JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 3 1 FEBRUARY 1999

Nonlinear fundamental photothermal response in three-dimensional
geometry: Theoretical model

Andreas Mandelis
Photothermal and Optoelectronic Diagnostics Laboratories, Department of Mechanical and Industrial
Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada

Alex Salnick,® Jon Opsal, and Allan Rosencwaig
Therma-Wave, Incorporated, 1250 Reliance Way, Fremont, California 94539

(Received 12 May 1998; accepted for publication 3 November 11998

A general three-dimensional theoretical model for fundamental and harmonic response generation
as a result of periodic heating of a system consisting of a nonlinear layer with
temperature-dependent thermal conductivity and specific heat and a linear substrate is developed.
Analysis of the fundamental component of the surface temperature shows that the nonlinear thermal
conductivity alone does not affect the phase of the thermal-wave field. The efficiency of the thin
nonlinear layer as an energy conversion filter that drives the harmonic response of the substrate is
shown by the analysis of the limiting cases of the theoretical model19@9 American Institute of
Physics[S0021-89789)10403-1

I. INTRODUCTION works or theoretical models have addressed the general
boundary value problem of the full nonlinear photothermal

. . -tesponse of an overlayer on a linear substrate. Yet, the de-
extensively used to study the optical, thermal, and eleCtron'9elopment of such a theoretical framework is of practical

propesrtll es of various materialS.As was first noted by Opsal interest for thermal-wave nondestructive evaluatibiDE)
et al,” in these thermal-wave experiments dc and ac tem:

' . ¢ ld ‘ sétldies of materials exhibiting a very strong nonlinear behav-
perature excursions can range from several 0egrees 10 SeVefgy e a5, for example, tungsten. Another important fact is

hundred degrees depending on the sample’s thermal PrOP&Hat modern thermal-wave NDE experiments employ submi-
ties. With such wide temperature variations, the dependenc

&ron spatial resolution and very high excitation power den-

on temperature of the thermal, optical, and elastic parameteg%es(On the order of MW/crf), thus requiring an adequate

of the thermally excited medium has to be taken into accoun'Ehree-dimensional theoretical treatment. Besides the practical

n thGe cor.respotndlngt] _theorelt.lcal mo;ietls{h | bh importance of a rigorous three-dimensiofab) exact pho-
rowing interest in nonfinear photothermal pPReNOMENG o ma| nonlinear theory, there is intrinsic value in the

zas beetn {ngtlt\;,atf?h by selzveral experlrger? tal stqdmas tWht'.C hysical insights one obtains when studying the extraordi-
emonstrated that thermal-wave second harmonic detect ry behavior of thermally nonlinear media under intense

can provide better contrast in photothermal microscbpy. photothermal-wave excitation

Rajakarunanayake and W|ckr_ama§|n‘lgf||_ezst descnbe_:d non- In this article we develop a general 3D theoretical model

linear - photothermal d_eflect|on 'maging experlmentally,for the fundamental and harmonic response generation of
Wh(;er;ahthe_pun:p bga{n Its (rjno?uuzl?/t/e(i atl an%ulgr .frgqulancy arbitrary order as a result of periodic heating of a layered
an € signal 1s detected a €Isel and SPICETaISo  — gy,eyre consisting of an upper thin nonlinear layer in inti-

demonstrated the nonlinear effect in photothermal deflectlorﬁmlte contact with a semi-infinite linear substrate. The upper

imaging, and a theoretical model with special nonlmearlayer is assumed to exhibit temperature-dependent thermal
boundary conditions was developed. A more general theor}fonductivity and specific heat

with nonlinear bulk thermal parameters was proposed by
Dokaet al® Wang and Lf further developed a photothermal
inspection technique using the photothermal infrared radio-
metric scheme to detect the second-harmonic response. Il THEORETICAL MODEL

nally, Gusewet al®~1°published several papers with theoret- A. The thermal-wave problem of a nonlinear layer on
ical analyses of the thermal-wave second harmonigemi-infinite linear substrate

generation induced by the modulatgd heating qf media With  \ye start with the most general case where a layer with
temperature-dependent thermophysical properties. The oy niinear thermophysical properties overlies a semi-infinite

mon feature of all the previous theoretical and experimentainear substrate in intimate physical and thermal contact. The

nonlinear photothermal studies is that only second-harmonigssmed theoretical geometry is shown in Fig. 1. The upper

detection has been formulated, and only in one-dimensionq\‘lﬂyer is assumed to be fully opaque to the incident laser

geometry. To the best of our knowledge, no experimental,jiation.

Over the past two decades, thermal waves have be

A pair of conventional heat conduction equations can be
dElectronic mail: asalnik@thermawave.com written, one for the top layer with nonconstant, temperature-
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Ky
Ky(T)=Kio(T1a) + T Tia
T=Tyyq
2w P
> =kid 1+ 6,T4(r,1)] (3b)
kio, . - . . -
CII(;,?] n r 1 adequately describe the behavior of the specific heat and
L thermal conductivity of the layer in the temperature interval
\ of interest, where, by definition,
ko, Gy
2 2 5o L [dCu(Ty)]
lE
CiTw) | dTy |
) ) - d
FIG. 1. Schematic representation of the two-layer sample consisting of a -
nonlinear layer and a semi-infinite linear substrate. The layer is photother- dT ln[cl(Tl)] B (39
mally excited by a Gaussian laser beam of spot giztensity modulated T1=Taq
at angular frequency. and
5= 1 dkl(Tl)‘
dependent thermophysical parameters and another for the “2° ki (Tq) | dT; |T T
linear substrate with boundary conditions of continuity of o
heat flux and temperature at the interfaces d
=d—T1|n[k1(T1)] (3d)

