JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 3 1 AUGUST 2001

Methods for surface roughness elimination from thermal-wave frequency
scans in thermally inhomogeneous solids
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Two approaches for eliminating surface roughness in the thermal-wave frequency response of
inhomogeneous solids are developed. The first approach is based on the theoretical formulation of
roughness as an effective homogeneous overlayer and is adequate for eliminating low roughness
levels from experimental data. The second approach models roughness as random spatial white
noise resulting in a linear superposition of logarithmic-Gaussian distributions representing
roughness scales in the spatial frequency spectrum and in the modulation frequency domain. Two
scales of roughness on the surface of hardened AISI 8620 steel with the same hardness depth
profiles are found and the experimental data are reconstructed to retrieve similar inhomogeneous
thermal diffusivity depth profiles. €001 American Institute of Physics.
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I. INTRODUCTION In photothermal signals roughness appears at high fre-
guencies, manifesting itself as a broad peak in the ptaas®
Modeling roughness is a nontrivial problem. In most possibly in the amplitudedata, affecting the signal well be-
photothermal applications, the surface of the sample is polyond the roughness depth and making it necessary to account
ished so that roughness effects can be neglected. Besides fits. The above methods concentrated on modeling and un-
own inherent merit in revealing underlying structures, aderstanding heat diffusion through surface roughness of ho-
method of “eliminating” roughness mathematically can alsomogeneous solids. The purpose of this work is not only a
be advantageous for practical applications. Roughness egeneralization in the form of modeling roughness in inhomo-
fects on the photothermal signal were reported as early a@eneous solids, but also to eliminate the component of the
1986—87 by Beiret al! Those authors have modeled rough- signal associated with it, so that the underlying thermophysi-
ness as a three_|ayer mode| and have found that the roug}al profileS of the inVeStigated material can be obtained. Two
surface has a low thermal effusivity, the intermediate porougiPProaches of modeling roughness are presented. The first
layer has an increased thermal effusivity and, finally, thePProach treats roughness as a homogeneous finite layer over
bulk has the highest thermal effusivity. Thermal diffusion @ Semi-infinite inhomogeneous layer. With this method the

through the random distribution of spatial roughness can binomogeneous layer is reconstructed beyond the roughness

modeled using fractal analysis in the micrometer or submiMéan depth. With a low-level roughness, the results are sat-

crometer scale. Osiandet al? studied the influence of a isfactory but this theoretical model, however, proves to be

random sample structure on the transport of heat using thtéJO simplistic. As the spatial dimensions of roughness in-

concept of fractals as introduced into the thermal-wave ﬁelacc;et:(je(/v;[tr;\etrfzee:frpeiltgv(i‘vriuspr?r?::rslfsrr;xligggirrqesfarr?r?;?irfg)n':ﬁlel-
by Alexander and Orbach in 1982These authors applied ’ 9 9

. . . low-frequency range, potentially resulting in the reconstruc-
the cqncept of the fr_acton, or spectral d|men5|onf, t_o descnbﬁon ofqerrongous gthe?mal diffuysivity pr(g‘iles. Therefore, a
Fj|ﬁu5|on processes in fractals. Boccara and Foutriigther second approach is introduced, based on regarding roughness
introduced fractals on randomly structured samples 1o Me3s a random process in the experimental data. The effects of
sure time dependence of thermal diffusion that deviates a

nhomogeneity and roughness can then be deconvoluted
preciably from Euclidean behavior. Vandembroucq angf g y g

5 developed bodol based ; | rom the total signal. The method is implemented to recon-
Roux’ developed a methodology based on conformal mapgict thermal-diffusivity depth profiles from two identically
pings to account for the random geometry of the surface t

: = : . Qarburized steel samples with different roughness scales on
which boundary conditions are applied. Both harmdmaied their surfaces.
biharmoni€ problems were treated and the authors discussed

