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Methods for surface roughness elimination from thermal-wave frequency
scans in thermally inhomogeneous solids

Lena Nicolaides and Andreas Mandelisa)

Photothermal and Optoelectronic Diagnostics Laboratories, Department of Mechanical and Industrial
Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario, M5S 3G8 Canada

@~Received 8 January 2001; accepted for publication 14 May 2001!

Two approaches for eliminating surface roughness in the thermal-wave frequency response of
inhomogeneous solids are developed. The first approach is based on the theoretical formulation of
roughness as an effective homogeneous overlayer and is adequate for eliminating low roughness
levels from experimental data. The second approach models roughness as random spatial white
noise resulting in a linear superposition of logarithmic-Gaussian distributions representing
roughness scales in the spatial frequency spectrum and in the modulation frequency domain. Two
scales of roughness on the surface of hardened AISI 8620 steel with the same hardness depth
profiles are found and the experimental data are reconstructed to retrieve similar inhomogeneous
thermal diffusivity depth profiles. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1383579#
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I. INTRODUCTION

Modeling roughness is a nontrivial problem. In mo
photothermal applications, the surface of the sample is
ished so that roughness effects can be neglected. Besid
own inherent merit in revealing underlying structures,
method of ‘‘eliminating’’ roughness mathematically can al
be advantageous for practical applications. Roughness
fects on the photothermal signal were reported as early
1986–87 by Beinet al.1 Those authors have modeled roug
ness as a three-layer model and have found that the ro
surface has a low thermal effusivity, the intermediate por
layer has an increased thermal effusivity and, finally,
bulk has the highest thermal effusivity. Thermal diffusio
through the random distribution of spatial roughness can
modeled using fractal analysis in the micrometer or sub
crometer scale. Osianderet al.2 studied the influence of a
random sample structure on the transport of heat using
concept of fractals as introduced into the thermal-wave fi
by Alexander and Orbach in 1982.3 These authors applie
the concept of the fracton, or spectral dimension, to desc
diffusion processes in fractals. Boccara and Fournier4 further
introduced fractals on randomly structured samples to m
sure time dependence of thermal diffusion that deviates
preciably from Euclidean behavior. Vandembroucq a
Roux5 developed a methodology based on conformal m
pings to account for the random geometry of the surface
which boundary conditions are applied. Both harmonic5 and
biharmonic5 problems were treated and the authors discus
the possibility of using the method in diffusion and wa
propagation problems. Vandembroucq and Boccara5 applied
the concept of conformal mapping in obtaining the local te
perature field of a rough surface heated with a modula
focused laser beam.

a!Electronic mail: mandelis@mie.toronto.ca
1250021-8979/2001/90(3)/1255/11/$18.00
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In photothermal signals roughness appears at high
quencies, manifesting itself as a broad peak in the phase~and
possibly in the amplitude! data, affecting the signal well be
yond the roughness depth and making it necessary to acc
for. The above methods concentrated on modeling and
derstanding heat diffusion through surface roughness of
mogeneous solids. The purpose of this work is not onl
generalization in the form of modeling roughness in inhom
geneous solids, but also to eliminate the component of
signal associated with it, so that the underlying thermophy
cal profiles of the investigated material can be obtained. T
approaches of modeling roughness are presented. The
approach treats roughness as a homogeneous finite layer
a semi-infinite inhomogeneous layer. With this method
inhomogeneous layer is reconstructed beyond the rough
mean depth. With a low-level roughness, the results are
isfactory but this theoretical model, however, proves to
too simplistic. As the spatial dimensions of roughness
crease, the thermal wave spectrum becomes more com
cated, with the effects of roughness extending farther into
low-frequency range, potentially resulting in the reconstru
tion of erroneous thermal diffusivity profiles. Therefore,
second approach is introduced, based on regarding rough
as a random process in the experimental data. The effec
inhomogeneity and roughness can then be deconvol
from the total signal. The method is implemented to reco
struct thermal-diffusivity depth profiles from two identicall
carburized steel samples with different roughness scale
their surfaces.

II. MATERIALS AND RESULTS

Thermal-wave depth profilometry is most convenien
dealt with theoretically as a one-dimensional problem a
therefore the experimental setup must have a low lateral
tial resolution. In our experiments we chose to use conv
tional frequency-domain laser infrared photothermal radio
5 © 2001 American Institute of Physics
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etry ~PTR! as the thermal-wave probe technique. To maint
the one-dimensional heat diffusion formalism assumed in
theory, the pump beam spot size was made much larger
the maximum profile depth. In addition to the spotsize a
other important consideration is the beam shape. Typ
TEM00-mode laser sources have a Gaussian profile, and w
is needed ideally is a top-hat intensity distribution. To al
viate these problems a thick diffuser with a lens was pla
in the path of our beam for broadening it and reducing
Gaussian profile. Three dimensionality effects in the de
profilometry of steels were, as expected, more pronounce
low frequencies, typically below 10 Hz. The experimen
PTR apparatus has been described elsewhere6 and is shown
in Fig. 1.