aT =
VIky(T)VTi]-Cy(Ty) =2 =0, O=z=<L,  (1a T

Under the conditions of Eq$2) and(3), Eq. (1a), subject to
with the complete combined dc and ac boundary condition aboundary conditior(1b) and under the uniform background

z=0: (do) temperature condition¥ T,4=V2T,4=0, transforms to
—KkAVTy|,— 0= 3, (1+e™Y), (1b) , 1 9
oo . VT (r,t)— — —=T4(r,t
and the continuity boundary conditions, u(rt) @ dT (1,0
kiAVTy|,- =k,AVT,|,—, (10 1 6, 9
1AV Talz-L =NV Tolz- :—E(azvz——lﬂﬁ(r,t), 0<z<L, (49)
To(r )= =Ta(r,t)| =1, (1d) *10

atz=L. Heref is the unit vector normal to the surface plane Wherea;o=kio/Cyois the unperturbed thermal diffusivity of
z=0 in the direction inward to the material volume underthe upper layer at temperatufgy . For the linear substrate,
consideration. For bounded behavior of the thermal-wave

19
field T,(r,t) it is required that V2T,(r,t)— — ﬁTz(r,t)=0, L<sz<oo, (4b)
az
TZ(r!t)|r—>OC:0' (1e) . . .
) ) Nonlinear boundary conditions can be written from Egq)
The response of the linear substrate is governed by and (1o as follows:
o, = 2y 1f J :
Tyt (an ki [Ta(T,)+ 38, TH1 01 ,=0= 3l (1 +€Y), (58
In the boundary-value problem of Eqd.a)—(1f), k; is the and
upper layer thermal conductivityC, is the product of the
layer density and the specific hedt, is the intensity of the d A d
pump-beam irradiation modulated at the angular frequencif1oy; [T1(rD) +28;Ti(r D ][- L =ke - To(r,t) . (5b)

o, anda, is the substrate thermal diffusivity,=k,/C,. 2=t

Let us suppose that external heating produces dc andote that both the temperature-dependent specific heat and
modulated increases in layer temperatlisg and T,,, re-  the conductivity contribute to nonlinear terms in the nonlin-

spectively, ear heat conduction equatigda), whereas onlyk,(T) con-
Ty ) =Tyg(r) + Toa(11). %) 'Egautes to the nonlinearity in the boundary conditions, Egs.
Furthermore, the assumption is made that Since there is intimate contact between the nonlinear
JCy layer and the substrate at the interfacel, and since the
CuT)=Cy((Trg) + T )Tla nonlinear layer will produce multiple harmonics of the fun-
T=Tyq damental, the substrate will also exhibit multiple harmonics
_ due to the thermal-wave field conducted past the interface.
=Cid 1+ 1 Ty(r.0)] (33 Therefore, let the solution to Eg&4) be in the form of the
and superpositions,
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= ot Tio(r) + 38, T1o(N) == Tao()] 21 (9¢)
Ti(r, )= 2 Tip(r)en, (6) . o .
n=—o for temperature continuity a=L. To simplify the notation,
and we use the following definition:
oo Faor)=Tao(r)+ 3 8,T2(r); (10)
— imwt

TZ(r’t)_sz_w Tam(r)e™, @ then the system of Eq$9a)—(9¢) becomes
Correspondingly, upon insertion of Eg&) and (7), Egs. V2F (1) =0, (113
(48 and (4b) become with the boundary condition a=0,

” inw . d
2 o inwt 1y _1 _ 2/ 2
n;_m [V T1n(r) . Tln(r))e —kio==Fadlr) Zzo—zlw—zloe pewe (11b
[ 2 . . .
1 61 9 ino assuming a Gaussian laser beam source of spotsizad
- E( A a_loﬁ) ( n;w Tan(r)e" t) , 83 2,24 72 (Fig. 1). Also atz=L:
J J
and ki Fadn)|  =ke=Tor)| (110
- 0z _ Jz -~
. z=L z=L
S Vo1 = e Ty [t =0 (8b)
m<e 2m a, M ' Fao(M)z=1=Tao(F)| = - (11d

The representation of the foregoing summations to in-The partial differential boundary-value problem of Egs.
clude negative harmonics is preferred in order to simplify the90)—(9¢) and (113—(11d can be solved by use of their
calculation of complex quantities and harmonic orders. InFourier—Besse(Hanke) transforms, reflecting the cylindri-
identifying the boundary-value problem for each harmonicc@l symmetry of the geometry of Fig. 1:

order, a redefinition of the amplitud@ (r) is made in what %
follows, based on Too(N,Z)= fo Jo(Ap)Too(p,2)pdp, (12
> enet=142> cognwt). and
n=—ow n=0
TiN2)= fo Jo(Np)F1o(p,2)pdp. (13)

B. Harmonic order boundary-value problem
formalism Substituting the Hankel transforms in Eq®b) and (113
The exact solution of the system of master equati@hs  9gives, in cylindrical coordinates, the following solutions:
cpupled through boqndary c.on.dl_tlor(§), can bg conve- T2 =AM e M4 B(V)e, 0=z<L, (14)
niently decomposed into an infinite set of nonlinear equa-
tions for each modulation frequency harmonic order, includ- ”720()\,Z)=C(>\)e‘“z‘”, 7=L. (15)
ing the fundamentalp, n=1, and the background dc term,
n=0. Experimentally, the fundamental is the most important
term, as it can be directly monitored through a conventionaij
spectral filter arrangement, such as a lock-in analyzer. kiN[AN)—B(\)]= |0W2e7>\2w2/4, (163