the possibility of using the method in diffusion and wave

propagation problems. Vandembroucq and Boccapplied !l MATERIALS AND RESULTS

the concept of conformal mapping in obtaining the local tem- Thermal-wave depth profilometry is most conveniently
perature field of a rough surface heated with a modulatedie,t with theoretically as a one-dimensional problem and
focused laser beam. therefore the experimental setup must have a low lateral spa-
tial resolution. In our experiments we chose to use conven-
dElectronic mail: mandelis@mie.toronto.ca tional frequency-domain laser infrared photothermal radiom-
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the evaluation lengthRz is the average of the successive
FIG. 1. Frequency-domain photothermal radiometric instrumentation forvalues Othi (Rtof theith sampling lengthcalculated over
roughness elimination and thermal-wave depth profilometry. the evaluation length. The measurements were repeated at
three independent positions on the surface of the sample, and
the final value of each surface parameter was obtained as an
etry (PTR) as the thermal-wave probe technique. To maintairaverage of the three measurements. The average of the three
the one-dimensional heat diffusion formalism assumed in thendependentRz values avg(Rz was used as the mean
theory, the pump beam spot size was made much larger thaoughness thicknesd. This parameter was chosen as the
the maximum profile depth. In addition to the spotsize an-effective thickness that generates the photothermal signal
other important consideration is the beam shape. Typicahat can be modeled as a homogenous layer on a semi-
TEMggmode laser sources have a Gaussian profile, and whatfinite substrate.
is needed ideally is a top-hat intensity distribution. To alle-  The roughness thicknesd of the 200 and 600 grit
viate these problems a thick diffuser with a lens was placedamples was measured to be 5 and Arh, respectively.
in the path of our beam for broadening it and reducing itsSequential experimental frequency scans in the range of 0.5
Gaussian profile. Three dimensionality effects in the deptiHz—100 kHz were performed on the samples. The experi-
profilometry of steels were, as expected, more pronounced atental surface temperature response on the sample was nor-
low frequencies, typically below 10 Hz. The experimentalmalized by the surface temperature response of a reference
PTR apparatus has been described elsetmre is shown sample(Zr alloy). This gave, for each frequency, an ampli-
in Fig. 1. tude ratio and a phase difference. The normalizing procedure
A major part of this work is centered on the effect of was necessary to correct all instrumental frequency depen-
roughness on reconstructed thermal-diffusivity depth prodencies. Roughness manifests itself most strongly at high
files, since thermal-wave signal frequency responses are irfrequencies and Fig. 3 shows the normalized responses of
fluenced to variable extents by surface roughness. Th&vo homogeneous AlSI 8620 steel samples with 200 and 600
samples used were 1 cm thi¢thermally semi-infinitg, and  grit roughness. The roughest surface shows a peak in the
were cut from the same slab of AISI 8620 steel alloy, whichphase data which affects the signal beyond the expected
is a low carbon stedD.25%Q. The surface roughness of the roughness depth and strongly deviates from the theory of a
samples was controlled with a 200 and 600 grit silicon carhomogeneous sample. The signal response from the smaller
bide (SiC) grinding paper. The mean roughness thickngéss roughness sample is less influenced at low frequencies where
of each sample was measured independently with a surfonit resembles the flat behavior for a normalized homogeneous
eter (Series 400; Precision Devices, Milan, Miith a 0.01  sample.
um total system resolution. The surface profile parameters The two AISI 8620 samples with 200 and 600 grit
are explained below and are illustrated in Fig. 2. The evaluroughness were then carburized at 0.02 in. depth. Carburiz-
ation lengthL (the length over which the surface parametersing is the process by which the carbon concentration of a
are evaluatedl =10 mm) for each measurement consisted of ferrous alloy is increased by diffusion. In this heat treatment,
five sampling lengths. The sampling lendtis defined as the pearlite formation is accomplished by carbon diffusion. Fig-
nominal spatial wavelength used for separating roughnessre 4 shows the experimental response of the two carburized
and waviness\. Roughness includes the fine&hortest samples. Above 1000 Hz strong effects due to roughness are
wavelength irregularities of a surface and waviness includesobserved. The roughness thickness of the samples after car-
the more widely spacetdonger wavelengthdeviations of a  burization was remeasured with the surfometer and was
surface from its nominal shape. For each measurement tifeund to be approximately the same as before, within a tol-
following three surface parameters were documentetl:  erance of+0.1 um. Thus, any change from the untreated
roughness averadea; (2) maximum height of the profil&t high frequency signalFig. 3) can be attributed to the alter-
and(3) average maximum height of the profiRz Rais the  ation of sample thermal properties due to carburizing, but not

Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 90, No. 3, 1 August 2001 L. Nicolaides and A. Mandelis 1257

untreated steel 0.02" carburized steel

3.0 1.3
—°— 600 grit roughness

| —o— 600 grit roughness

25 Theory | . J
£ —— i 12 —o— rit roughness f
207 200 grit roughness = 200 grit roug e
gz.o """ s,
= RRES
= 3
E1st =
< 5: 10|
10 £ 2-8252 ::::::::::::’ﬁ‘:"
a1 Il 1 1 1 0o b
-1 0 1 2 3 4 5 :
20 1 1 1 1 1 1
- 0 1 2 3 4 5
15 | 61
L N

Phase [deg]
(9]
T

Phase [deg]
N
T

10 PO B | U GRS S | -6 [
-1 0 1 2 3 4 5 \b
log(Frequency [Hz]) Sr \
FIG. 3. Normalized experimental data for untreated samples of 600 grit '10_1 ' (l) ' ; ; ‘ ; ' ; ;
(circle) and 200 grit(square roughness. for clarity only 50% of the experi- log(Frequency [Hz])
mental data points are shown. Also shown are the theoretical forward fits of
600 grit (solid) and 200 grit(dashedi roughness. FIG. 4. Normalized experimental data of 0.02 in. carburized steel for 600

grit (circle) and 200 grit(square roughness. For clarity only 50% of the
experimental data points are shown.

to geometric changes of roughness. The full-width at half-
maximum of the high frequency response peak was narrower

than that of the untreated sample, indicating a change in the

properties of the roughness layer. The maximum phase re\/_erted from the frequency dependence of the surface tem-
sponse at high frequency for the untreated 200 grit I5°° perature oscillation amplitude and phase information. Before

(Fig. 3 whereas after carburization the same sample has tge inverse problem can be solved, the forward problem must
maximum phase of-4° (Fig. 4). Through fitting to a theo- be developed. Our earlier depth profilometry model, built on
retical formulation of an upper homogeneous layer for syrihe thermal harmonic oscillator concépteated the thermal-

face roughness, the surface thermal effusivity of thesdvave response of materials with a smoothed surface and did

samples was found to increadewer phase maximujrafter not account for roughness. In this work, the forward depth
carburizing. Furthermore, both thermal diffusivity and con-p_mf'lomet”? prob:er? 'Sh baseld on ffp:m;ﬂatmg ha one-
ductivity values of the carburized layer increased. To furthedimensional model of a thermal-wave field from a homoge-

investigate the effects of carburizing on the surface, thd!€0US 1ayer on top of a semi-infinite inhomogeneous under-

samples were studied with a scanning electron microscop@€l- The inhomogeneous layer is treated via a

