!e2l2w2/4ldl

j1~l!
~61!

from Eq. ~37!.
Also from the definition ofR(r) in Eq. ~52! one may

write in Eq. ~58!

G~l!5E
0

`

F2~r!J0~lr!rdr, ~62!

whereF2(r)5T0(r,0)H0(r,0), or, explicitly,

F2~r!5
I 0w2

k10d2
@A112d2F~r,0!21#

3E
0

` e2l2w2/4J0~lr!ldl

j1~l!
. ~63!

In the foregoing expressionsk10 anda10 stand for the unper-
turbed thermal conductivity and diffusivity of the sampl
and

j1~l!5Al21s1
2, s1

25 iv/a10. ~64!

The nonlinear thermal-wave field amplitude and pha
lateral profiles calculated for a semi-infinite nonlinear sam
are presented in Fig. 7 along with the corresponding lin
responses. Similar to the case of the two-layer system
cussed earlier, the temperature-dependent thermal condu
ity only affects the amplitude profile while the phase rema
the same as for the linear sample@Fig. 7~b!#. The nonlinear
specific heat affects both the amplitude and the phase be
ior, and in the case ofd1 ,d2Þ0 both the amplitude and th
phase of the nonlinear thermal-wave field exhibit very stro
deviations from their conventional linear profiles.

2. L˜0

Another limiting case of interest regarding the gene
two-layer model is that of an infinitely thin upper nonline
layer. SettingL50 at z50 in Eq. ~17! we obtain
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F10~r,0!5
I 0w2

k2
E

0

`

e2l2w2/4J0~lr!dl. ~65!

This field represents a dc surface temperature radial distr
tion. The only material present on the right-hand side of E
~65! is the substrate (k2). From Eq.~18!, for the underlying
substrate’s dc temperature response to a Gaussian laser
we also obtain

T20~r,z!5
I 0w2

k2
E

0

`

e2lze2l2w2/4J0~lr!dl, L<z,`.

~66!

This equation shows thatT20(r,z) behaves like a semi
infinite solid with thermal conductivityk2 and no overlayer.
Equation~66! is identical to Eq.~60! of a single semi-infinite
nonlinear layer once one setsz5L50. Taking the relation
betweenT0(r,0) andF0(r,0) given by Eq.~59!, we note,

FIG. 7. Fundamental thermal-wave amplitude~a! and phase~b! lateral pro-
files calculated for a semi-infinite nonlinear sample with the following no
linear parameters:d15131025 K21; d25431023 K21. The other param-
eters are the same as in Fig. 2, anda050.7 cm2/s. Also shown are the
amplitudes and phases for~i! a linear sample (d15d250), ~ii ! a sample
with k(T) only (d150), and~iii ! a sample withC(T) only (d250).
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however, that this equation reduces to the actual dc temp
ture field of a linear semi-infinite solid only by settingd2

50. Then, the dc termsF10(r,z) and T20(r,z) of the two-
layer treatment reduce toF(r,0) andF(r,z), respectively,
when L50. It is seen that they assume the meaning of
surface and bulk temperature of a linear semi-infinite so
only if d250 is imposed in addition toL50.

In other words, the seemingly peculiar situation arises
which to eliminate the effects of the upper nonlinear laye
is not enough to setL50; the nonlinearities must also van
ish. For the dc term one must setd250. Themathematical
reasonis that with even an extremely thin nonlinear surfa
layer first intercepting the incident radiation modulated
angular frequencyv, the incident converted optical-to
thermal power becomes automatically partitioned to a se
of harmonics of the fundamental frequency: the thin film a
as a frequency multiplexer which subsequently feeds ene
into the linear substrate at the fundamental frequency an
its harmonics, with efficiency dependent on the magnitu
of d1 and/ord2 . This is very different from imparting all the
incident power just into the dc temperature and the fun
mental thermal-wave response of a single layered linear s
and is similar to mechanisms driving other nonlinear fiel
e.g., acousto-optic effects.Mathematically, from Eq. ~7!,
T2(r ,t) can never be equal toT21(r )eivt only, unless
T20(r )5T22(r )5...50; but these terms arise fromd1 ,d2

Þ0 and putting them equal to zero without puttingd15d2

50 results in inconsistency.
Based on this argument, it is easy to understand tha

order to eliminate all substrate harmonics one must
d15d250, otherwise conservation of incident flux is vio
lated. Under these conditions Eq.~51! then reduces to

T11~r,0!5H10~r,0!. ~67!