Performing the Hankel transformation of boundary con-
itions (11b)—(11d) we obtain the algebraic system,

1. n=0 (dc) term kid AN )e M—B(N)er]=k,C(N), (16b
In the case ofn=0 the dc component of problerid) L L
transforms to the following set of equations: A(N)e =+ B(N)erm=C(A). (169
VTyr)+ %521-%0“)]:0’ (99) Solving this system of equations and ;ubstituting b_ack in the
inverse Hankel transforms of Eg4.2) yield the solution for
V2T ,o(r)=0. (9b) the dc temperature rise due to the Gaussian laser-beam heat-

The boundary conditions, Eg$5), can also be spectrally ing of the composite layer of Fig. 1:

decomposed into summations of the dc term, the fundamen- loW? [=[e M+ y,e M2L-2)
tal, and the harmonics. For the dc term we obtain Filp,2)= f 1—v.e OC
10 Jo Y21€
d 2,2
—kloE[Tlo(rH—%82T10(r)]|220=%lw, (90) xe MW (\p)d\, O=z<L, 17
and and
21 ow? w e M
d N d Too(p,2)= —2NLC
klOE[Tlo(r)—’_552T10(r)]|z=L:kZETZO(r)|z=La (9d) Kig(1+bsy) Jo | 1—yx€
for heat-flux continuity, as well as xe MW (\p)d\, L<z<w, (18
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where b,;=Kk,/kq is the dc-field thermal coupling coeffi- where

cient between the upper layer and the substrate, and
=(1—byy)/(1+bayy). Ey=N*+oly,  du= N+ (8,/8)) 01y,

F_|naIIy, from the deﬁr_nng eqqatloflO),_ the dc tempera- = N2+ o2 051- (28)
ture increase of the nonlinear thin layer is
1 After Hankel transformations of the boundary conditions we

Tip.2)= g(m—l)- (19) obtain the algebraic system,
’ Kaol €1l AV ~B(M)]= 8101l C(\) =DV}
Note that this dc term is affected by the temperature- -
dependent thermal conductivity only. It is easy to see thatin  =Iow?e W74, (29a
the limit 865F1¢(p,2)<<1 T1o(p,2)—F1¢(p,2), the solution _ _
for a Iineaw2 r;(%((;)iur?w giveéoé)li/ E)c{l7)%0£rphis) is, indeed, the kiférf AVe” =BV et ] = d1q1 C(V e it
solution of Eq.(10) for 8,T35<1 (which implies 8,=0). —D(N) ettt ] =ky&5E(N), (29b)

A(N)e fub+ B(\)efut— 5[ C(N)e dut

2. n=1 (fundamental) term L

+D(N)e%-]=E(N). (2909
Proceeding as in the=0 case with Eqs(8a) and (8b) ) )

and boundary conditionésa and (5b), and making use of WO More equations are required to solve the systans,

the superposition principle of the diffusion-wave field's C» D, @hdE). From the defining Eqs218 and(21b) we find

n=1 term of Eq.(8a), we obtain the equivalent system of Hi(p,2)=Ti(p,2)+ (81+ 8,)Hao(p,2). (30)

two equations, .
g Unfortunately, lettingT14(p,2) =Hy(p,2)/T1o(p,2z) does not

V2H,(r)—o3,H.(r)=0, O<z<L, (208  provide a second equation betwe&M) andB(\), as the
s Hankel transform of the ratio of two functions is not equal to
V2H (1) — 32 0% Hy(r)=0, O=z<L, (20p  the ratio of Hankel trans_forms. Th.erefore, a stepwise ap-
1 proach must be taken with E@30) in order to solve for
for the upper layer, where T1(p,2). o
It should be recalled that the original boundary-value
Ha(r)=Tya(r) + (81 82) Tao(r) Taa(r), (218 problems for the two layers, linked with the interfacial
and (z=L) boundary conditions and leading to master equations

_ (8a) and (8b), have resulted in the infinite number of
Ha(r)=Taor) Taa(1). (21b) boundary-value problem®=0,n=1, n=2, etc), the super-
For the substrate position of which is equivalent to the original problems un-
V2T, (1) — 02T py(1)=0, L<z<c0, (22 der the first-order Taylor expansions foy(T) andC4(T).

Here, T14(r) andT,4(r) are defined in the context of master
equations(8a) and (8b) subject to the following heat-flux C. Stepwise approximation

boundary conditions: The stepwise approach to E@O0), akin to the multiple-

d d order Born approximation familiar from scattering field
_kloﬁHl(r) + 51k105H2(r) :Elw' (233 theory, differs from classical perturbation treatments in that
#0 20 there is no small parameter involved, powers of which are
d d d equated. The field';1(p,z) in Eqg. (30) can be determined to
klOEHl(r) B 51k10£H2(r) =k25T21(r) ' any degree of approximation by making sequential approxi-
=t =t =t mations of the value of the fielth»(p,z), which, in turn,
o .. (238D  impact the calculation of the integration consta@{s\.) and
and the temperature continuity boundary condition, D(\) in Eq. (26).
Hy(r)— 81H ()| ,= L =To(1r) | = - (230 As the first approximation, lettindd,(p,z)=0 in Eq.

