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Thermal-wave nondestructive evaluation of cylindrical composite
structures using frequency-domain photothermal radiometry
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In this paper, thermal-wave diagnostics by means of laser infrared photothermal radigATeRyy

have been used for quantitative nondestructive evaluation of cylindrical composite structures. To
guantitatively evaluate the thermal-wave field of a cylindrical composite material, the Green
function corresponding to the composite structure and the PTR measurement scheme has been
developed and subsequently the thermal-wave field has been derived. Furthermore, the
characteristics of the thermal-wave field for two cases of practical interest, i.e., a cylindrical material
with a surface coating and a cylindrical tube filled with a low thermal-conductivity fluid medium
inside, are discussed. Experimental results from a stainless¢st&#1302) cylinder are used to
validate the theoretical model. 005 American Institute of PhysidDOl: 10.1063/1.1819999

I. INTRODUCTION cylindrical composite structures is especially useful for char-

Photothermal techniques, including photoacousies acterization and nondestructive evaluation of materials, such
' X as cylinders with coatings, hollow tubes, and/or case-

photothermal radiometr§PTR), and photothermal deflection hardened steels such as screws and nails, to name a few. This

(PTD), have become powerful tools for the thermophysical. L
characterization and nondestructive evaluatiNiDE) of is so because most of these cylindrical-type products usually

various materials in the past few decaddsin all of these undergo industrial processing, such as heat treatment, after

applications of the photothermal techniques, measurement (gr]ganufacturlng. Although the properties of the bulk material,

thermophysical properties and/or detection of defect struc(-)f which such products are made, can be known, the prop-

. . o erties of the products, especially the properties of the surface
tures is based on the thermal-wave fields inside the samples R .
) . . ayer change significantly after the heat treatment. Given that
which ultimately depend on a few important factors, such a

. o . . here is an increasing industrial interest in characterizing the
optical excitation schemeusing either an expanded beam, surface layer, the deviation of its thermophysical properties
1D limit, or a focused beam, 3D limit sample materials yer, phy brop

. from those of the untreated material can be used for nonde-
(homogeneous or inhomogenepuand sample geometry

(plane or curved surfageThe rapid development of photo- strucpve monitoring of the effects of procegsWegg., heat
. . reating on the sample. Moreover, this technique can also be
thermal techniques has allowed the evaluation not only 0*

homogeneous materidléut also of layered and/or buried useful in the nondestructive thickness evaluation of coatings

structure using either a planar or a pointlike thermal-wave on cylindrical samples, if the properties of the coating and

o : the cylindrical sample are known. The paper is organized as
excitation source. However, research using all current photo- : ! .
. . follows. We first work out an appropriate Green function

thermal techniques so far has been mainly focused on . )
. suitable for the PTR measurement scheme; then we present

samples with flat surfaces although some attempts have beén

T . n analytical expression for the thermal-wave field, followed
made to evaluate cylindrical or spherical subsurface defe . : : . )
) y discussion of the physical behavior of the PTR signal.
structures lying below a flat surfac8.Very recently, the

PTR technique was extended to the study of homogeneo Finally, experimental results are presented and compared to

cylindrical (curved surfacematerials, in which both theoret- the theory to validate the model.
ical model and experimental validation were perfor|7ned
steel rod samples. Motivated by the growing interest in ap-“- THEORY

plying photothermal methods to composite industrial cylin-  The thermal-wave field in an infinitely long composite
drical samples, in this paper we extend the PTR technique tgyjindrical sample consisting of two concentric regions of
the study of inhomogeneoukyered cylindrical structures.  adij a (region ) andb (region Il) can be derived based on
Specifically, we present both theoretical and experimentajne Green-function method. The thermal conductivity and
PTR studies on metallic-layered cylindrical samples. Base@iﬁusivity of regions | and Il are denoted wittk; , a;) and

on the Green-function methddthe oscillating temperature (k, @), respectively. The geometry and the coordinates of
(thermal-wave fiell of the cylindrical surface under photo- {he boundary-value problem are shown in Fig. 1.

thermal excitation by a periodically modulated spatially uni- The composite cylindrical solid is externally excited by a
form beam is obtained and the theoretical model is furtheyniform-intensity laser beam of infinite extent in the direc-
validated by experiments. It is expected that the study ofjgn perpendicular to the plane of the paper in Fig. 1, which
represents a transverse cross section of the infinitely long
¥Electronic mail: chwang@mie.utoronto.ca solid. The beam is assumed to be perfectly collimated along
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simplified depending on specific material properties and
boundary conditions imposed on the solid. For solids with
high attenuation of the incident light, such as metallic
samples, the absorption of the incident light occurs at the
surface, and therefore, the volume source can be neglected.
In this paper, we will focus on opaque materials. Moreover,
considering that illumination of the external surface by a
laser beam leads to optical-to-thermal energy conversion es-
sentially at the surface and that the thermal coupliogs
coefficient between a metallic solid and the surrounding gas
(air) is on the order of 16,° the adiabatic second-kintleu-
manr) boundary condition at the external surface can be ap-
plied. Furthermore, to convert the proper Green function
(i.e., one with homogeneous boundary conditjaiosan im-