(SEM). In Fig. 5, SEM pictures at X300 magnification of the generalization Of_ the Hamilton—Jacobi formalfstnfrom
surfacegtop view) are shown for the untreatee) 600 grit, classical mechanics. The upper homogeneous layer has an
(b) 200 grit; and the carburizett) 600 grit, (d) 200 grit effective adjustable thickness and thermophysical properties
samples. The SEM pictures are qualitatively consistent witfyvhich are introduced into the model so as to account for the

the surfometer results and it is concluded that the geometrfg)(pe”ment"’II frequency response in the presence of rough-

cal distribution of roughness has not been significantly al—nl?fSS onfthe sra]lmplehe “underlazer’). In t”h's manne: the
tered during carburization. Nevertheless, a degree of later&@€CtS Of roughness can be mathematically deconvoluted out

fusion of the fiber-like surface structures is apparent in Figs®! the total response to recover the true thermal inhomoge-

5(c) and §d) compared to their untreated counterparts, Figs"€lties of the underlying sample. _ _
5(a) and 5b), respectively. The regions s_urroundlng _the mvesngated mhor_noge-
neous layer X>0) include an air—solid homogeneous inter-

face x=—d) and a solid—backing interfacex€£0), as

shown in Fig. 6. The thermal-wave fields in each region, air

(a), roughness layefl) and investigated inhomogeneous un-
Thermal-wave depth profilometry is a one-dimensionalderlayer (2) are solutions to the heat conduction equation

inverse problem where the thermal diffusivity profile is in- with a harmonic surface sourcext —d

IIl. THERMAL HARMONIC OSCILLATOR: TWO-LAYER
APPROACH
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) o)
7i(0)= (140 V5

and «; is the thermal diffusivity of thgth medium (:1,2).
Equation (3) is the result of treating the inhomogeneous-
layer thermal-wave field in terms of the Hamilton—Jacobi
formulation/ This equation is the Wentzel-Kramers—
Brillioun—Jeffreys (WKBJ) approximation of the exact
solution® in order to make matters more tractable computa-
tionally. The WKBJ approximation is obtained by setting the
derivative of the thermal effusivity of the inhomogeneous
layer equal to zero, i.e.dey,(x)/dx=0, where e,(x)
=Vka(X)po(X)Cca(X). Here ky(x) is the depth-dependent
thermal conductivity,p,(x) is the depth-dependent density,
and c,(x) is the depth-dependent specific heat at constant
pressure. This assumption amounts to a requirement for non-
steep local variations of the effusivity. This can always be
easily satisfied, provided the thermal-wave field is evaluated
at small enough depth slices by adjusting the modulation
frequency increments appropriately, so that local steep diffu-
sivity gradients may be offsétlt has also been shown that
this approximation does not introduce error greater than a
few percent in the calculation of the thermal diffusivity depth
profile® ConstantD, B, andC depend on the boundary and
limiting conditions of the systenC, andC, are integration
constants and the expones(x), is defined a$

12

dy, (4

w

2a,(y)

where a,(y) is the depth-dependent thermal diffusivity dis-
tribution of the solid. Solving for the constants in E¢f)—
(3) by using the boundary conditions of temperature and

X X
FIG. 5. Surface SEM pictures; magnificatiorB00; (a) untreated 600 grit Ha(x) = fo a(y,w)dy= fo (1+1i)
roughness(b) untreated 200 grit roughness) carburized 600 grit rough-
ness;(d) carburized 200 grit roughness.

T.(X,0)=De”0**d:  y<_d=x+d=<0, (1)  heat-flux continuity, the temperature distribution in lay2r
becomes

Ti(X,w)=Be’*+Ce 7%; —d=x=<0, (2

L 0= QoVRy(X) [e-Hxx)_e—ZHz(oo)—Hz(x)
To(X,0)= m[cleHz(x)—Cze‘HZ(x)]; O=<x=oo, 2 ka(0)2(0)| 1— e 2H2(=)

2

® y b2y(0)e~ 71
Equation(1) is the boundedfinite asx— —«) solution to “20.d|"
1+ Fo)—(1— F 1

the thermal-wave equation for a homogeneous semi-infinite (1+b2(0)F2) —(1—-b2y(0)F5)e
medium and Eq(2) is the solution for a finite homogeneous 5

region. In Egs(1) and(2) oj is the complex wave number, \yhereq, represents the thermal source fluence at the mate-

defined as rial surface[ W/m?] assuming 100% laser power absorption
and
—2H,(=)
air roughness inhomogeneous E :1-}-6—2 54
layer underlayer 2 1— e 2H2(=)’
© 2 ka(0)5(0)
------- 2(V)02
modulated Q200 = Oloo b21(0) = T ko =byo;, (5b)
laser beam e
e,(0)
--------------------- Ry(X)= —— . 5¢
2(X) (%) (50)
-d 0 X Although it will be seen that the results are valid for