. _— 30) we obtain from its Hankel transform
The following definitions of the thermal wave vectors Were( )

I de: >

aiso made f [COVe U2+ D(N)eh?]Iy(Ap)hdA=0.  (31)
0'%1= i wl ayqg, U§l= iwlas,. (29 0

Hankel transforms of Eq€20) and (22) yield This_ equation implies thgt th(_a expression in brackets within
~ the integrand must be identically zero for all valueszof
hi(N,2)=A(N)e 12+ B(\)eb?, (25)  Therefore, taking=0, L, and solving for the coefficients
~ ez , and D gives C(A)=D(A)=0. Equations(299—-(29¢ now
ha(X,z)=C(A)e” 1+ D(A)eh, (260 can be unambiguously solved and they give

e A(N)= g 32
(D) =E( e e b, @7) M= ne T (32
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Ipg(N)e 2t 1 01 Q11
BOM= 1-Tp(N)e 2’ (33 AN = 1Ty (N)e %t 9+ 77 Bou(M || €1
and X[M(A)—N(n)e™ ]
B zg()\)e*&l'- _
EN = B Tane 7 (39 + 521()\)h2(7\-|-)e_§11"“, (42
where the following definitions in Hankel space were made: vy
[ ow? B(N)= Fai(he 7 [g()\)e§11L+5 q_“)
g\ = ——— e Nw4 (35 1-Tpy(N)e™ %t 1\ &
klogll N()\)
and x| M(X\ e’fllL——>
£x(N) 1-B,00) " bR
21 — D1t
B,i(N)=by| ——|, T'r(N)=—7——. 36 Boy(N) ~
S I b hz()\,L)H, @3
Therefore, from Eqs25) and(30), the inverse Hankel trans- 2
form gives the first approximation to the stepwise treatmentind
of the fundamental componeitt;(p,z,®) of the nonlinear
thermal-wave field: 1 2g(N)
E()\): (1+B 1)_(1_8 1)e72‘f11|- e‘flll-
T11(p,Z,0)=H1o(p,Z,0) 2 2
_ oW F e M lae +6, Z(q_n)M(A)egllL_<q_n)
kio Jo | £1(M)(1=Ty(N)e™ %41t é11 fu1
X Jo(pN)e AW d). (37) x<1+e—zfnL)N(M—Fz(A,Lxl—e‘z"fllL)H,
This equation is the lineafexac} solution to then=1 (44)

boundary-value problem in the upper thin layer when one
setso; = 5,=0. Therefore, to the extent of the validity of the where the following definitions were made for convenience:
first stepwise approximation, settirid,(p,z)=0 is equiva-
lent to a conventional perturbation treatment of the nonlinear
thermal-wave problem in the upper layer, where the small-
magnitude paramete and S, can be set equal to zero and

1 ~
M(N)= m[hz(?\,o)(lJrefzqﬂL)

the formalism produces the same results. —Zﬁz(x,L)e‘qllL], (459
As the second approximation, from the definition of
Ho(r), Eq. (21b), and
HZ(PyZ):TlO(P:Z)Tll(PaZ)ETlo(pyz)H10(P:Z)a (38) N()\)z 1 [2}..1 ()\ 0)e—q11L
we obtain the Hankel transforms T 1-e 2t 2
—ho(\,L)(1+e 291y, (45b)

Fia(A,0) = f:f(p,omomp)pdp:cmwDm, (399
and

Fio(hL)= f “f(p,L)3o(Ap)pdp=C(N)e i+ D(N ),
0

(39b)

where f(p!O)ETlO(p!O)HlO(p!O)! and f(p!L)ETlO(p!L)

Hidlp,L).
Solving Egs.(399 and(39b) for C(\) andD(\),

1 ~ ~
C(\)= m[hz()\,o)—hz(?\,L)e_qﬂL], (40)
and
e_qlll- _ _
D(N)= m[hz(M—)—hz(?\,o)efq“"]- (41

Finally, solution of the system of Eq$29) now becomes
possible, giving

According to the definition of (p,0), use of the expres-
sions forA(\) andB()\) in Eq. (25) and the inverse Hankel
transformations yields

| ow?
f(p,0)= @[\/14r 25,F1¢(p,0)—1]

J'w 1+ (N)e 2éut
X
0

£15(1-Ty(N)e~ i)
X e W43 (\ p)NdA.

(46)

Finally, the nonlinear thermal-wave field can be found using
Eqg. (30) and the stepwise approximation, E¢38), for
Ha(p,2):

T11(p,0)=H1(p,0)— (61 + 62)f(p,0),

with

(47)
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= = Jo(Ap)NdN A
Hl(p.0)=f hi(X,0)Jg(Ap)NdX R(P)EJ o(Ap) [(qn( ))

0 0 1-T(N)e %t | | £4(N)
=F[A(>\)+B(>\)]J (Ap)NdX (48) X|M(\)(1+T (x)efzgnL)—Lme*fnL
0 oLRpIRTR: 2t 1+Bau(N)
In order to calculate the inverse Hankel transforms, the value 2B5i(N) ~ el
~ . . +—=—""hy(\,L)e fut}, (52
of h,(\,L) will also be required. From Eq§42) and(43) we 1+Byy(N)

derive the sumA(N) +B(\) and, when taking Hankel trans-

forms, we note that where M(\) is given by Eqg.(458, N(\) is given by Eq.