_ . , _ o proper one which can be applied to multilayered solids with
FIG. 1. Cross section of an infinitely long composite cylinder consisting of . S :
two concentric regions of radé (region ) andb (region Il) under external npnhomogeneous Ir?t_erface conditions, we "_issu_me a third-
ilumination by a uniform light beam impinging on part of its surface sub- Kind boundary conditior(general caseon the interior sur-
tending a sector of anglé, face of region li(i.e., atr =a).® The homogeneous boundary

conditions for the appropriate Green function and inhomoge-

the axial direction and subtending a sector of arggleDue ~ Neous boundary conditions for the temperature field, respec-
to the nature of the radiometric signéPlanck radiation ~ tively, can be written as
from opaque solids such as metals and coatings, only the
oscillating temperature of the external surface of the cylinder k> %G(Wo;w)
is of interest. To obtain an expression for the thermal-wave
field on the surface, the governing thermal-wave equation for
region Il must be solved. Considering harmonic modulation |, iG(rIro;w)
of the incident exciting light, the thermal-wave equation for an
region Il can be written as

=h,G(@rq; o), (39

rg=a

= 0, (Sb)

ro=b

J
1 _ Z — _ .
V2T(r,0) - 0Tl 0) = =2 Q1 o), & 2 o 0@ = Filfo @l MiTroi ol
2 0~
whereoy(w) = (iw/ a))Y?=(1+i)Vw/2a, is the thermal wave (48)

number in region llw is the angular modulation frequency,
and Q(r,w) is the volume thermal source at coordinates  k, iT(ro,w)
(r,e) in region Il of the material. Based on the Green- an
function method, the general solution for Ed) can be ex-
pressed ds

= Fa(r o, )lrg=b, (4b)
ro=b
whereh; [W m 2 K™1] is the heat transfer coefficient at the
inner surfaceS,. F; andF, are the heat fluxe8V m=?) im-
_ ) posed on the interior and the exterior surface, respectively.
T(r,w) = (azlky) ff v Qlro,@)G(r|ro;@)dVo Therefore, in the absence of volume thermal sources in re-
0 gion Il and in the underlying region I, and with the homoge-
N (G |15 ) VoT(rS: o) neous boundary conditions for the Green function shown in
@2 0@ Voltlo, @ Egs.(3) and(4), the general thermal-wave field represented
S . o i
by Eg. (2) reduces for an axially infinitely long cylinder to

= T(rg,0)VoG(r|rg; )]dSy, (2)

whereS, is the entire surfacéncluding S,, the exterior sur- T(re,w) =~ (sz/kz)jg F1(ro,0)G(r[ro; w)dS,
face atr=b, andS,, the interior interface at=a) surround- 51
ing the domain volum&, (i.e., region I) which includes the
harmonic sourc&(r,w). r is the source coordinate point + (“2”(2)% Fa(ro,)G(rro; )dSy, (5)
in the bulk or on surfacé&,. dS; indicates an infinitesimal %2
area vector along the outward direction normal to the boundwhere G(r |r; w) is the Green function for region 1l which
ary surfaceS,: dSy=ndS, with n being the outward unit must be derived so as to satisfy the appropriate boundary
vector, as shown in Fig. 1G(r |ry; w) is the Green function conditions. It should be emphasized that the condition for
which takes different forms depending on the types of theEq. (2) to be reduced to Eq5) is that the Green function
homogeneous boundary conditions, either Dirichlet, Neumust be prope(i.e., homogeneous boundary conditions must
mann, or third kind, imposed on the investigated region Il. be satisfied at all surfaces enclosing the volwgge

As discussed eIsewhe?@,Eq.(Z) gives the most general The details of the derivation of the Green function for
formula to evaluate the thermal-wave field in the region un-the specified geometry are given in the Appendix. Section |
der investigation. However, in most cases, [E2). can be of the Appendix gives the Green function and the spatial
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impulse-response function in region Il and I, respectively, forthere is only an indirect involvement of the inner region at
a two-layer concentric cylindrical structure. The relevantthermal equilibrium through the heat transfer coefficient
Green function to be used in the exterior regisr<bis A direct involvement of region | into the proper Green func-
Eq. (A1.23. In the interior region &r=a, the spatial tjon for region Il, Eq.(A2.16), can be introduced through
impulse-response functidd(r,ro; w), Eq.(A1.24), whichis  correlating the thermal parametefs;, a;) in the impulse-
nota Green function, must be used instead. However, greghgnonse EqAL.23) in region Il to the(otherwise arbitrary
care must be taken since the Green-function denvgﬂon foEonstanhl in Eq.(A2.16). This line of reasoning leads to the
L%%ﬁgag/ 2?)?] dﬁirgﬁlogigaa T?}Z?Z%Téjgfﬁsogﬁgggﬁ'tgq equivalence relationgA3.3) and (A3.4) in Sec. Il of the

) ' _ . Appendix. Those relations show that for the specified value

(Al1.23) is an improper Green function. As a result, it cannot the th G ¢ ion E(A2.1 ditsi |
be applied readily to obtain the thermal-wave field in regionO 1, the proper Green function E(A2.16), and its integral,