A major part of this work is centered on the effect
roughness on reconstructed thermal-diffusivity depth p
files, since thermal-wave signal frequency responses are
fluenced to variable extents by surface roughness.
samples used were 1 cm thick~thermally semi-infinite!, and
were cut from the same slab of AISI 8620 steel alloy, wh
is a low carbon steel~0.25%C!. The surface roughness of th
samples was controlled with a 200 and 600 grit silicon c
bide ~SiC! grinding paper. The mean roughness thicknesd
of each sample was measured independently with a surf
eter ~Series 400; Precision Devices, Milan, MI! with a 0.01
mm total system resolution. The surface profile parame
are explained below and are illustrated in Fig. 2. The eva
ation lengthL ~the length over which the surface paramet
are evaluatedL510 mm! for each measurement consisted
five sampling lengths. The sampling lengthl is defined as the
nominal spatial wavelength used for separating roughn
and wavinessl. Roughness includes the finest~shortest
wavelength! irregularities of a surface and waviness includ
the more widely spaced~longer wavelength! deviations of a
surface from its nominal shape. For each measuremen
following three surface parameters were documented:~ 1!
roughness averageRa; ~2! maximum height of the profileRt;
and~3! average maximum height of the profileRz. Ra is the

FIG. 1. Frequency-domain photothermal radiometric instrumentation
roughness elimination and thermal-wave depth profilometry.
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arithmetic average of the absolute values of the pro
heights over the evaluation length.Rt is the vertical distance
between the highest and lowest points of the profile wit
the evaluation length.Rz is the average of the successiv
values ofRti ~Rt of the ith sampling length! calculated over
the evaluation length. The measurements were repeate
three independent positions on the surface of the sample,
the final value of each surface parameter was obtained a
average of the three measurements. The average of the
independentRz values avg3(Rz) was used as the mea
roughness thicknessd. This parameter was chosen as t
effective thickness that generates the photothermal sig
that can be modeled as a homogenous layer on a s
infinite substrate.

The roughness thicknessd of the 200 and 600 grit
samples was measured to be 5 and 2.5mm, respectively.
Sequential experimental frequency scans in the range of
Hz–100 kHz were performed on the samples. The exp
mental surface temperature response on the sample was
malized by the surface temperature response of a refer
sample~Zr alloy!. This gave, for each frequency, an amp
tude ratio and a phase difference. The normalizing proced
was necessary to correct all instrumental frequency dep
dencies. Roughness manifests itself most strongly at h
frequencies and Fig. 3 shows the normalized response
two homogeneous AISI 8620 steel samples with 200 and
grit roughness. The roughest surface shows a peak in
phase data which affects the signal beyond the expe
roughness depth and strongly deviates from the theory
homogeneous sample. The signal response from the sm
roughness sample is less influenced at low frequencies w
it resembles the flat behavior for a normalized homogene
sample.

The two AISI 8620 samples with 200 and 600 g
roughness were then carburized at 0.02 in. depth. Carbu
ing is the process by which the carbon concentration o
ferrous alloy is increased by diffusion. In this heat treatme
pearlite formation is accomplished by carbon diffusion. F
ure 4 shows the experimental response of the two carbur
samples. Above 1000 Hz strong effects due to roughness
observed. The roughness thickness of the samples after
burization was remeasured with the surfometer and w
found to be approximately the same as before, within a
erance of60.1 mm. Thus, any change from the untreat
high frequency signal~Fig. 3! can be attributed to the alter
ation of sample thermal properties due to carburizing, but

r

FIG. 2. Two levels of roughness centered at characteristic frequencief cl

~high! and f c2 ~low!.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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to geometric changes of roughness. The full-width at h
maximum of the high frequency response peak was narro
than that of the untreated sample, indicating a change in
properties of the roughness layer. The maximum phase
sponse at high frequency for the untreated 200 grit is;17°
~Fig. 3! whereas after carburization the same sample ha
maximum phase of;4° ~Fig. 4!. Through fitting to a theo-
retical formulation of an upper homogeneous layer for s
face roughness, the surface thermal effusivity of th
samples was found to increase~lower phase maximum! after
carburizing. Furthermore, both thermal diffusivity and co
ductivity values of the carburized layer increased. To furt
investigate the effects of carburizing on the surface,
samples were studied with a scanning electron microsc
~SEM!. In Fig. 5, SEM pictures at X300 magnification of th
surfaces~top view! are shown for the untreated~a! 600 grit,
~b! 200 grit; and the carburized~c! 600 grit, ~d! 200 grit
samples. The SEM pictures are qualitatively consistent w
the surfometer results and it is concluded that the geom
cal distribution of roughness has not been significantly
tered during carburization. Nevertheless, a degree of lat
fusion of the fiber-like surface structures is apparent in F
5~c! and 5~d! compared to their untreated counterparts, Fi
5~a! and 5~b!, respectively.