(45b), h,(\,0) is given by Eqs(49a and (46), andh,(\,L)

is given by Eqs(49b and(50).
Equation(51) is the central result of the present work.

Along with the corresponding formulas, E487), (19), and

and (52), it describes the radial distribution of the fundamental
~ w temperature field on the surface of a thin layer with nonlinear
hz()\,L)=J f(p,L)Jo(\p)pdp, (49p  thermal conductivity and specific heat. In Sec. lll we discuss

0 some very interesting features and limiting cases of the gen-

where f(p,0) is given by Eq.(46) and a similar treatment eral theoretical model.

Fia(A,0) = f:ﬂp,ouo(xp)pdp, (493

using Eq.(25) and inverting the Hankel transforms yields Note, that by using master equatiof@) and (8b) for

ol 2 the nonlinear thermal-wave field, the governing equations for

oW all higher harmonic responsdsecond, third, etg.can be
f(p,L)= v1+26,F L)—1 . T . .
(p,L) K100, [ O2F1dp,L) 1] found. For instance, the second harmonic field is described
. 1 by the boundary-value problem comprising
% JO ( EM[1+By(M)[1—T (N ) e~ %] VH[1+ 8, T1o(1)]T1or) +38,T54(r)}
x e N4\ p)Nd. (50 — o3[ 1+ 8, Ti(NITiA1) +38,TH(N}=0 (533

For computational purposes, for each value of the HanIor the upper layer, and

kel variable\ in Egs.(498 and(49b), the entire spectrum of V2T (r) — 05,T 1) =0 (53b)
the functionsf(p,0) andf(p,L) must be calculated under the
integral signs for Gsp<<w. Also, Egs.(46) and (50) show
that each such value df(p,0) andf(p,L) is the result of
complete numerical integrations over the Hankel variable
Therefore, operationally, the calculationtdf(p,0) requires 02,=2iwlay, o05=2iwla,. (54
numerical computation df(p,0) andf(p,L) for eachp from . }

Egs.(46) and(50), respectively, followed by integration over The flux boundary condition a=0 can be derived from Eq.
p, Egs.(499 and(49b), to produce each value of the spectra (5a:

h,(\,0) and hy(A,L) which are needed for computing P . ,
h1(\,0). Finally, integration over alk yields the desired _kOE{le(rH 3 6o[ Tiy(r) +2T19(r) T1x(r) 1} ,=0=0.

for the substrate. Her€,(r) andT,4(r) are the fields given
by Egs.(19) and(51), respectively. The harmonic wave vec-
tors are given by

H1(p,0) value. Symbolically, (55)
ﬁz(h,0)=f fl(p)[f fz()\’)\]o()\’p))\’d)\’}\]o()\p)pdp, Ill. DISCUSSION
0 0
A. Temperature-dependent thermal conductivity or
and specific heat

o Equation(51) gives the fundamental nonlinear thermal-
fo fs(A')Jo()\/P))\’d)\,}Jo(AP)PdP’ wave profile for the case where both the thermal conductivity
and the specific heat of the upper layer are temperature de-
wheref(p) is the(common functional form off(p,0), Eq.  pendent. Let us assume now that only the thermal conduc-
(46) and f(p,L), Eg. (50), before the integral sign, and tivity varies with temperature. Letting;=0 in Eq.(51) and
fo(N), f3(N) are then-dependent terms in brackets under theusing Eq.(19) for T,¢(p,0) we obtain, after a few algebraic
integral signs off(p,0) andf(p,L), respectively. operations,

Finally, for the nonlinear thermal-wave field at the fun-
Ta(p,0)=TL(p,0)[ 2= V1+ 65F 1o(p,0) ], (56)

damental angular frequeney we obtain from Eq(47),
_ whereTy, (p,0) is the nonlinear temperature field4(p,0),
=M1—(5 + + NL 1
Tu(p.O=[1= (01 %) 1o p.OIH1op.0)+ 81R(p),  (51) TL(p,0)=H(p,0), etc. This term represents the linear fun-

whereH4(p,0) is given by Eq(37) with z=0; T,((p,0) is  damental thermal-wave field, aldp,0) is defined by Eq.
the dc term given by Eq.19) with z=0 and (17) with z=0.

ﬁz<x,L>=f0°°f1(p>
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FIG. 2. Fundamental thermal-wave amplitude lateral profiles calculated usFIG. 3. Fundamental thermal-wave amplitude lateral profiles calculated us-
ing Eq.(56) for different ratios of the thermal conductivities of the nonlinear ing Eq. (56) for a system of a linear substrate and a nonlinear overlayer
layer (L=0.5um) and the linear substratéel) k,,/k,=0.7; (2) 0.8;(3) 0.9; [k(T) only, 5;,=0] of various thicknesseg1) L=10, (2) 2.5, (3) 1.0, (4)

(4) 1.0; (5) 1.1; (6) 1.2; and(7) 1.3. The points represent a semi-infinite 0.5, (5) 0.25, and(6) 0.1 um and (7) 500, (8) 100, and(9) 10 A. The
nonlinear sample. The parameters used for the calculations wgre parameters used for the calculations wekg=1.7 W/cmK and k,
=1.7W/cmK, 1,=2 MW/cn?, w=0.6um, f=1MHz and §,=5 =0.85W/cm K. The other parameters are the same as in Fig. 2.
x1073K™L