Il, because it does not satisfy the requisite homogeneouSd: (%) can be used as an equivalent Green function and as a
boundary condition at=a to validate the field Eq(5). A valid thermal-wave field distribution integral, respectively, to

proper Green function for theequivalentexterior region 1I, ~ describe the effects of the double layer, despite the nonho-
which satisfies a homogeneous third-kind boundary conditmogeneous interior boundary conditions. In summary, the
tion atr=a, must be used instead. This Green function isappropriate Green function to be used in ). can finally
given in Eq.(A2.16). However, in Eq.(A2.16) there is no  be written with the observation coordinate,as the running
direct thermal-wave coupling to the underlayer in region I;variable in the form

[

1
G(rlro;w) = 277012”;30 [Ym(b) = Xin(@)]

{ Km(UZrO)[Km(O'Zr) - Xm(a)lm(azr)] - Ym(b)lm(O'ZrO)[Km(o'Zr) - Xm(a)lm(o'zr)] (asrs rO)

eim(‘P_ﬁlio)

(6)
K02 [Km( 02l ) = Xi(@) (02 0) ] = Yir(D) (020 [Kil( 02T o) = X(@) (02l g)] (rg <1 <)
|
where 1,(2), K(2 are the complex-argument modified - Focod90° - @), 01 =< @p=< b,
Bessel funct|0n§ of the first kind and of the second kind of 2(b, ¢g; @) = 0, other angles
orderm, respectively, and
(12)
Kin(028) = 71mKin(078)
Xm(@) = — (m=0,1,2..), (7) itti i i
m 1 (028) = 7l 23 Substituting Eq(12) into Eq. (5), we find
0[2F0b
K’ (o-b T(r, o) = 3[) G(r|rgy; w)cog90° — @p)dey.  (13)
Yooy = <m0 10, 8) ke Js, 7 o
Im(0'2b)
Now interchanging(r,¢) = (rg,¢g) in the Green function
(o) _ Eq. (6) so as to allow integration over the source coordinates
T Bl (1) (M=0.12...) O (15, ¢0), and lettingro=b (surface sourge Eq. (13) becomes
and Fo [ < Ku(02) = Xn(@ln(oar)
T(r,@,w) = -
By = kolk. (10) 27K J g, oo |(02D)[Yin(b) = Xin(@)]
In view of the structure of Eq5), the prescribed heat fluxes x @M#0¢) cog90° ~ o) dep. (14)

F, andF, at the interior and exterior surface, respectively,
must be specified. In our case, there is no incident heat flu
prescribed at the interior surfacea, therefore, % %

F1(a ¢, 0) = 0. (11 > el =142 codm(e - ¢p)] (15

m=—x m=1

)Lgsing the identity

Assuming that the incident light intensity on the exterior o

X ) . T . n
surface is uniform, in conformity with our experimental PTR
configuration, the thermal-wave flux on that surface mustbe |_ (z)=| (2) K_,(2)=K,(2), (16)
weighted using a projection factor in the form of the cosine
of the incident uniform light intensity which can be ex- after some algebraic manipulation, we finally obtain the
pressed agFig. 1) thermal-wave field in region Il
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Fo Ko(o'zr)‘xo(a)|o(0'2r)> o <K1(0'2|')‘X1(a)|1(0'2r)> , 5(1_ )
o 2(|5<ozb>[vo<b>—xo(a)] 2 " iovao - xgqay ) TR 2

o (Knloh) =Xa@Im(on) ) [m ]l sin(m+16y2] _sinl(m=1)6y/2]
+22(I&(wb)[vm(b)—xm(a)])w{2“’ Z‘P)M m¥l  m-1 }

T(r,<p,w)=2

17)