III. THERMAL HARMONIC OSCILLATOR: TWO-LAYER
APPROACH

Thermal-wave depth profilometry is a one-dimensio
inverse problem where the thermal diffusivity profile is i

FIG. 3. Normalized experimental data for untreated samples of 600
~circle! and 200 grit~square! roughness. for clarity only 50% of the exper
mental data points are shown. Also shown are the theoretical forward fi
600 grit ~solid! and 200 grit~dashed! roughness.
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verted from the frequency dependence of the surface t
perature oscillation amplitude and phase information. Bef
the inverse problem can be solved, the forward problem m
be developed. Our earlier depth profilometry model, built
the thermal harmonic oscillator concept,7 treated the thermal-
wave response of materials with a smoothed surface and
not account for roughness. In this work, the forward de
profilometric problem is based on formulating a on
dimensional model of a thermal-wave field from a homog
neous layer on top of a semi-infinite inhomogeneous und
layer. The inhomogeneous layer is treated via
generalization of the Hamilton–Jacobi formalism7,8 from
classical mechanics. The upper homogeneous layer ha
effective adjustable thickness and thermophysical proper
which are introduced into the model so as to account for
experimental frequency response in the presence of rou
ness on the sample~the ‘‘underlayer’’!. In this manner the
effects of roughness can be mathematically deconvoluted
of the total response to recover the true thermal inhomo
neities of the underlying sample.

The regions surrounding the investigated inhomo
neous layer (x.0) include an air–solid homogeneous inte
face (x52d) and a solid–backing interface (x50), as
shown in Fig. 6. The thermal-wave fields in each region,
~a!, roughness layer~1! and investigated inhomogeneous u
derlayer ~2! are solutions to the heat conduction equati
with a harmonic surface source atx52d

rit

of

FIG. 4. Normalized experimental data of 0.02 in. carburized steel for
grit ~circle! and 200 grit~square! roughness. For clarity only 50% of the
experimental data points are shown.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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Ta~x,v!5Des0~x1d!; x<2d⇒x1d<0, ~1!

T1~x,v!5Bes1x1Ce2s1x; 2d<x<0, ~2!

T2~x,v!5
1

2Ae2~x!
@C1eH2~x!2C2e2H2~x!#; 0<x<`.

~3!

Equation~1! is the bounded~finite asx→2`! solution to
the thermal-wave equation for a homogeneous semi-infi
medium and Eq.~2! is the solution for a finite homogeneou
region. In Eqs.~1! and ~2! s j is the complex wave numbe
defined as

FIG. 5. Surface SEM pictures; magnification3300; ~a! untreated 600 grit
roughness;~b! untreated 200 grit roughness;~c! carburized 600 grit rough-
ness;~d! carburized 200 grit roughness.

FIG. 6. Theoretical solid layer structure:~1! roughness layer;~2! inhomo-
geneous underlayer, the thermal diffusivity of which is to be reconstruc
depth profilometrically.
Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP
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s j~v!5~11 i !A v

2a j
,

anda j is the thermal diffusivity of thejth medium (j :1,2).
Equation ~3! is the result of treating the inhomogeneou
layer thermal-wave field in terms of the Hamilton–Jaco
formulation.7 This equation is the Wentzel–Kramers
Brillioun–Jeffreys ~WKBJ! approximation of the exac
solution,8 in order to make matters more tractable compu
tionally. The WKBJ approximation is obtained by setting t
derivative of the thermal effusivity of the inhomogeneo
layer equal to zero, i.e.,de2(x)/dx50, where e2(x)
5Ak2(x)r2(x)c2(x). Here k2(x) is the depth-dependen
thermal conductivity,r2(x) is the depth-dependent densit
and c2(x) is the depth-dependent specific heat at cons
pressure. This assumption amounts to a requirement for n
steep local variations of the effusivity. This can always
easily satisfied, provided the thermal-wave field is evalua
at small enough depth slices by adjusting the modulat
frequency increments appropriately, so that local steep di
sivity gradients may be offset.7 It has also been shown tha
this approximation does not introduce error greater tha
few percent in the calculation of the thermal diffusivity dep
profile.8 ConstantsD, B, andC depend on the boundary an
limiting conditions of the system.C1 andC2 are integration
constants and the exponentH2(x), is defined as6

H2~x!5E
0

x

s~y,v!dy5E
0

x

~11 i !S v

2a2~y! D
1/2

dy, ~4!

wherea2(y) is the depth-dependent thermal diffusivity di
tribution of the solid. Solving for the constants in Eqs.~1!–
~3! by using the boundary conditions of temperature a
heat-flux continuity, the temperature distribution in layer~2!
becomes

T2~x!5
Q0AR2~x!

k2~0!s2~0!Fe-H2~x!2e22H2~`!2H2~x!

12e22H2~`! G
3F b21~0!e2s1d

~11b21~0!F2!2~12b21~0!F2!e22s1dG ,

~5!

whereQ0 represents the thermal source fluence at the m
rial surface@W/m2# assuming 100% laser power absorpti
and

F25
11e22H2~`!

12e22H2~`!
, ~5a!

b21~0!5
k2~0!s2~0!

k1s1
[b201, ~5b!

R2~x!5
e2~0!

e2~x!
. ~5c!