FIG. 6. Theoretical solid layer structurét) roughness layer;2) inhomo- arbitrary thermal diffusivity depth profiles, for this analysis

geneous underlayer, the thermal diffusivity of which is to be reconstructeJhe_ fo_IIowing simple Simu'_ated funCtion_al de_p_endence of the
depth profilometrically. solid inhomogeneous region thermal diffusivity is assufned
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1+Ae~9X\2 where
az(X) = ag(X) = ag| — 77— (6)
G J—1I<a20) 100
such thatay() = a.., a4(0)=ay and “=2q "\ | apn (100
o and
A=/—-1 o
e _ (1+Db20) (1= o0 =71 (100
The parameteq is a constant that determines the rate of (1+ ble)(l—yzmlefz"ld)'

thermal diffusivity decay ifag> a,, or growth if ap<a.. .
Using Eq.(6), the resulting temperature, for the inhomoge-Note that the value ofd cannot become unboundedi (

neous layer2) in Eq. (5), simplifies to —»). T(0,w) is the value of the thermal-wave field in the
inhomogeneous underlayer at the interface with the effective
000 = QoVR2(x) byy(0)e 724~ H20) upper(roughneskslayer. Equatior(10a provides a means for
H(X)=

Ky(0)05(0) (1+byy(0))— (1—byy(0))e 2728 studying the frequency behavior of the thermal-wave field at
the surface, in terms of the integrated effect of an underlying
Qo‘/Rz(X) e~ 01— Ha(%) continuously inhomogeneous semi-infinite layer on a homo-
a7 (b0 (1 200 ) geneols Upper ayer 1 sleary a conventent
(7) approximation, the validity and limitations of which will be-
come clear below.

where
¥21(0)= y201= (1= b1/ (14 D3gy). (78

The superposition principles implemented in produc- . NUMERICAL METHOD AND THERMAL DIFFUSIVITY
ing a complete expression for the thermal-wave field in arRECONSTRUCTIONS

inhomogeneous solid bounded by the regions shown in Fig. _ _ _

6. According to this principle, any complicated linear ~ Experimentally the amplitude and phase corresponding
boundary-value problem can have a solution written as & the surface temperature distributidi(—d,w) are ob-
linear combination of solutions to a number of simplerta@ined. The theoretical values of the data pair are calculated
boundary value problems. In the case of thermal waves, thy

full field expression in layef2) can be expressed as T(—d,0)=|M(w)|e24), (11)

T(x,0)=aTa(X,0)+bTo(x,0) +cT.(x,0), ®)  \WhereM(w) is the thermal-wave amplitude antd(w) is
where T, and T, are the thermal-wave distributions with the phase lag at an angular frequenrgyAt each frequency
constant thermal diffusivitieay anda., in layer(2), respec- the amplitude and phase are used to calcutggeand g,

tively. They are given by introduced in Eq.(6).° a,, is needed as input and is the
- o (assumed knowrbulk thermal diffusivity. Although a diffu-
To(X, )= Qoe (93 sivity profile of the form of Eq.(6) is assumed, the actual
' kyo1(1+ Do) (1— ya0e~2719) profile is updated at each frequency by recalculating the pa-
rametersag ;) andg; is a multidimensional secant method,
T, (%)= Qpe~ 7197 72X (9b) known as Broyden’s methddand is based on minimizing

Ky (14 by ) (1— ypoqe 2729) ' the difference between the experimental and theoretical data
for amplitude and phase as follows:

where b,p; and y,; are as defined in Eqg5b) and (7a),

respectivelyb,..; and y,..; are defined similarly by replac- IMexl ))| = [Mn( ;)| =0, (129

ing 0 with « in Egs.(5b) and(7a), respectively. _

Constantsa, b, andc are determined by the three limit- |ADef )| = [ADu(wy)[=0. (12h
ing case requirements of the problem, namely at large disthe calculation of the depth parameseris performed based
tancex—o, T(X,w)—T.(X,w), at very high frequency on the fact that as modulation frequency decreases the
—oo, T(0,0)—Ty(0,w), and at very low frequencyw thermal-wave probing depth increases. Starting at the highest
—0, T(0,w)—T.(0,w). Finally, substituting all the thus angular frequency, the shortest depth is the shortest ther-
determined constants in E(8) and calculating the field at mal diffusion length, i.e.,
the front surfacex= —d yields

2(10
eO']_d Xo= — (13)
o

(1+ ypp.0 219

Ti(—d,0)=T(0,w)

1+ v201 .
The next (lower) frequency, w;,, corresponds to an in-
Qo |1+ yz0e 22 creased thermal-wave depth
B 2k10'1 1_,y201e—2(r1d

26¥j 2aJ
Xj+1:Xj + - -, (14)
X[1+(Z—1)e 72==], (109 41 1y
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which is used to calculate; ; in Eqg. (6). Once thew;, ; is %0 untreated steel
calculated, the method returns to calculate in recursive itera-
tion the increased thermal-wave depth as

[2ai 41 [2¢;
Xi 1=X;+ = —. 15
j+1 ] (1)]'+1 (1)1 ( )