m=2

Here X (a) and Y(b) (m=0,1,2..) are given in Egs. Var )
(7)~10). As a check, Eq(17) can be easily reduced to the TO,w) = Fo(#)e_'m, (18)
single-layerthomogeneous cylindemode! if we set param- Ve
eters(ky, ay) in region | equal to parametef&,,a,) in re-
gion 11, i.e., (ky, 1) — (Ko, @) in Egs.(9) and (10). where a and k are the thermal diffusivity and the thermal
Equation(17) gives the thermal-wave field at any point conductivity of the material, respectively. The thermal-wave
inside region 1l. From the structure of this expression, it isfield given in Eq.(18) clearly exhibits the well-known de-
seen that the frequency dependence of the thermal-wave fieftendence of the amplitude on the inverse of the square root
of cylindrical samples under uniform illumination is a func- of the frequency as well as a constént 4) phase lag of the
tion of the thermophysical properties and geometrical dimentemperature oscillation with respect to the incident thermal
sions of both interior and exterior materials, as expected. flux in a semi-infinite solid. The simulations were performed
usingMATLAB in which the modified Bessel function of the
first kind and second kind with complex variables can be
lll. NUMERICAL SIMULATIONS calculated directly. _ _
Figure 2 shows the effect of thickness of an aluminum
Although Eq.(17) explicitly demonstrates the relation- coating on an AISI 1018 steel rogcomposition: 0.14%-—
ship between the thermal-wave field and the thermophysicd).2% C, 0.6%—0.9% Mnin a composite cylindrical system.
parameters, as well as several geometric and measuremént the simulation, the exterior radiub is fixed at b
configuration factors for a composite cylindrical sample of=1.5 mm, while the interior radiuga is set as a variable
infinite axial extent, the complicated functional dependenceparameter. The thermal-wave field is calculatedpat90®
of the signal on the various system parameters makes ar(gee Fig. 1 and the beam size is assumed to be large enough
gualitative attempts for further understanding the system beso as to cover the entire upper part of the cylinder; therefore,
havior difficult. To gain more physical insight into the char- §,=18C is assumed in the calculation. The amplitude and
acteristics of the ac temperature field, it is instructive tophase of the thermal-wave field are normalized by a semi-
study its dependence on each individual parameter involvethfinite AISI 1018 steel flat surface. The other parameters
in Eq. (17). Although the thermal-wave field can be calcu- used in the simulation ar€,=1 W/n?, k;=51.9 W/m K,
lated at any point inside region II, our simulations will be @;=13.57x10°®m?/s for AISI 1018 steeld? and ko
restricted to the sample surfaceratb, from which experi- =237 W/mK, a,=97.1x10°%m?/s for aluminum
mental measurement data can be obtained using the PT(RJating.13 It is seen that with increasing Al coating thickness,
technigue. In all the simulations, the amplitude and phase dfoth amplitude and phase curves of the composite structure
the surface temperature oscillation are normalized to the cochange toward those of a homogeneous aluminum cylinder
responding amplitude and phase of a flat surface of a seméf the same diameter. When the thickness of the Al coating is
infinitely thick sample of the same material as either thesmall compared to the thermal diffusion length in the coat-
interior (region |) or the exterior solidregion Il), depending ing, the thermal-wave field is dominated by the contribution
on the sample structure. The procedure of the normalizationf the steel substrate. This can be seen in both amplitude and
with a flat surface renders the characteristics of the surfacphase curves in the cases of 25- and 100-Al coating
curvature more pronounced, since the common frequencthicknesses when compared with that of pure 1018 steel rod,
dependencies of the signals from the flat and curved surfacesspecially at the lower frequencies. This can be understood
can be eliminated. In the usual manner, the aforementionebly the larger thermal diffusion length at lower frequencies
normalizations are performed in the form of the ratio and thewhich results in a signal dominated QLthe thicker substrate
difference of the two individual amplitudes and phases, resteel. The thermal diffusion lengita=+ «a/ =f for AISI 1018
spectively. The amplitude and phase of a flat surface arsteel and aluminum at 10 Hz is0.76 and 1.76 mm, respec-
calculated based on the well-known 1D theoretical modetively. The contribution from the surface coating is mainly
which is valid under the condition that the incident-beamseen at higher frequencies, at which the thermal-wave field is
size is much larger than the thermal diffusion length of thedominated by the coating material due to the shorter thermal
material within the modulation frequency range of interest.diffusion lengths. This is manifested by the fact that both
Under illumination with a constant thermal-wave flbg on ~ amplitude and phase curves deviate from those of the pure
the surface of the flat sample, the thermal-wave field evalu1018 steel rod and move toward the aluminum curve. As the
ated at the surface is given 16y coating thickness increases, the contribution from the alumi-
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FIG. 2. Effect of thickness of an aluminum coating on an AISI 1018 steel Frequency (x10 Hz)
rod in a composite cylindrical structure. The parameters used in the simula-

tion are Fo=1 W/m?, k;=51.9 W/mK, a;=13.57X10° m?/s for AISI
1018 steels, andk,=237 W/mK, a,=97.1x10°m?/s for aluminum
coating.

FIG. 3. Effect of the thermal conductivity of an aluminum coating on an
AISI 1018 steel rod in a composite cylindrical structure. The radii of the
interior solid and full cylinder ara=1.4 mm andb=1.5 mm, respectively.
Thermal diffusivity of the coatingy,=97.1X 106 m?/s. k;=51.9 W/mK,
a;=13.57x 10°® m?/s for AISI 1018 steels.