Although it will be seen that the results are valid f
arbitrary thermal diffusivity depth profiles, for this analys
the following simple simulated functional dependence of
solid inhomogeneous region thermal diffusivity is assume6

d
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a2~x!5as~x!5a0S 11De2qx

11D D 2

~6!

such thatas(`)5a` , as(0)5a0 and

D5Aa0

a`
21.

The parameterq is a constant that determines the rate
thermal diffusivity decay ifa0.a` or growth if a0,a` .
Using Eq.~6!, the resulting temperature, for the inhomog
neous layer~2! in Eq. ~5!, simplifies to

T2~x!5
Q0AR2~x!

k2~0!s2~0!

b21~0!e2s1d2H2~x!

~11b21~0!!2~12b21~0!!e22s1d

5
Q0AR2~x!

k1s1

e2s1d2H2~x!

~11b21~0!!~12g21~0!e22s1d!
,

~7!

where

g21~0![g2015~12b201!/~11b201!. ~7a!

The superposition principle6 is implemented in produc
ing a complete expression for the thermal-wave field in
inhomogeneous solid bounded by the regions shown in
6. According to this principle, any complicated line
boundary-value problem can have a solution written a
linear combination of solutions to a number of simp
boundary value problems. In the case of thermal waves,
full field expression in layer~2! can be expressed as

T~x,v!5aT2~x,v!1bT0~x,v!1cT`~x,v!, ~8!

where T0 and T` are the thermal-wave distributions wit
constant thermal diffusivitiesa0 anda` in layer ~2!, respec-
tively. They are given by

T0~x,v!5
Q0e2s1d2s20x

k1s1~11b201!~12g201e
22s1d!

, ~9a!

T`~x,v!5
Q0e2s1d2s2`x

k1s1~11b2`1!~12g2`1e22s1d!
, ~9b!

where b201 and g201 are as defined in Eqs.~5b! and ~7a!,
respectively.b2`1 andg2`1 are defined similarly by replac
ing 0 with ` in Eqs.~5b! and ~7a!, respectively.

Constantsa, b, andc are determined by the three limi
ing case requirements of the problem, namely at large
tancex→`, T(x,v)→T`(x,v), at very high frequencyv
→`, T(0,v)→T0(0,v), and at very low frequencyv
→0, T(0,v)→T`(0,v). Finally, substituting all the thus
determined constants in Eq.~8! and calculating the field a
the front surfacex52d yields

T1~2d,v!5T~0,v!
es1d

11g201
(11g201e22s1d)

5
Q0

2k1s1
F11g201e

22s1d

12g201e
22s1dG

3@11~Z21!e2s2`J`#, ~10a!
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J`5
1

2q
lnS U a20

a2`
U D ~10b!

and

Z5
~11b201!~12g201e

22s1d!

~11b2`1!~12g2`1e22s1d!
. ~10c!

Note that the value ofd cannot become unbounded (d
→`). T(0,v) is the value of the thermal-wave field in th
inhomogeneous underlayer at the interface with the effec
upper~roughness! layer. Equation~10a! provides a means fo
studying the frequency behavior of the thermal-wave field
the surface, in terms of the integrated effect of an underly
continuously inhomogeneous semi-infinite layer on a hom
geneous upper layer. The formulation of surface roughnes
terms of a homogeneous upper layer is clearly a conven
approximation, the validity and limitations of which will be
come clear below.

IV. NUMERICAL METHOD AND THERMAL DIFFUSIVITY
RECONSTRUCTIONS

Experimentally the amplitude and phase correspond
to the surface temperature distributionT(2d,v) are ob-
tained. The theoretical values of the data pair are calcula
by

T~2d,v!5uM ~v!ueiDf~v!, ~11!

whereM (v) is the thermal-wave amplitude andDf(v) is
the phase lag at an angular frequencyv. At each frequency
the amplitude and phase are used to calculatea0 and q,
introduced in Eq.~6!.9 a` is needed as input and is th
~assumed known! bulk thermal diffusivity. Although a diffu-
sivity profile of the form of Eq.~6! is assumed, the actua
profile is updated at each frequency by recalculating the
rametersa0( j ) and qj is a multidimensional secant metho
known as Broyden’s method,6 and is based on minimizing
the difference between the experimental and theoretical
for amplitude and phase as follows:

uMexp~v j !u2uM th~v j !u50, ~12a!

uDFexp~v j !u2uDF th~v j !u50. ~12b!

The calculation of the depth parameterxj is performed based
on the fact that as modulation frequency decreases
thermal-wave probing depth increases. Starting at the hig
angular frequencyv0 the shortest depth is the shortest the
mal diffusion length, i.e.,

x05A2a0

v0
. ~13!

The next ~lower! frequency,v j 11 corresponds to an in
creased thermal-wave depth

xj 115xj1A 2a j

v j 11
2A2a j

v j
, ~14!
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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which is used to calculatea j 11 in Eq. ~6!. Once thea j 11 is
calculated, the method returns to calculate in recursive it
tion the increased thermal-wave depth as

xj 115xj1A2a j 11

v j 11
2A2a j

v j
. ~15!