] . ) o decreasing thickness of the nonlinear overlayeg. 3). For

SinceF 1¢(p,0) is a real function, the first important con- gifferent thermal conductivities between the overlayer and
clusion is that the nonlinearities in the upper layer thermakne substrate, the resulting nonlinear thermal-wave field
conductivity do not affect the phase of the fundamentalyjintains its dependence &n as expectedFig. 3.
thermal-wave field. Botiy,(p,0) andT, (p,0) temperature It is interesting to note that the thinner the nonlinear
fields have t_he sam@neab phas_e. ~layer s, the stronger its effect on the thermal-wave amplitude

Another interesting observation for th€T)-only case is  pecomes. This occurs due to the more effective confinement
that, if the unperturbed layer conductivikfo and substrate  of thermal energy within a thinner layer, which enhances
conductivityk; are equal and so are the corresponding therigmpiifieg the nonlinear nature of the layer. Experimentally,
mal diffusivitiesayo anda;, then the two layers merge ther- s feature of the thermal-wave response of nonlinear sur-
mally into one, semi-infinite nonlinear layer. Indeed, if e face |ayers should make their laser photothermal diagnostics
let kyg=k, and ajp=a;, then from the definition of the gasjer than their linear counterparts. This signal amplification
de-field thermal coupling coefficierlty; we obtainy=0  property of confined nonlinear thermal waves has already
and from the ac-field thermal coupling coefficient, E86),  peen established in preliminary experimental stutids.
it follows that By;(N) =1, I'p(\) =0. Therefore, the result- In the case of temperature-dependent specific heat only,
ing nonlinear thermal-wave field'y.(p,0)=T11(p,0) be-  py leting 5,=0 in Eq.(51) we obtain
comes independent &f

In other words, if only the thermal conductivity exhibits Tal(p,0 =T (p,0)(1— 8;F 1¢(p,0)) + 8;R' (p), (57)
nonlinear behavior, and if the unperturbed thermal conduc-
tivity and diffusivity of the upper nonlinear layer are equal to whereR’(p) is defined by Eq(52) with g;,(\)=A\. Since
those of the substrate, there is no way to define the chara®’(p) is a complex function, unlike the previous case of
teristic depth of the thermal conductivity nonlinearitiesy.,  nonlinear thermal conductivity only, nonlinearities in the
layer thicknes4.). The entire system behaves like one semi-specific heat of the upper layer affect both the amplitude and
infinite nonlinear layer. the phase of the fundamental thermal-wave field. Corre-

Figure 2 illustrates the aforementioned behavior of thespondingly, any experimentally observed deviation in the
nonlinear thermal-wave field in the case of temperaturephase behavior with respect to that predicted by a linear
dependent thermal conductivity only. With fixed thickness ofmodel will indicate the contribution from the temperature-
the overlayer the nonlinear thermal-wave amplitude has disdependent specific heat.
tinct lateral profiles as long dsy# k, and becomes identical Unlike the previouk(T)-only case, it can be shown that
to that of a semi-infinite nonlinear sample with the samethe nonlinear thermal-wave field here is alwaydependent
parameters wheky =k, [curve(4) in Fig. 1]. The amplitude and that the nonlinearities in the specific heat of the upper
minima seen in Figs. 2 and 3 are due to thermal-wave intertayer have a characteristic depth regardless of the ratios
ference in the radial direction when the upper nonlinear layek,y/k, and a9/ a,. As an example, if we put,=0 and
confines the thermal energy. This interference pattern be¢;;=Kk,, then from the definition of the corresponding func-
comes narrower with decreasing raligy/k, (Fig. 2 and tions in Eqg.(52) we obtain
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FIG. 4. Fundamental thermal-wave amplitude lateral profiles calculated foFIG. 5. Experimental fundamental thermal-wave amplitude lateral profiles
a system of a linear substrate and a nonlinear overlg@ér) only, &8, obtained for a 3000 A tungsten layer at different pump beam intensities
=0] of various thicknesseg1) L =500, (2) 50, and(3) 25 A. The param-  (points, and the results of fitting to the theoretical modéies).

eters used for the calculations wekgy=k,=1.7 W/cmK and §;=1

X105 KL The other parameters are the same as in Fig. 2.

The results of the best fit to the present theoretical model

® JO()\p)Azd)\ are also shown in Fig. 5. All amplitude lateral scans recorded

R(p)= fo WQ()"L)' at different pump beam intensities have been fitted simulta-
neously using the same set of fitting parameters. As can be

where Q(\,L) is a dimensionless function that always de- S€€N from Fig. 5, the experimental and theoretical result; are
pends orL. in very good agreement. It has been found that the nonlinear
In Fig. 4 the nonlinear lateral profiles of the thermal- behavior observed for this sample is mostly due to the non-

wave amplitude calculated fégo= k., are plotted for various inéar thermal Confngti_Vlity of the tungs}in I_alyer. Fitting re-
thicknesses of the overlayer. As expected from the foregoiny€@l€dd,=4.5x10"" K" andé; =2x10">K"". The same

considerations, in the case of temperature dependent specifiehlinear behavior of the thermal-wave field with decreasing
heat only, the nonlinear thermal-wave field is alwaysle- effective nonlinear parameté, (and practically unchanged

pendent, even witho=k, and a;o=a,. This feature is 61) was observed for the rest of the wafers from this(E«'zg_.
expected to improve the laser photothermal sensitivity of £)- A more complete experimental study of the nonlinear
nonlinear thin layer over a geometrically similar linear thin tUngsten layers will be presented in a separate publication.
layer. It can be concluded that bokiiT) and C(T) nonlin-

earities tend to enhance the contrast between thin surface

layers and substrates, thus improving the dynamic reserve of
photothermal detection. 5

Preliminary experimental results validating the present
theoretical model have been obtained using a photothermal
experimental systetfithat measures the lateral profile of the
thermal-wave field using the photomodulated thermoreflec-
tance technique. Thermal-wave lateral scans have been mea-
sured on a set of silicon wafers containing tungsten overlay-
ers of various thicknesses at different intensities of the pump
beam at a modulation frequency of 1 MHz.