num coating gradually dominates and ultimately transits to

the behavior of a pure aluminum rod. This includes smaller
amplitudes, Fig. @), and a shift of the phase interference pected from the domination of the surface thermal-wave field
peak pattern to higher frequencies, Figh)2As a check, the by the coating at higher frequencigfarger than 10 Hg
simulation results using a homogeneous mbdek also When the frequency is above 1 kHz, the amplitude changes
shown in Fig. 2b) to indicate the consistency of the two slope and the phase turns around. This can be explained by
models. the way the data are normalized to the values of the flat
Figures 3 and 4 show, respectively, the effects on théample; at very high frequencies, the curvature will not mat-
thermal-wave field of changing thermal conductivity andter compared to the small diffusion length and the signals
thermal diffusivity of the coating, when the coating is rela- will settle at a constant amplitude ratio, as witnessed by the
tively thin, i.e.,a=1.4 mm and=1.5 mm. In the simulation, flat parallel curves at>10 kHz in Fig. 3a) (zero slopgand
the surface thermal-wave field is calculatedeat90°, with by the zero phase difference in Figlb3 essentially corre-
0,=18C. The other parameters used for 1018 steel and alusponding to two flat semi-infinite solids made of aluminum
minum coating are the same as above. The amplitude arahd steel, respectively; the phase difference will become zero
phase are also normalized with the 1018 steel flat-surfaceo matter what the solids are, as per Etf). On the con-
material. In both plots of Figs. 3 and 4, the long “tail” in trary, the normalized amplitude increases, the phase lag de-
amplitude at high frequencies and “diglag) in phase at creases, Fig. 4, when the thermal diffusivity of the coating
intermediate frequencies are due to the increasing therm#éicreases. These trends are, at first glance, inconsistent with
contribution from the coating which is a better conductor andhe expected thermal-wave behavior of the cylindrical solid,
diffuser than the substrate steel, as discussed in Fig. 2. lout they are the result of assuming in the simulation that
Fig. 3, it is seen that as the thermal conductivity of the coatthermal diffusivity and conductivity are independent param-
ing increases, the amplitude tail decreases, while the phasgers: as can be seen from the simple flat surface(E,
lag (i.e., absolute magnitude of the phagecreases, as ex- under this independence assumption, the PTR signal is pro-
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field. Therefore, field dependence on the former is a much
more sensitive function of coating thickness than on the lat-
ter. This behavior is of particular significance for measuring
thermal diffusivity of the coating from the peak-to-trough
position change in the phase plot, provided the coating thick-
ness is known, or vice versa. To measatewithout exact
knowledge of thek, value, one may assign a plausitig
(1)——a2=40X10'6 m2/s " value, since, fr<_)m Fig. 3, that value dogs not ch_ange the
0.6 [ (2) --- o,=60x10° m?s e thermal-wave interference-related relative maximum-to-
0.5F@)-- a2=80x10*5 ms minimum distance on the frequency axis in either amplitude
2 P or phase channel. On the other hand, from Fig. 4, changes in
0.4 L@y "‘z=97'1"1045 mz/s a, cause changes in that distance in both amplitude and
(8- 0, =130x10" m'/s phase. Therefore, the, value can be calibrated from that

e o =
® © o
T L) L]

Normalized Amplitude
o
\l

0'30_1 1 10 100 1000 10000 measurement and easily obtained for practical applications of
Frequency (Hz) the technique.
5 . : . : : In the foregoing discussion, the interior material and the
coating have thermal conductivities of the same or similar
ot order of magnitude and the surface thermal-wave field is
@ determined by both the interior and exterior materials de-
T 5t pending on the diameter of the cylinder and the thickness of
o the coating. In practice, another special category of the two-
8 10} layer cylindrical composite structure of considerable impor-
o tance is a cylindrical tube or pipe. In this case, the thermal-
D -15¢ wave field is determined by the tube material only, with
% negligible contribution from the fluid or gas inside. For a
£ -20 ¢+ metallic tube filled with either aithollow) or low thermal-
zo conductivity fluids, the thermal-conductivity ratio given in
25} ' ) ' Eq. (10) is usually very large.
0.1 1 10 100 1000 10000

Bor=kolky =~ 1P Wm K Y(102-10Hw m iK™

Frequency (Hz
quency (Hz) —10°- 10"
FIG. 4. Effect of the thermal diffusivity of an aluminum coating on an AISI
1018 steel rod ir_l a composite cylindrical structure. The ra_dii of the interiorpog g result,7;,— 0, Eq.(9), which implies that the thermal-
ig'r:céf;ml;" gfy It'ﬂgeéc?;;zz:g?mﬁ?'sﬁg’_ée\iﬁfg eZ:Tf; g";al wave field is more or less ponf!ned within th'e ex'terior region
% 1076 m2/s for AISI 1018 steels. and is determined by the interior and exterior diameters and
the thermal diffusivity of the tube material only. Figure 5