In reconstructing depth profiles from data it is importa
to first find a reliable set of initial values fora0 andq. This
may be achieved by finding the best forward theoretical fi
the first few end points~high frequency! using a single pro-
file of the form of Eq. ~6!.9 With knowledge of the bulk
thermal diffusivity and the thickness of the surface roughn
~600 and 200 grit! of the untreated AISI 8620 steel sample
a reconstruction can be performed. The bulk thermal di
sivity was measured independently and was found to bea`

512.531026 m2/s. The inversion is based on reconstru
ing from the high frequency end by fitting thea0 at the
interface with the geometry shown in Fig. 6. With th
method the effect of surface roughness is greatly redu
from the system. For the 600 grit roughness sample the in
parameters weread54.531026 m2/s, kd510.1 W/mK (ed

54.673103 Ws1/2/m2K! and roughness thicknessd52.5
mm. Here,ad andkd stand for the mean thermal diffusivit
and conductivity of the rough layer, respectively. For the 2
grit roughness sample the input parameters weread52.2
31026 m2/s, kd54.6 W/mK (ed53.13103 Ws1/2/m2K!
and roughness thicknessd55 mm. It is observed that as
roughness increases the effective thermal effusivity of
surface layer (x,2d) decreases. Qualitatively, this can b
understood phenomenologically by considering that rou
ness consists ideally of a series of pyramidal~or conical or
triangular fin-like! structures of decreasing spatial exte
away from the baseline.10 For a given modulation frequency
the laser-generated thermal wave penetrates deeper int
continuous substrate in the case of the smoother surface~600
grit roughness! than in the case of the rougher surfac
Therefore, the contribution of the better thermophysi
properties of the substrate to the depth-weighed mean va
diffusivity and conductivity in the former case is proportio
ately more substantial than in the latter case. This result
the higher overall mean thermal properties of the smoo
surface measured through photothermal radiometry. In b
cases the mean thermal diffusion lengths around the pea
the maximum roughness effects in Fig. 3 were approxima
12 mm. This penetration depth is consistent with a stro
thermal communication with, and thermophysical contrib
tion from, the substrate for both roughness thicknesses.
forward theoretical fits to the untreated experimental d
that assume an optimally adjusted homogeneous layer
semi-infinite homogeneous substrate~represented by the un
treated steel! are shown in Fig. 3. Similar forward theoretic
fits were applied to the high-frequency peaks of the carb
ized steel, Fig. 4. The resulting thermophysical values of
effective roughness layer were: For the 600 grit roughn
samplead52.331026 m2/s and kd59.8 W/mK. For the
200 grit sample, ad52.531026 m2/s and kd510.25
W/mK. Comparison of thed55 mm roughness, 200 gri
samples, before and after carburization shows an increa
the (ad ,kd) values, perhaps the result of the lateral conn
Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP
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tivity of surface structures, Figs. 5~b! and 5~d!. This would
tend to enhance thermal diffusion across previously isola
‘‘islands’’ ~fiber bundles!. The decrease in (ad ,kd) values of
thed52.5 mm roughness layer is probably an artifact of t
decreased substrate near-surface diffusivity following carb
ization ~see Fig. 13!, coupled with the greater contribution o
substrate thermophysical properties to the mean thermal
fusion length of the rough layer in the 600 grit sample. Ov
all the forward theoretical fit is in excellent agreement w
the experimental data over a wide frequency range. Ne
theless, small discrepancies exist at the high frequency
where roughness is more difficult to model as a unifo
layer. A reconstruction for the untreated AISI 8620 samp
with the method outlined above was performed. The exp
mental data were numerically inverted to obtain the cor
sponding thermal diffusivity profiles, as shown in Fig. 7. T
rough layer, which was assumed to be homogeneous
low thermal parameters, was theoretically eliminated. Th
the reconstruction shown in Fig. 7 commences below
rough layer. It is seen that the reconstruction based on
uniform overlayer concept is unable to fully eliminate su
face roughness. As a result, the thermophysical propertie
the underlayer exhibit nonuniformity artifacts down to abo
50 and 600mm for the 600 and 200 grit roughness, respe
tively. Below these depths the depth profile reconstruction
adequate: The thermal diffusivity of the bulk material r
mains flat and approaches the independently measured v
of a`512.531026 m2/s for both samples. Besides the a
proximate modeling of roughness as a homogeneous la
the near-surface profile can also be attributed to the viola
of the WKBJ approximation, Eq.~3!, at high frequencies
where much finerD f increments may be required in order
satisfy the nonsteep local thermal effusivity variation con
tion for the validity of that equation. For low-roughness m
terials, the near-surface inadequacy of the homogene
overlayer model of Fig. 7 can be neglected, since hardn
measurements are usually of interest deeper than 50mm. In
any case, such a reconstruction can serve as a guide to
termine the extent to which roughness influences a spe
profile. As roughness size increases, the reconstruction
comes less reliable. There are two reasons for this;~1! the

FIG. 7. Reconstruction of experimental 600 grit~circle! and 200 grit
~square! untreated samples.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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forward model is inadequate at the high-end frequency sp
trum where the nonuniformity~randomness! of roughness is
more evident; and~2! the inverse problem becomes more
posed, since more variables~effective roughness properties!
are introduced. In conclusion, thermal diffusivity reconstru
tions under a uniform overlayer assumption based on
~16! are quite straightforward and simple enough, but c
only be satisfactory for materials with thin roughness ov
layers.