Now, letting L50 in Eq. ~37! after some manipulation we
obtain

H10~r,0!5
I 0w2

k2
E

0

` J0~rl!e2l2w2/4ldl

Al21 iv/a2

. ~68!

This equation for a linear substrate is identical to Eq.~61!
valid for a single linear layer with thermal properties equal
those of the substrate (k2), as expected.

Physically, the nonzero nonlinear constants of a thin u
per layer,d1 andd2 , are responsible for the dependence
the two thermophysical parametersC(T) and k(T) on the
temperatureincrementacross the thickness of the thin film
Eqs. ~3a! and ~3b!. It is thus possible for a portion of th
incident thermal power to be stored in the nonlinear com
nents of these properties without raising the incremental t
perature of the film. Sinced1 ,d2→0 is tantamount to
T1(r ,t)→0 in Eqs.~3a! and ~3b!, the existence of nonzer
nonlinear constants artificially sustains a nonzero virt
temperature increment across the film thickness, even w
L50. Therefore, the more physically correct manner
which to approach theL→0 case is to require independent
that d15d250 for consistency. This condition annuls th
storing of energy in the nonlinear thermophysical modes
the upper layer and fully erases its ‘‘memory’’ whenL50.
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The very interesting conclusion of the foregoing cons
erations is the persistence of the efficiency of the thin n
linear layer as an energy conversion filter which, in princip
drives the harmonic response of the substrate even asL50.
In actual simulations~and measurements!, the effect of very
thin upper layers may be too small to make a numeri
difference, unlessd1 or d2 is so strong that one of them
channels the incident flux to harmonics in proportions b
yond the effects of the thermal mass~i.e., the fundamenta
thermal impedance! of the upper layer. In this circumstanc
the thermal-mass effect vanishes withL, but the harmonic
channeling efficiency does not vanish linearly withL, so that
the productd jT remains finite for all nonzero values of th
surface temperature, even whenL50. In this case the tem
perature of the upper layer becomes identical to that of
substrate. These considerations indicate that the effect
nonlinearity in the thermal-wave behavior of solids may
particularly stronger than the weight of their thermal mass
as indicated in Fig. 3.

IV. CONCLUSIONS

A three-dimensional theoretical model of the phototh
mal response in a solid layer with nonlinear thermophysi
properties~thermal conductivity and specific heat! has been
presented. The solid layer was assumed to lie on a se
infinite backing with linear thermophysical properties. It w
shown that the photothermal boundary-value problem
equivalent to the superposition of an infinite set of bounda
value problems, each problem being associated with a
ticular harmonic of the incident optical radiation modulatio
frequencyv, including the dc temperature rise and the fu
damental response atv. The theory used a stepwise approx
mation to the exact solution, akin to the Born approximati
in scattering field theory, and the fundamental response
highlighted as the experimentally relevant signal chann
Expressions for the fundamental thermal-wave field were
rived and the special cases of either conductivity or spec
heat nonlinearities were studied. The role of the nonlin
layer as a thermal-wave frequency multiplexing mediu
even in the limit of very thin overlayers has been inves
gated. Preliminary experimental results obtained using
photomodulated thermoreflectance technique were prese
as validation of the nonlinear theory, and the nonlinear
rameterd2 was calculated for a thin tungsten layer that e
hibited a strong nonlinear behavior.
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