— shows the effect on the thermal-wave field of the thickness of
portional tova and inversely proportional tk. The former 3 copper tube as the tube wall, calculated using either the
dependence gives rise to the observed behavior. It will bgpproximate formula withy,,,=0 in Eq.(17) or the full for-
noted, however, that if the proper dependencerain k is  mula. The tube was assumed to be filled with air. As above,
explicitly accounted for, namelyg=k/pC, wherep is the  the calculation was made using=90° and 6=18C°. The
density andC is the specific heat of the material, then other parameters used in the simulation asg=117
T(0,w)c1/k"2, as expected intuitively. The same physical x 106 m?/s, k,=401 W/m K for coppel’ and a;=22.5
situation is encountered with the cylindrical geometry of Eq.x 1076 m?/s, k;=0.0263 W/m K for air** The exterior di-
(17), albeit with more complicated mathematics. In practice,ameter of the tube was fixed ab24.7 mm. The amplitude
the main use of these models is for fitting to experimentalind phase were normalized with those from a semi-infinite
data and extracting values of the thermal diffusivities andcopper material with a flat surface. As a reference, the
conductivities. In the fits, the two thermophysical parametershermal-wave field of a solid copper cylinder is also shown
are taken as independent quantities and for this reason, it ia the plot. It is seen from Fig. (8) that the normalized
valuable to study their effects on the thermal-wave behavioamplitude increases rapidly at lower frequencies as the wall
independently. Furthermore, as the thermal conductivity othickness of the tube decreases, representing a rapid depar-
the coating changes, Fig. 3, the positions of the phaseure from the solid copper cylinder with enhanced thermal-
thermal-wave interference extrer(@eak and dipremain es-  wave confinement within the copper tube. At higher frequen-
sentially unchanged, while the same positions change signifeies, the thermal diffusion length becomes shorter and the
cantly as the thermal diffusivity changes, Fig. 4. This is thewalls of the copper tube become “thermally thick, thus
result of the fact that thermal diffusivity contributes to the shifting the normalized amplitude toward unity, as expected.
thermal-wave field as the bulk transport parameter, controlin Fig. 5b) the phase exhibits increased thermal-wave inter-
ling the subsurface position of the heat centrdigdvhereas ference character with decreasing wall thickness and the in-
conductivity simply controls the overall magnitude of the terference
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FIG. 6. Effect of the thermal diffusivity of a copper tube on the thermal-

FIG. 5. Effect of the wall thickness of a copper tube on the thermal-wavewave field. The interior and exterior radii of the tube ae2.1 mm and
field, calculated using either an approximate formijg,=0 in Eq.(17)— b=2.35 mm, respectively. Thermal conductivity of the tube is assumed to be
black squaresor the full Eq.(17)—solid or dashed line The tube is filled ~ 401 W/mK.

with air. The parameters used in the simulation arg=117 n¥/s, k,

=401 W/mK for copper ande;=22.5x10° m?/s, k;=0.0263 W/m K

for air. This conclusion provides a welcome simplicity for measur-

ing thermophysical properties of hollow cylindrical samples.

pattern(thermal standing wayeextremum shifts to higher The effect of the thermal diffusivity of the tube on the
frequencies and broadens, as expected. At frequencid@€rmal-wave field is shown Fig. 6. Again, the signal is nor-
~10 kHz, the effects of curvature become less pronounced@lized with a semi-infinite copper sample with a flat sur-
due to the decreasing thermal diffusion length, with the resulface, and the temperature is measuredyat90° and ¢
that the normalized phase difference tends to be zero as ex-180- The radii of the interior and exterior of the tube are
pected from planar structures. In this limit, the thermal wave?=2.1 mm andb=2.35 mm, respectively. The thermal con-
in the wall is purely one dimensional in an effectively semi- ductivity of the tube is assumed to be 401 W/mK. In a
infinite solid and Eq(18) becomes valid, which also renders Mmanner similar to that observed in Figaj# the normalized
the amplitude ratio flat and equal to unity. amplitude increases as the thermal diffusivity increases ow-
In order to see the difference between the exact and agnd to the nominally independent nature of the conductivity
proximate calculations, the approximate calculation withand diffusivity parameters. The most important feature that
mm=0 is also shown in Figs.(8) and %b) (empty squargs  can be seen from Fig.(B), common with Fig. 4, is that the
The approximate calculation is performed for the case of positions of the thermal-wave phase interference extrema
=2.2 mm andb=2.35 mm only, to avoid overcrowding the change very sensitively with the change in thermal diffusiv-
plots. Detailed examination of the approximate and exacity of the tube material, shifting to higher frequencies with
calculations in this and other simulations reveals that differincreasing values of this parameter, as expected. The phase
ences between the two results in both amplitude and phagwofile (shapg, however, does not change. Detailed exami-
appear in the second decimal place, which implies an exceRation of the various phase curves in Figo)sshows that all
lent approximation. Therefore, for a hollow metallic tube, thethe curves corresponding to different thermal diffusivities are
thermal-wave field is only a function of tube dimension, andshifted along the frequency axis by a factor which depends
of thermal diffusivity and conductivity of the tube material. monotonically on the thermal diffusivity of the material. This
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FIG. 7. Experimental setup for PTR of cylindrical solids. drical stainless-steel tulfdIS| 302) with interior and exterior diameters of
2.40 mm and 3.0 mm, respectively.
is a very important feature for measuring the thermal diffu-

sivity of th(.a.tube material as it can be uniquely determmedwhich was controlled by the computer and also served as the
by the position of phase peak or trough.