V. THEORETICAL MODEL OF ROUGHNESS:
LOGARITHMIC-GAUSSIAN MODEL APPROACH

A. Roughness elimination method

The foregoing theoretical model of treating roughness
a homogeneous layer over an inhomogeneous substrate
beit quite successful with thin roughness layers, it is, ho
ever, too simplistic. Using a flat~homogeneous! underlayer it
was seen, Fig. 7, that as the level~thickness! of roughness
increases the thermal-wave spectrum cannot be adequ
interpreted by an effective uniform overlayer, resulting in
erroneous thermal diffusivity profile. In a frequency doma
method both roughness and underlayer inhomogeneities
observed throughout the frequency spectrum. An appro
based on linear superposition of several uniform overlay1

for deconvolving roughness inhomogeneity from that of
substrate might not be generally valid, since the roughn
generated frequency response is often nonlinear. There
an approach is adopted and tested for various levels
roughness and substrate inhomogeneity. The idea behind
roughness elimination method is based on recognizing
tinct features~phase maxima! in the frequency spectrum
Since roughness is associated with the surface of a sam
the effects are strongest at high frequencies, whereas the
frequency end is mostly associated with substrate inhomo
neities. Again, the objective of the method is to deconvo
out the roughness spectrum and reveal the desirable und
ing thermal diffusivity depth profile~homogeneous or inho
mogeneous!.

To demonstrate how roughness is eliminated from
total field, three simulations of increasing roughness with
same inhomogeneous profile~developed in the theoretica
model of Sec. III! were performed, with the upper layer b
ing rough. Case A is illustrated in Fig. 8 for a roughne
thicknessd51.6mm. Curve 1 shows the theoretical respon
of a semi-infiniteinhomogeneoussample with roughness, th
latter modeled as an effectivehomogeneousupper layer.
Curve 2 represents the theoretical response of the same s
infinite inhomogeneoussample without roughness. Curve
is a simulatedhomogeneouslayer with thermal diffusivity
value equal to that of the back surface of the underla
considered in curve 2 with roughness. The objective of
method is to retrieve curve 2 from curve 1 by means
eliminating roughness. Curve 4 is a theoretical fit to the hi
frequency end of curve 1~the region associated with rough
ness!, using the theory for a semi-infinite homogeneous s
strate with roughness. The input parameters of curve 4
the same as the ones used for curve 3, except that an e
tive thermal conductivity is used for the roughness layer
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match the high-frequency end of curve 1. The parame
used to obtain case A, curves 1–4 are shown in Tabl
Using a simple normalization procedure of the total fie
curves 1 and 4 yield

FIG. 8. Simulation of roughness elimination method with 1.6mm roughness
thickness. Curve 1~square!: inhomogeneous with roughness; curve
~circle!: inhomogeneous with no roughness; curve 3~upward triangle!: ho-
mogeneous with roughness; curve 4~downward triangle!: effective homo-
geneous with roughness; curve 5~solid!: normalized inhomogeneous with
no roughness.

TABLE I. Thermal properties of simulations for cases A, B, and C.

Thermal properties Case A Case B Case C

d51.6 mm d57 mm d513 mm
a`56.1531026 m2/s

curve 1: a054.031026 m2/s
total field: q523103 m21

inhomogeneous ad52.131026 m2/s
with roughness kd54.8 W/mK

a`56.1531026 m2/s
curve 2 a054.031026 m2/s

inhomogeneous q523103 m21

with no roughness d50 mm

a`56.1531026 m2/s
curve 3: a056.1531026 m2/s

homogeneous ad52.131026 m2/s
with roughness kd54.8 W/mK

curve 4: a`56.1531026 m2/s
homogeneous with a056.1531026 m2/s
effective roughness ad52.131026 m2/s

kd~eff!55.96 W/mK
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Tfinal~5!~0,v!5
Curve 1

Curve 4
5

uM total~v!ueiDF totalv)

uMeff~v!ueiDFeff~v!
, ~16!

which is plotted as curve 5. Comparing the result with t
original inhomogeneousresponse with no roughness~curve
2!, excellent agreement is evident. Therefore, it is se
that the result of the mathematical operation,~inhomoge-
neous layer1roughness!* ~homogeneous layer1roughness!
5inhomogeneous layer, eliminates roughness while pres
ing the effects of the thermophysical inhomogeneity. Her*
stands for the ratioing or subtraction operation associa
with the amplitude or phase normalization of Eq.~16!.