Figure 5 shows the experimental amplitude lateral scans
recorded for the thinnest tungsten layer of 3000 A. The non-
linearities introduced by the thin tungsten overlayer result in
dramatic changes in the shape of the amplitude lateral scans
which exhibit a characteristic wave-like behavior as pre- 0 L L 1
dicted by the theoretical model. The increasing nonlinearity 2000 3000 4000 5000 6000
tends to couple more power into the harmonic spectrum and
out of the fundamental, so the amplitude of the fundamental

.phOtOt.hermal response in Fig. 5 decreases with increasingg. 6. Effective nonlinear paramete), as a function of tungsten layer
intensity of the pump beam. thickness obtained by fitting of the experimental lateral scans.

[\ W N
T T T

—_
T

Effective nonlinear parameter, x10> K!

Tungsten layer thickness, A
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B. Limiting cases of the model 350 -
Linear (a)
1l Ll-w 300
For a semi-infinite nonlinear upper layer E§1) and the 5
accompanying formulas can be simplified. Taking the limit g 220
L— after some algebra we obtain i
& 200
T11(p,0)=[1=(61+ 62)To(p,0) JHo(p,0) s
woy [(BMER 5, (59 3
&) E o
E
where, from Eq(19),
1 50
To(p,0)= 5—2[\/1+ 25,Fo(p,0)—1], (59 6 . . .
with -2 -1 0 1 2
low? (= \2w2/4 poHm
Fo(p,0)= —J e M W Jo(Ap)dh (60)
kio Jo 20 ©
from Eq.(17), and 15 F k.M
2,2
|0w2jooJ0(p>\)e—A WA\ dn g 10F
Ho(p,0)= 61 e
olp:0) kio Jo £1(N) (61 g st
from Eq. (37). § o}
Also from the definition ofR(p) in Eg. (52) one may §
write in Eq. (58) g ST
Té 10 Linear, k(T)
G(\)= fo Fa(p)Jo(Ap)pdp, (62 £ s
whereF,(p) =Ty(p,0)Hy(p,0), or, explicitly, -20
 ow? 25 - . '
Fz(P)Zm[V1+25zF(P,0)—1] 2 -l 0 I 2

p.um

2,2
= e MW (N p)NdA
X X (63) FIG. 7. Fundamental thermal-wave amplitu@e and phaséb) lateral pro-
0 &l ) files calculated for a semi-infinite nonlinear sample with the following non-

In the foregoing expressiofig, and a;, stand for the unper- linear parameterss;=1x10 5K™%; §,=4x10 *K L. The other param-
going exp 0 10 P eters are the same as in Fig. 2, amg=0.7 cnf/s. Also shown are the

turbed thermal conductivity and diffusivity of the sample, ampiitudes and phases f6i) a linear sample &= 5,=0), (i) a sample
and with k(T) only (6;=0), and(iii) a sample withC(T) only (5,=0).

51()\):\/)\2+0'?1, oi=iwlay. (64)

The nonlinear thermal-wave field amplitude and phase lw? [ 2w
lateral profiles calculated for a semi-infinite nonlinear sample ~ F10(p,0)= & fo e " " Jo(Ap)dA. (65)
are presented in Fig. 7 along with the corresponding linear
responses. Similar to the case of the two-layer system disthis field represents a dc surface temperature radial distribu-
cussed earlier, the temperature-dependent thermal conducti}on. The only material present on the right-hand side of Eq.
ity only affects the amplitude profile while the phase remaing(65) is the substratek). From Eq.(18), for the underlying
the same as for the linear sampkig. 7(b)]. The nonlinear ~substrate’s dc temperature response to a Gaussian laser beam
specific heat affects both the amplitude and the phase beha\¢e also obtain
ior, and in the case of;,5,# 0 both the amplitude and the low? [ -
phase of the nonlinear thermal-wave field exhibit very strongl'so(p,z) = k—f e Me MW (\p)dN, L<z<o.
deviations from their conventional linear profiles. 2 70 66
This equation shows thaf,|(p,z) behaves like a semi-
infinite solid with thermal conductivitk, and no overlayer.
Another limiting case of interest regarding the generalEquation(66) is identical to Eq(60) of a single semi-infinite
two-layer model is that of an infinitely thin upper nonlinear nonlinear layer once one sets-L=0. Taking the relation
layer. SettingL=0 atz=0 in Eq.(17) we obtain betweenTy(p,0) andFy(p,0) given by Eq.(59), we note,