.. lock-in reference. The beam was expanded, collimated, and
As can be seen from E@l7), the thermal-wave field is . .
. then focused onto the surface of the sample with a spot size
also a function of the measurement anglé\lthough all the

above simulations are calculated at=90(°, the surface ranging from~1 to 21 mm by adjusting the position of the

thermal-wave field measured by PTR depends on the me (‘;_g :err Lgr:]ngt]hlgnssé;h?ehsaéi?:gécs\:gsr:%ﬂggfdd Lnfrg;ecci)frf?:)l(zias:
surement arrangement in practice. From the structure of E% P y

(17), and in comparison with its one-layer analog in Ref. 7, yaraboloidal mirror system and detected by a HgCdTe detec-
Eq. (1), it is seen that the dependence of the thermal-wavé>r (EG&G Judson Model J15016-M204-S204-SO1M-WE-
field on the measurement angleis the same as that for 0)_' The S|gngl_from the detector was amplified by a low-
homogeneous solids, which has been discussed in detalP's€ preamplifie(EGEG Judson PA1Qiland then fed into

previously’ Nevertheless, for the sake of completeness, th& lock-in amplifief EG&EG Instruments, Model Model 7265

measurement angle effect will be briefly addressed in thénterfaced W'th. a PC. I - .
experimental section. The experimental setup was initially optimized using a

flat sample such that both sample and detector were on the
IV. EXPERIMENTAL RESULTS focal plaqe of the off-axis mirrors as shown in Fig. 7. As
already discussed elsewhérashen the flat sample was re-

In order to validate the theoretical model, PTR experi-placed by a cylindrical surface, some adjustment had to be
ments were performed using a stainless-steel ¢At®l 302, made such that the top point of the samfle., the point
composition: 0.15% C, 17%—19% Cr, 8%—-10% Ni, and 2%tangential to the focal plapavas exactly placegdwithin ex-

Mn) with interior and exterior diameters of 2.4 and 3.0 mm, perimental errorat the focal point of the paraboloidal mirror
respectively. Tube-type hollow samples were chosen becausgystem. Therefore, the detector was monitoring the thermal-
(a) the sample structure is simple because the inner layer iwave field emissions from this point. Thermal radiation in-
air. For the purpose of validation of the theoretical model,formation from other points of the sample would not be re-
the simpler the sample structure, the better the results, sinaeived by the detector, which is especially true for curved
fewer physical and geometrical parameters will be involvedsurfaces due to the strong defocusingceding effect of the

(b) AISI 302 stainless-steel tubes are common products useclrvature. After this adjustment, the laser beam was ex-
as gas pipes, therefore, they are easy to obtain;(@nthe  panded to~20 mm in diameter by moving the lens so that
thermophysical properties of the material have been meahe laser beam was large enough to conform to the “infinite”
sured. Further applications of the model to cylindrical coat-z-axis illumination assumed in the model and also to validate
ing materials and hardened steel rods are in progress and withe 1D model in the case of a flat sample. Figure 8 shows the
be reported later. The experimental setup is shown in Fig. 7experimental results and the corresponding theoretical fits for
The thermal-wave optical source was a high-power semicorthe aforementioned AISI 302 stainless-steel tube. The fitting
ductor laserJenoptik JOLD-X-CPXL-1L~10 W). The out- was performed using the full expression E#7) and the

put of the laser was modulated by a periodic current driveipositions of the interferometric extrema in the phase
(high-power laser diode driver, Thor Labshe frequency of frequency-scan curve. In the fitting process, the thermal dif-
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fusivity of the tube material and the laser incidence angle
are set as the only fitting parameters. The corresponding the-
oretical amplitude value in Fig. 8 was obtained using the
values of these two fitted parameters as obtained from the
phase channel without further adjustment. The only required
input parameters for the fitting are the geometric dimensions
of the tube, i.e., interior and exterior diameters. It is seen that
both amplitude and phase show excellent agreement between
experimental data and theoretical model best fits. The best-
fitted AISI 302 steel thermal diffusivity in Fig. 8 was found

to be 3.98< 10°® m?/s, which is in excellent agreement with
the literature value of 3.9£10°m?/s for this type of
steel™® Considering the experimental arrangement in which
the laser beam is incident onto the sample at an afygle
(30°~35°), Fig. 7, in the fitting process we also introduced FIG. 9. Cross section of an infinitely long composite cylindrical solid con-
the measurement anggeas a fitting parameter to allow us to sisting_ of two con_centric regions of radii(region I) andb (region I) with
take into account this experimental factor. The best-fit anglé spatially impulsive thermal-wave SOUrce(&, ¢o), a=<ro=<b.
result is¢=57.3 (¢ is as defined in Fig. dwhich translates
into ®=32.7 in Fig. 7, again, exhibiting very good agree-
ment with the angle measured in the experimental setup. APPENDIX

Section 1. Green function and spatial impulse-response
functions for an infinitely long composite cylinder with a