The method was further tested successfully with a hig
scale of roughness~case B in Table I!, with d57 mm. Here,
the amplitude and phase exhibit characteristic maxima a
case A. The thermophysical values for each curve are
same as those of case A. A more complicated situation
volving a thicker roughness layer withd513 mm, case C,
was then examined. In this case the spectral features du
roughness almost fully overlap those due to underlayer in
mogeneities. Neither the amplitude nor the phase shows
characteristic maxima from which roughness alone can
inferred~Fig. 9!. The extrema in Fig. 9 are due to roughne
and inhomogeneities together. The results of prior simu
tions ~cases A and B! showed that the same inhomogeneit
affect the frequency spectrum in a similar manner. Th

FIG. 9. Simulation of roughness elimination method with 13mm roughness
thickness. Curve 1~square!: inhomogeneous with roughness; curve
~circle!: inhomogeneous with no roughness; curve 3~upward triangle!: ho-
mogeneous with roughness; curve 4~downward triangle!: effective homo-
geneous with roughness; curve 5~solid!: normalized inhomogeneous with
no roughness.
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curve 4 for case C was constructed using the same effec
properties as in case A with the only difference being
roughness thicknessd. The thermophysical values used
case C are the same as in the other cases. For this cas
deviations of curve 5 from the theoretical value of curve
are more pronounced as compared to cases A and B, bu
still within very satisfactory boundaries. Therefore, the u
of a reference solid with small enough roughness with d
tinct phase maxima for inhomogeneity and roughness
assist in retrieving the inhomogeneity of a rougher sam
with no separation between roughness and inhomogeneit
conclusion, the foregoing numerical examples show that
possible to eliminate surface roughness from thermal-w
spectra for a wide range of roughness thicknesses.

B. Logarithmic-Gaussian roughness modeling

A general expression not based on knowledge of
thermophysical properties of roughness is now sought, s
to yield an appropriate roughness model. This model
then be used to eliminate roughness from the total field us
the method of Sec. V A, without having to use uniform ove
layer models and the concomitant limitations. By invokin
the concept that random roughness is equivalent to a Ga
ian distribution in the spatial depth coordinate, i.e., it cor
sponds to spatial white noise, the effects of inhomogen
and roughness can be deconvoluted. For this reaso
logarithmic-Gaussian noise profile is fitted to the effecti
frequency-domain roughness distribution based on the th
retically expected Gaussian-to-Gaussian Fourier transfor
tion between the spatial coordinate and the spatial freque
which, in turn, depends on the modulation frequency throu
the local thermal diffusion coefficient. The roughness spa
Gaussian profile is thus mapped as a Gaussian distributio
the log-frequency coordinate. By extension, a linear super
sition of several such Gaussian functions can be conceive
there are multiple characteristic roughness scales assoc
with a particular rough surface as pictorially illustrated
Fig. 2 for the case of two such scales. The superposi
spatial-frequency field thus created is nonsymmetric and
expressions for amplitude and phase, respectively, are as
lows:

Meff~v0!5M01A2

p (
i 52

N
A1i

log~W1i !

3e2@~ log~v10!2 log~v1ci!!2/~ log~W1i !!#, ~17!

DFeff~v0!5DF01A2

p (
i 52

N
A2i

log~W2i !

3e2@~ log~v20!2 log~v2ci!!2/~ log~W2i !!#. ~18!

where log~W! is the e22 width of the spatial-frequency
logarithmic-Gaussian distribution,A is the area under the
line shape, andvc is the angular frequency at line center
the Gaussian function.N is the maximum number of charac
teristic roughness lengths anticipated. The summation
Gaussians is greater than one (N.1) so as to account for the
asymmetry of the field. Physically this denotes that there
no possibility of a single roughness scale at least for
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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experiments. Perhaps, the complexity of the roughness la
encountered in this work is such that at best they can
modeled with two scales as seen in Fig. 2.M0 andDF0 are
the amplitude and phase offset, respectively. These o
values represent the signal value~saturation! at which the
roughness will no longer distort the phothermal signal. T
approximate offset values at low frequencies (f ,1 Hz! are
‘‘1’’ for amplitude and ‘‘0’’ for phase. These values represe
the normalized homogeneous response to the referenc
alloy without roughness. Hence, in order to retrieve a
eliminate roughness from the experimental data,
logarithmic-Gaussian fit to the high frequency end is ma
based on Eqs.~17! and ~18!. When fitting the summation o
logarithmic-Gaussians to a given roughness profile e
Gaussian function is associated with a different lo
frequency constant. This is physically reasonable if rou
ness is viewed as several spatial white-noise lev
~‘‘scales’’!, each level belonging to a characteristic-leng
scale parameter~a roughness band or strip!. A random spatial
~‘‘white-noise’’! roughness distribution exists about ea
characteristic value belonging to a particular scale. E
scale of roughness is thus described by a characteristic
quency range, mapped into a particular logarithmic-Gaus
distribution. The logarithmic-Gaussian distribution is deriv
from the Central Limit Theorem in cases when random va
ables in the distribution are not independent.11 It may thus be
argued that the roughness scales are not truly mutually in
pendent and are normally distributed, in the Gaussian se
along the log~f! axis. Figure 10, illustrates the logarithmic