In reconstructing depth profiles from data it is important
to first find a reliable set of initial values far, andq. This
may be achieved by finding the best forward theoretical fit to
the first few end pointshigh frequency using a single pro-
file of the form of Eq.(6).° With knowledge of the bulk
thermal diffusivity and the thickness of the surface roughness 5
(600 and 200 grjtof the untreated AlSI 8620 steel samples, S00 1000 1500 2000 2500 3000
a reconstruction can be performed. The bulk thermal diffu- Depth [um]
sivity was measured independently and was found tabe g, 7. Reconstruction of experimental 600 gfitircle) and 200 grit
=12.5<10"°% m?/s. The inversion is based on reconstruct-(squarg untreated samples.
ing from the high frequency end by fitting the, at the
interface with the geometry shown in Fig. 6. With this
method the effect of surface roughness is greatly reducetivity of surface structures, Figs.(» and 5d). This would
from the system. For the 600 grit roughness sample the inpuend to enhance thermal diffusion across previously isolated
parameters wererg=4.5x10"°% m?/s, ky=10.1 W/mK (g4  “islands” (fiber bundles The decrease ina;,kq) values of
=4.67<10° Ws"Ym?K) and roughness thicknes$=2.5 thed=2.5 mm roughness layer is probably an artifact of the
pum. Here,ay andky stand for the mean thermal diffusivity decreased substrate near-surface diffusivity following carbur-
and conductivity of the rough layer, respectively. For the 20Gzation (see Fig. 1B coupled with the greater contribution of
grit roughness sample the input parameters wege-2.2  substrate thermophysical properties to the mean thermal dif-
x10°% m?/s, ky=4.6 W/mK (e;=3.1x10° WsY¥m?K)  fusion length of the rough layer in the 600 grit sample. Over-
and roughness thickness=5 um. It is observed that as all the forward theoretical fit is in excellent agreement with
roughness increases the effective thermal effusivity of thehe experimental data over a wide frequency range. Never-
surface layer X< —d) decreases. Qualitatively, this can be theless, small discrepancies exist at the high frequency end,
understood phenomenologically by considering that roughwhere roughness is more difficult to model as a uniform
ness consists ideally of a series of pyramittal conical or  layer. A reconstruction for the untreated AISI 8620 samples
triangular fin-like structures of decreasing spatial extentwith the method outlined above was performed. The experi-
away from the baselin¥.For a given modulation frequency, mental data were numerically inverted to obtain the corre-
the laser-generated thermal wave penetrates deeper into thponding thermal diffusivity profiles, as shown in Fig. 7. The
continuous substrate in the case of the smoother su(@® rough layer, which was assumed to be homogeneous with
grit roughnesp than in the case of the rougher surface.low thermal parameters, was theoretically eliminated. Thus,
Therefore, the contribution of the better thermophysicalthe reconstruction shown in Fig. 7 commences below the
properties of the substrate to the depth-weighed mean valuesugh layer. It is seen that the reconstruction based on the
diffusivity and conductivity in the former case is proportion- uniform overlayer concept is unable to fully eliminate sur-
ately more substantial than in the latter case. This results iface roughness. As a result, the thermophysical properties of
the higher overall mean thermal properties of the smoothethe underlayer exhibit nonuniformity artifacts down to about
surface measured through photothermal radiometry. In botBO and 600um for the 600 and 200 grit roughness, respec-
cases the mean thermal diffusion lengths around the peaks tifely. Below these depths the depth profile reconstruction is
the maximum roughness effects in Fig. 3 were approximateladequate: The thermal diffusivity of the bulk material re-
12 um. This penetration depth is consistent with a strongmains flat and approaches the independently measured value
thermal communication with, and thermophysical contribu-of a.,,=12.5x10 ¢ m?/s for both samples. Besides the ap-
tion from, the substrate for both roughness thicknesses. Theroximate modeling of roughness as a homogeneous layer,
forward theoretical fits to the untreated experimental datdhe near-surface profile can also be attributed to the violation
that assume an optimally adjusted homogeneous layer ona the WKBJ approximation, Eq(3), at high frequencies,
semi-infinite homogeneous substrétepresented by the un- where much fineAf increments may be required in order to
treated steglare shown in Fig. 3. Similar forward theoretical satisfy the nonsteep local thermal effusivity variation condi-
fits were applied to the high-frequency peaks of the carburtion for the validity of that equation. For low-roughness ma-
ized steel, Fig. 4. The resulting thermophysical values of theerials, the near-surface inadequacy of the homogeneous
effective roughness layer were: For the 600 grit roughnesseverlayer model of Fig. 7 can be neglected, since hardness
sample ay=2.3x 10 ® m?/s andky=9.8 W/mK. For the measurements are usually of interest deeper thanré0In
200 grit sample, a4=2.5x10 ¢ m%s and ky=10.25 any case, such a reconstruction can serve as a guide to de-
W/mK. Comparison of thed=5 wm roughness, 200 grit termine the extent to which roughness influences a specific
samples, before and after carburization shows an increase profile. As roughness size increases, the reconstruction be-
the (aq,ky) values, perhaps the result of the lateral conneceomes less reliable. There are two reasons for Histhe

——°— 600 grit roughness
% —— 200 grit roughness

Thermal diffusivity X 10° [mzls]
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forward model is inadequate at the high-end frequency spec Modeling roughness (d=1.6pum)
trum where the nonuniformityrandomnessof roughness is 1.75
more evident; and2) the inverse problem becomes more ill

posed, since more variablésffective roughness propertjes 2 23
are introduced. In conclusion, thermal diffusivity reconstruc- _ 150 [ —v—4

tions under a uniform overlayer assumption based on Eq.g — 5=1/4 (amplitude)
(16) are quite straightforward and simple enough, but cang
only be satisfactory for materials with thin roughness over- £ 125 -
layers.