2. L—0
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however, that this equation reduces to the actual dc tempera- The very interesting conclusion of the foregoing consid-
ture field of a linear semi-infinite solid only by settingp erations is the persistence of the efficiency of the thin non-
=0. Then, the dc termB,o(p,z) and T,y(p,z) of the two- linear layer as an energy conversion filter which, in principle,
layer treatment reduce ©(p,0) andF(p,z), respectively, drives the harmonic response of the substrate evdn=d3.
whenL=0. It is seen that they assume the meaning of thdn actual simulationgand measuremenishe effect of very
surface and bulk temperature of a linear semi-infinite solidhin upper layers may be too small to make a numerical
only if 5,5=0 is imposed in addition th =0. difference, unlesss; or 8, is so strong that one of them
In other words, the seemingly peculiar situation arises irchannels the incident flux to harmonics in proportions be-
which to eliminate the effects of the upper nonlinear layer ityond the effects of the thermal mag<., the fundamental
is not enough to sdt =0; the nonlinearities must also van- thermal impedangeof the upper layer. In this circumstance
ish. For the dc term one must s&=0. Themathematical the thermal-mass effect vanishes wilth but the harmonic
reasonis that with even an extremely thin nonlinear surfacechanneling efficiency does not vanish linearly withso that
layer first intercepting the incident radiation modulated atthe products; T remains finite for all nonzero values of the
angular frequencyw, the incident converted optical-to- surface temperature, even wher-0. In this case the tem-
thermal power becomes automatically partitioned to a serieperature of the upper layer becomes identical to that of the
of harmonics of the fundamental frequency: the thin film actssubstrate. These considerations indicate that the effects of
as a frequency multiplexer which subsequently feeds energgonlinearity in the thermal-wave behavior of solids may be
into the linear substrate at the fundamental frequency and aflarticularly stronger than the weight of their thermal masses,
its harmonics, with efficiency dependent on the magnitudess indicated in Fig. 3.
of §; and/oré,. This is very different from imparting all the
incident power just into the dc temperature and the fundar/. CONCLUSIONS
mental thermal-wave response of a single layered linear solid
and is similar to mechanisms driving other nonlinear fields,
e.g., acousto-optic effectvlathematically from Eq. (7),
To(r,t) can never be equal td,(r)e'“ only, unless
Too(r)=Tyy(r)=...=0; but these terms arise fromd, 5,
#0 and putting them equal to zero without puttifg= 5,

A three-dimensional theoretical model of the photother-
mal response in a solid layer with nonlinear thermophysical
properties(thermal conductivity and specific he¢dtas been
presented. The solid layer was assumed to lie on a semi-
infinite backing with linear thermophysical properties. It was
=0 results in inconsistency. shown that the photothermal boundary-value problem is

Based on this argument, it is easy to understand that i§quivalent to the superposition of an infinite get of bqundary—
order to eliminate all substrate harmonics one must sef@lué problems, each problem being associated with a par-
8,=8,=0, otherwise conservation of incident flux is vio- ticular harmo_mc of.the incident optical radla}tlon modulation
lated. Under these conditions E&J) then reduces to frequencyw, including the dc temperature rise gnd the furj-

damental response at The theory used a stepwise approxi-

T11(p,0)=H(p.0). (67)  mation to the exact solution, akin to the Born approximation

] ) ] ] in scattering field theory, and the fundamental response was
Now, letting L=0 in Eq. (37) after some manipulation we pighlighted as the experimentally relevant signal channel.
obtain Expressions for the fundamental thermal-wave field were de-
rived and the special cases of either conductivity or specific
_ (68)  heat nonlinearities were studied. The role of the nonlinear
0 IWHiola, layer as a thermal-wave frequency multiplexing medium
even in the limit of very thin overlayers has been investi-
; : . . . gated. Preliminary experimental results obtained using the
valid for a single linear layer with thermal properties equal toptomodulated thermoreflectance technique were presented
those of the substraté), as expected. as validation of the nonlinear theory, and the nonlinear pa-

Physically the nonzero nonlinear constants of a thin UP"rameters, was calculated for a thin tungsten layer that ex-
per layer,5; and &,, are responsible for the dependence ofpipiiaq a strong nonlinear behavior.

the two thermophysical paramete®{T) and k(T) on the
temperaturancrementacross the thickness of the thin film,
Egs. (3@ and (3b). It is thus possible for a portion of the
incident thermal power to be stored in the nonlinear compo-  One of the authorgA.M.) wishes to acknowledge the
nents of these properties without raising the incremental tempartial support of the Natural Sciences and Engineering Re-
perature of the film. Sinced;,d,—0 is tantamount to search Council of CanaddNSERQ through a research
T.(r,t)—0 in Egs.(38 and (3b), the existence of nonzero grant.
nonlinear constants artificially sustains a nonzero virtual
temperature increment across the. film thickness, even WhemSee, for example, A. Rosencwai@hotoacoustics and Photoacoustic
L=0. Therefore, the more physically correct manner in SpectroscopyWiley, New York, 1980; Principles and Perspectives of
which to approach the—0 case is to require independently Photot_hermal and Photoacoustic Phenomemwdlited by A. Mandelis
that 8,= 8,=0 for consistency. This condition annuls the ,(E!sevier, New York, 1992 Vol. 1. . . .

. . ) . Photoacoustic and Thermal Wave Phenomena in Semiconduettited
storing of energy in the nonImea_r thermophysical modes of 1y A mandelis(North-Holland, New York, 1987
the upper layer and fully erases its “memory” whéer=0. 3J. Opsal, A. Rosencwaig, and D. Willenborg, Appl. (g2, 3169(1983.

)
LoW? (= Jo(ph)e MW7 A\d\
HlO(p!O)z k2 f

This equation for a linear substrate is identical to E&f)
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