FIG. 10. Logarithmic-Gaussian fit~solid line! to the roughness spectrum o
the untreated 200 grit roughness experimental data~squares!. Dashed line:
logarithmic-Gaussian fit associated with scale 1 roughness; Dotted
logarithmic-Gaussian fit associated with scale 2 roughness.Y1 andY2: am-
plitude components of the linear Gaussian superposition, Eq.~17!.
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Gaussian distribution~solid line! for the untreated 200 gri
roughness sample. The individual logarithmic Gaussians
sociated with each roughness scale are also shown with
values documented in Table II. For this roughness profile
found that there are two characteristic-length parame
~double logarithmic Gaussian!. Given that the double distri-
bution fit in Fig. 10~a! requires each amplitude compone
Y1 and Y2 to satisfy a Gaussian profile at each frequen
and that the algebraic sum of each pair of points (Y11Y2)
must be equal to a fixed numbery3 , determined by the data
it was empirically found that the combination of componen
(Y1 ,Y2) is unique. Therefore, the two amplitud
characteristic-length parameters are also unique. Similar
sults are found with respect to phase, Fig. 10~b!, of the un-
treated sample, as well as for the treated sample, Fig. 11

C. Application to carburized steels

Figure 11 shows the fitted logarithmic-Gaussian distrib
tion to the carburized experimental data with 200 grit roug
ness. The profile needed to perform such an operation
these data is a summation of logarithmic Gaussians wh
parameters can be found in Table II. Although the pha
roughness is fitted well to a double logarithmic-Gauss
function, the amplitude requires a summation of three lo
rithmic Gaussians to account for the experimental beha
at the high-frequency end of the spectrum. Figure 12 sho
the experimental data for the carburized samples with
and 200 grit roughness after the elimination of roughne
Despite two different roughness profiles, the same inhom
geneous underlayer experimental response is revealed.
experimental data were then used for thermal diffusivity
constructions, with the computational methodology dev
oped in Sec. IV assuming no roughness (d50). The recon-
structed depth profiles of the hardened samples exhibite
anticorrelation between thermal diffusivity and hardne
Fig. 13, which is consistent with earlier reports.10,12

An important aspect of the reconstruction procedure
the understanding of the physical mechanism for the antic
relation between thermal diffusivity and hardness. Curr
techniques have not separately addressed the effects o
ferent heat treatments on the thermal diffusivity profile

e:

TABLE II. Gaussian fit parameters to the untreated and 0.02 in. carbur
200 grit roughness samples.vci represent characteristic angular frequenc
of roughness scalei~51,2,3!.

Gaussian
fit

Untreated
600 grit roughness

Carburized
200 grit roughness

amplitude phase amplitude phase

M0 or DF0 1 0.11 0.98 0.11
log(vc1) 4.75 4.57 4.81 4.96
log(W1) 1.53 3.29 0.81 2.28
A1 2.36 91.79 0.12 41.86
log(vc2) 4.48 5.26 4.34 5.81
log(W2) 2.83 1.45 1.32 3.02
A2 2.18 254.74 0.29 282.02
log(vc3) ¯ ¯ 3.38 ¯

log(W3) ¯ ¯ 2.47 ¯

A3 ¯ ¯ 0.13 ¯
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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steels. Therefore, the exact nature of the anticorrelation
tween thermal diffusivity and microhardness has not b
properly understood. A very recent detailed study focused
finding the mechanism of the anticorrelation has be
reported,13 which concluded that the carbon diffusion profi
during heat treatment controls the thermal diffusivity dep
profile of carburized AISI 8620 steels. Further depth profi
metric studies using different grades of steels are curre
under way.

VI. CONCLUSIONS

Two approaches for treating surface roughness on
surface of inhomogeneous solids have been introduced.
approach consists of an effective homogeneous overl
with thickness and thermophysical properties adjusted to
high-frequency experimental thermal-wave data. T
method was shown to yield good deconvolution and ma
ematical elimination of roughness only in the limit of th
roughness layers. Another, more broadly valid appro
models roughness as spatial white noise. This method le
to a linear superposition of Gaussian roughness profile sc
in the log-frequency domain~logarithmic Gaussian!. It has
helped establish a procedure for eliminating the effects o
roughness layer of arbitrary thickness from the freque
response of the inhomogeneous substrate. The logarith
Gaussian elimination of roughness proves to be an effec
method for use with wide roughness scales, revealing
‘‘true’’ thermal-wave frequency response of underlayers fro

FIG. 11. Logarithmic-Gaussian fit~solid line! to the roughness spectrum o
the carburized 200 grit roughness experimental data~squares!.
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experimental data convoluted with the roughness spectr
In this manner, reliable thermal diffusivity reconstructions
inhomogeneous underlayers from experimental laser infra
photothermal radiometric data from AISI 8620 steels ha
been achieved. The Gaussian method further provides ph
cal insight into the effective thermal structure of rough s
faces through their frequency response under the therm
wave probe. It has the advantage over other roughn
methods1 of not requiring specific structural assumptions r
garding the geometry of the rough layer.

FIG. 12. Carburized experimental data after elimination of roughness
0.02 in case depth with 600 grit~circles! and 200 grit~squares! roughness.

FIG. 13. Hardness and thermal diffusivity profile reconstructions for 0.02
case-depth carburized data with 600 grit~solid line! and 200 grit~dashed
line! roughness.
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