—0— 4 1

Ampl

V. THEORETICAL MODEL OF ROUGHNESS: 100 =
LOGARITHMIC-GAUSSIAN MODEL APPROACH T P TTIN BT BRI AT OTIN ATy B
1 10 100 1000 10000 100000

A. Roughness elimination method

The foregoing theoretical model of treating roughness as :
a homogeneous layer over an inhomogeneous substrate, a s |-
beit quite successful with thin roughness layers, it is, how- i
ever, too simplistic. Using a flahomogeneoysunderlayer it
was seen, Fig. 7, that as the ley#licknes$ of roughness
increases the thermal-wave spectrum cannot be adequate
interpreted by an effective uniform overlayer, resulting in an 2 |
erroneous thermal diffusivity profile. In a frequency domain -
method both roughness and underlayer inhomogeneities ar O R Teeeeessssess 125
observed throughout the frequency spectrum. An approact . 10 100 1000 10000 100000
based on linear superposition of several uniform overldyers
for deconvolving roughness inhomogeneity from that of the
substrate might not be generally valid, since the roughnes$G. 8. Simulation of roughness elimination method with Arfi roughness
generated frequency response is often nonlinear. Therefo;@ic"”eﬁs' Curve lsquary: inhomogeneous with roughness; curve 2

. . ircle): inhomogeneous with no roughness; curvaipward trianglg ho-

an approach IS adOpted and tested for various levels ogeneous with roughness; curvddbwnward trianglg effective homo-
roughness and substrate inhomogeneity. The idea behind thisneous with roughness; curve($olid): normalized inhomogeneous with
roughness elimination method is based on recognizing digro roughness.
tinct features(phase maximain the frequency spectrum.
Since roughness is associated with the surface of a sample, .
the eﬁects? are strongest at high frequencies, whereas the IIjor\PvatCh the high-frequency end of curve 1. The parameters

frequency end is mostly associated with substrate inhomog U—S?d o O.btam case A’. curves 1-4 are shown in Taple g
sing a simple normalization procedure of the total field,

neities. Again, the objective of the method is to deconvolve :

out the roughness spectrum and reveal the desirable underl(flgrveS 1 and 4 yield

ing thermal diffusivity depth profildhomogeneous or inho-

mogeneous TABLE I. Thermal properties of simulations for cases A, B, and C.
To demonstrate how roughness is eliminated from the

total field, three simulations of increasing roughness with the  Thermal properties

same inhomogeneous profildeveloped in the theoretical

model of Sec. Il] were performed, with the upper layer be-

Phase [deg]

Frequency [Hz}]

Case A CaseB CaseC

d=1.6 umd=7 um d=13 um
@, =6.15x107% m?/s

ing rough. Case A is illustrated in Fig. 8 for a roughness curve Ild 0‘014-0><103(T6 mls

thicknessd= 1.6 um. Curve 1 shows the theoretical response ot field: g=2x10"m
S L . inhomogeneous ag=2.1X10"° m‘/s

of a semi-infiniteinhomogeneousample with roughness, the with roughness ky=4.8 W/mK

latter modeled as an effectiiiomogeneousipper layer.

. . — —6 2
Curve 2 represents the theoretical response of the same semi- @.=6.15¢10 * m'/s

o . curve 2 p=4.0<10"% m?/s
infinite inhomogeneousample without roughness. Curve 3 inhomogeneous q=2x10° m!
is a simulatedhomogeneousayer with thermal diffusivity with no roughness d=0 um

value equal to that of the back surface of the underlayer
considered in curve 2 with roughness. The objective of the
method is to retrieve curve 2 from curve 1 by means of
eliminating roughness. Curve 4 is a theoretical fit to the high-
frequency end of curve (the region associated with rough-
ness, using the theory for a semi-infinite homogeneous sub-
strate with roughness. The input parameters of curve 4 are
the same as the ones used for curve 3, except that an effec-
tive thermal conductivity is used for the roughness layer ta

curve 3:
homogeneous
with roughness

curve 4:
homogeneous with
effective roughness

@,=6.15<10"% m?/s

@y=6.15x10"% m?/s

ag=2.1X10"% m?s
kq=4.8 W/mK

@,=6.15x107% m?/s

@y=6.15x10"% m?/s

ag=2.1x10"% m?/s
kd(eff)=5'96 W/mK
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Modeling roughness (d=13pm) curve 4 for case C was constructed using the same effective
properties as in case A with the only difference being the

175 ___o_; roughness thicknesd. The thermophysical values used in
| ——3 case C are the same as in the other cases. For this case, the
—v—4 deviations of curve 5 from the theoretical value of curve 2

. = 5=1/4 (amplitude)

-
o
=}

are more pronounced as compared to cases A and B, but are
L TR 4 still within very satisfactory boundaries. Therefore, the use
of a reference solid with small enough roughness with dis-
- SSeeseseesseosessees 2,5 tinct phase maxima for inhomogeneity and roughness can
_ assist in retrieving the inhomogeneity of a rougher sample
100 | ooceRueueRd with no separation between roughness and inhomogeneity. In
R ST RO U RN R conclusion, the foregoing numerical examples show that it is
1 10 100 1000 10000 100000 possible to eliminate surface roughness from thermal-wave
— 3 spectra for a wide range of roughness thicknesses.

Amplitude [a.u]
B
T

r3 B. Logarithmic-Gaussian roughness modeling

A general expression not based on knowledge of the
thermophysical properties of roughness is now sought, so as
to yield an appropriate roughness model. This model can
then be used to eliminate roughness from the total field using
the method of Sec. V A, without having to use uniform over-

25 & layer models and the concomitant limitations. By invoking
I T e the concept that random roughness is equivalent to a Gauss-

Phase [deg]
FS
I

obound covudd el ian distribution in the spatial depth coordinate, i.e., it corre-
1 10 100 1000 10000 100000 sponds to spatial white noise, the effects of inhomogeneity
Frequency [Hz] and roughness can be deconvoluted. For this reason a

FIG. 9. Simulation of roughness elimination method with 48 roughness Iogarlthmlc-Gaus_S|an noise pro_flle_ IS _fltted to the effective
thickness. Curve I(squarg inhomogeneous with roughness; curve 2 frequency-domain roughness distribution based on the theo-
(circle): inhomogeneous with no roughness; curveupward triangle ho-  retically expected Gaussian-to-Gaussian Fourier transforma-
mogeneous with roughness; curvédbwnward trianglg effective homo- i hetween the spatial coordinate and the spatial frequency,
geneous with roughness; curve($olid): normalized inhomogeneous with . . .
no roughness. which, in turn, depgndg on the quulatlon frequency through
the local thermal diffusion coefficient. The roughness spatial
Gaussian profile is thus mapped as a Gaussian distribution in
: the log-frequency coordinate. By extension, a linear superpo-
Curve 1 |Mgpafw)|e'®Protae) 1€ log-req y - by exte PErpo
— ‘ (16) sition of several such Gaussian functions can be conceived if
Curve 4 |M ¢ w)|e'2Peil®) there are multiple characteristic roughness scales associated

which is plotted as curve 5. Comparing the result with thewith a particular rough surface as pictorially illustrated in

original inhomogeneousesponse with no roughnegsurve
2), excellent agreement is evident. Therefore, it is se
that the result of the mathematical operatigimhomoge-
neous layetroughnesg (homogeneous layeiroughness
=inhomogeneous layer, eliminates roughness while preserv- > N A
ing the effects of the thermophysical inhomogeneity. Here Meii( wg)=Mo+ \/— 2 —
stands for the ratioing or subtraction operation associated ™ =2 log(Wy;)
with the amplitude or phase normalization of Eﬂ]G) ><e*[(l‘)g(“’lo)*|09(w1ci))2/(|°g(wli))]
The method was further tested successfully with a higher '
scale of roughnesgase B in Table)l with d=7 um. Here, > N
the amplitude and phase exhibit characteristic maxima as in  A®4(wg) =ADPy+ \/— 2
case A. The thermophysical values for each curve are the m (=2 log(Wai)
same as those of case A. A more complicated situation in- @ [(10g(w20) ~Iog(w5ci)) 2/ (l0g(Wa) ] (19)
volving a thicker roughness layer witth=13 um, case C,
was then examined. In this case the spectral features due where logW) is the e ? width of the spatial-frequency
roughness almost fully overlap those due to underlayer inhologarithmic-Gaussian distributiomy is the area under the
mogeneities. Neither the amplitude nor the phase shows arfine shape, an@, is the angular frequency at line center of
characteristic maxima from which roughness alone can bée Gaussian functiom is the maximum number of charac-
inferred (Fig. 9). The extrema in Fig. 9 are due to roughnessteristic roughness lengths anticipated. The summation of
and inhomogeneities together. The results of prior simulaGaussians is greater than orid> 1) so as to account for the
tions (cases A and Bshowed that the same inhomogeneitiesasymmetry of the field. Physically this denotes that there is
affect the frequency spectrum in a similar manner. Thusno possibility of a single roughness scale at least for our

Tinas)(0,0) =

Fig. 2 for the case of two such scales. The superposition

eI%;patial—frequency field thus created is nonsymmetric and the
expressions for amplitude and phase, respectively, are as fol-
lows:

17

Ay
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TABLE Il. Gaussian fit parameters to the untreated and 0.02 in. carburized

3.0 ‘ 200 grit roughness samples,; represent characteristic angular frequencies
L — % Experimental data . of roughness scalé=1,2,3.
— Gaussian Fit (sum of Levels 1 and 2) _¥
25F---— Level 1: Gaussian Fit .
= R Level 2: Gaussian Fit Un.treated Ca!’burlzed
® G . 600 grit roughness 200 grit roughness
— | aussian
§ 20 S fit amplitude phase amplitude phase
'E-'-1 sl : M, or Ad, 1 0.11 0.98 0.11
g log(wg1) 4.75 457 4.81 4.96
Y log(W,) 1.53 3.29 0.81 2.28
10 N A 2.36 91.79 0.12 41.86
(@, | ) ) L ! l0g(wes) 4.48 5.26 434 5.81
-1 0 1 2 3 4 log(W,) 2.83 1.45 1.32 3.02
30 A, 2.18 —54.74 0.29 —-82.02
log(wcs) . 3.38 e
20 | log(Ws5) 2.47
: As 0.13
= 10
[} L
=,
o O
§ i Gaussian distributiorisolid line) for the untreated 200 grit
a-tor roughness sample. The individual logarithmic Gaussians as-
20k sociated with each roughness scale are also shown with the
- (b) values documented in Table Il. For this roughness profile it is
-30 b——t—— . ! ; found that there are two characteristic-length parameters

-1 0 1

2

3

(double logarithmic GaussianGiven that the double distri-
bution fit in Fig. 1Ga) requires each amplitude component
FIG. 10. Logarithmic-Gaussian fisolid line) to the roughness spectrum of Y, and Y, to satisfy a Gaussian profile at each frequency,

the untreated 200 grit roughness experimental ¢eqaares Dashed line: ; ; ;
logarithmic-Gaussian fit associated with scale 1 roughness; Dotted Iine":jmd that the algebralc sum of each pair of pOIﬁf§-(Y2)

logarithmic-Gaussian fit associated with scale 2 roughnésandY,: am- 'mUSt be eql*'_al to a fixed numby;-g, det?rmi_ned by the data,
plitude components of the linear Gaussian superposition (. it was empirically found that the combination of components

(Y1,Y5) is unique. Therefore, the two amplitude

_ . characteristic-length parameters are also unique. Similar re-
experiments. Perhaps, the complexity of the roughness layetsts are found with respect to phase, Fig(tl0of the un-

encountered in this work is such that at best they can bgaaieq sample, as well as for the treated sample, Fig. 11.
modeled with two scales as seen in Fighg; andAd are

the amplitude and phase offset, respectively. These offs
values represent the signal val(aturation at which the
roughness will no longer distort the phothermal signal. The  Figure 11 shows the fitted logarithmic-Gaussian distribu-
approximate offset values at low frequenciés<(l Hz) are  tion to the carburized experimental data with 200 grit rough-
“1” for amplitude and “0” for phase. These values represent ness. The profile needed to perform such an operation on
the normalized homogeneous response to the reference Hrese data is a summation of logarithmic Gaussians whose
alloy without roughness. Hence, in order to retrieve andparameters can be found in Table Il. Although the phase
eliminate roughness from the experimental data, aoughness is fitted well to a double logarithmic-Gaussian
logarithmic-Gaussian fit to the high frequency end is maddunction, the amplitude requires a summation of three loga-
based on Eqq.17) and(18). When fitting the summation of rithmic Gaussians to account for the experimental behavior
logarithmic-Gaussians to a given roughness profile eacht the high-frequency end of the spectrum. Figure 12 shows
Gaussian function is associated with a different log-the experimental data for the carburized samples with 600
frequency constant. This is physically reasonable if roughand 200 grit roughness after the elimination of roughness.
ness is viewed as several spatial white-noise level®espite two different roughness profiles, the same inhomo-
(“scales”), each level belonging to a characteristic-length-geneous underlayer experimental response is revealed. The
scale parametén roughness band or styigh random spatial experimental data were then used for thermal diffusivity re-
(“white-noise”) roughness distribution exists about eachconstructions, with the computational methodology devel-
characteristic value belonging to a particular scale. Eacloped in Sec. IV assuming no roughness=0). The recon-
scale of roughness is thus described by a characteristic frstructed depth profiles of the hardened samples exhibited an
guency range, mapped into a particular logarithmic-Gaussiaanticorrelation between thermal diffusivity and hardness,
distribution. The logarithmic-Gaussian distribution is derivedFig. 13, which is consistent with earlier repotts?

from the Central Limit Theorem in cases when random vari-  An important aspect of the reconstruction procedure is
ables in the distribution are not independ€rit. may thus be  the understanding of the physical mechanism for the anticor-
argued that the roughness scales are not truly mutually indeelation between thermal diffusivity and hardness. Current
pendent and are normally distributed, in the Gaussian senseechniques have not separately addressed the effects of dif-
along the logf) axis. Figure 10, illustrates the logarithmic- ferent heat treatments on the thermal diffusivity profile of

log{Frequency [Hz])

€ L .
CE. Application to carburized steels
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13 200 grit roughness
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FIG. 12. Carburized experimental data after elimination of roughness for

FIG. 11. Logarithmic-Gaussian fisolid line) to the roughness spectrum of 0.02 in case depth with 600 gritircles and 200 grit(squaresroughness.

the carburized 200 grit roughness experimental ¢eqaares

steels. Therefore, the exact nature of the anticorrelation bexperimental data convoluted with the roughness spectrum.
tween thermal diffusivity and microhardness has not beefdn this manner, reliable thermal diffusivity reconstructions of
properly understood. A very recent detailed study focused oinhomogeneous underlayers from experimental laser infrared
finding the mechanism of the anticorrelation has beerPhotothermal radiometric data from AISI 8620 steels have
reported:® which concluded that the carbon diffusion profile been achieved. The Gaussian method further provides physi-
during heat treatment controls the thermal diffusivity depthcal insight into the effective thermal structure of rough sur-
profile of carburized AISI 8620 steels. Further depth profilo-faces through their frequency response under the thermal-

metric studies using different grades of steels are currentiy?a@ve probe. It has the advantage over other roughness
under way. methods$ of not requiring specific structural assumptions re-

garding the geometry of the rough layer.
VI. CONCLUSIONS

Two approaches for treating surface roughness on the g,
surface of inhomogeneous solids have been introduced. On 104
approach consists of an effective homogeneous overlaye
with thickness and thermophysical properties adjusted to fit 80 f
high-frequency experimental thermal-wave data. Thiss
method was shown to yield good deconvolution and math-TI,;700 —
ematical elimination of roughness only in the limit of thin &
roughness layers. Another, more broadly valid approachg
models roughness as spatial white noise. This method lead™ eoo
to a linear superposition of Gaussian roughness profile scale
in the log-frequency domaiflogarithmic Gaussian It has
helped establish a procedure for eliminating the effects of a

10.2

100

—

— 600 grit roughness | | 98
AAAAAAAAA 200 grit roughness ’

196

T

194

Thermal Diffusivity X 10° [m%s]

500 ,. .
192

roughness layer of arbitrary thickness from the frequency 5 ' 500 1000 1500
response of the inhomogeneous substrate. The logarithmic Depth [um]

Gaussian ellmlnatlpn Of. roughness proves to be an e.ﬁeC“VEIG. 13. Hardness and thermal diffusivity profile reconstructions for 0.02 in
method for use with wide roughness scales, revealing thgsse depth carburized data with 600 gsolid line) and 200 grit(dashed
“true” thermal-wave frequency response of underlayers fromiine) roughness.
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