We have formulated a thermal-wave model suitable fordelta-function thermal-wave source &to, ¢o), a<ro<b,
characterizing cylindrical composiféayered structures us- Fig. 9. A homogeneous Neumann condition is prescribed at
ing photothermal radiometry. Based on the derived Greem=hb.
functions for the two-layer cylindrical structures, the In region | with thermophysical propertiég, , «;), Fig.
thermal-wave field from a cross section of an infinitely longg, the spatial thermal-wave impulse-response function,
two-layer cylinder was.obtamed. The physu;al c.haracterlstlc%(r To; ), satisfies
of the thermal-wave field from coated cylindrical samples
and hollow tubular samples have been discussed. As ex-
pected, the PTR signal of the coated cylindrical samplesisd d| o ) 1 _ 5 _
weighted contribution of both the interior and exterior mate-; 5 rEH(r’rO’“’) * r_zﬁ_(PZH(r’rO’“’) ~ o (wH(r 1o 0)
rials depending on modulation frequency and thermal diffu-
sivity which control the extent of the thermal probe length. It = 0. (ALD
was found that both thermal conductivity and diffusivity of
the coating affect the behavior of the PTR signal. However,
only the thermal diffusivity affects the frequency positions of In region Il with thermophysical propertieg,,a,), the
the thermal-wave field maxima and minima, especially in theGreen function satisfiés
phase channel. In the case of hollow opaque tybesubes
filled with low thermal-conductivity fluids the PTR signal 140 4 1 P
was further found.to be dependent on the thermal d'ﬁus'v'ty——{r—G(r|ro;w)] + 5561 ;) - ozz(w)G(r|ro;w)
of the tube material only. The theoretical model was furtherr dr| dr r*de
tested through suitable experiments in which a cylindrical S = 10) 8@ - @g)
stainless-steel tube was examined using PTR and the fre- =— UAGS 2 ,
quency scans were compared to theoretical best fits, thus
allowing the measurement of the thermal diffusivity of the
steel. The latter was found to be in excellent agreement with J—
literature values. This work offers a quantitative nondestrucWhere o;=\iw/a;, (i=1,2). The polar Dirac delta function
tive PTR technique for thermophysical characterization ofcan be expanded as
broad classes of composite cylindrical solids of industrial
relevance(e.g., hardened steel rods, screws, pistons) etc.

V. CONCLUSIONS

(A1.2)
azl’

which cannot be measured using flat sample geometries and S - @p) = 1 E gm(e—eo) (A1.3)
plane thermal-wave theories. O om 2, ' '
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1 & H(r,ro; w) aG(r|rg; w)
Glrlrgiw) = — 3 &m0 (r ro), (AL.4) 2= = k| . (AL1Y
27Tm:_OO r r=a ar r=a
. At r=b, the adiabatichomogeneoysNeumann condition is
1 : assumed
H(r,ro;w) = — >, ™ 9R (r,ro). (A1.5) Ssu
2 e dG(r|ro; @)
—27 =o. (A1.14)
Substituting Eq(A1.5) into Eq. (Al1.1), we obtain for the or r=b
radial function Solving Egs. (AL.10), (Al1l), (AL.12), (AL.13), and
1d| o 2 Al.14) using Eqs(A1.7) and(A1.9), we find
——{r—Rn(r,ro)]—[alz(w)+n—2}Rn(r,r0)=0. ( K 9 FGS(ALD , ( ?
rdrl or r _ <@> [1n(oar ) Kl (aab) = 1/ (09b) K aar ) ]
(A1.6) A Z(a,b) ’
The solution for the above equation is (A1.15)
r,ro) =ayl r r<a. Al.7 , ,

Rill2fo) =2nlanr) - (r=a) LD (0@ Do K)o K 0)]
Similarly, substituting Eq(A1.4) into Eq.(A1.2) and taking m= @ Z(a,b) '
Eqg. (A1.3) into account, we obtain for the radial function (AL.16)
1d[ o mz} '
Sl r—=fu(r,ro) | = | 0%(w) + = | f(ror ) ,

d r{ o o)] |:0'2 (w) 2 m(f o) .- ( 9@ )[Im(aer)Km(azb) =1} (00 Km0 )]
S(r—rp) "\ Z(a,b) ’
=0 (A1.8)
ar (A1.17)
The homogeneous solution of E@1.8) is 4= ( K%(sz))[P(a)lm(crzro) - g(@)Km(oarg)]
f(rrg) = {bmlm(gzr) +Crin(oar) (@sr=<ry), m a, Z(a,b)
"0 il +eKin(oa)  (ro=r <b) (A1.18)
(A1.9)

where 1,(2), K(2 are the complex-argument modified e :(Im(ozb))[p(a)lm(azro)—g(a)Km(azro)], (A1.19

. . . . m Z(a.b
Bessel functions of the first kind and of the second kind of (a,b)

orderm, respectively. To solve for the constamtg b, Cm:  where the various primes indicate derivatives as defined in
dm ande,, in Egs.(AL1.7) and(A1.9), the following boundary Egs. (A1.25), (A1.26), (A1.27), and (A1.28) below. Addi-

ap

conditions are employed. At=r, tional definitions of special functions are as follows:
fenlr T o)lr=rs = fm(T.Fo)le=rc, (A1.10 p(@) = Botl (1)K (058) = I (51@)K(058),  (A1.20)
d d 1 9(a) = Balm(o1@)l(02a) = (1) (028),  (AL1.2D)
ar M0 rlher =g Tl =00 AL 2 ) = plaljosb) - gl@Ky(azb), (A1.22
At r=a, thermal-wave field and flux continuity conditions with
apply Bor=Kolky  bog = Kyoolkio. (Al.22b
H(r,ro; o)|=a= G(r|rg; ®)|;=a, (A1.12)  Finally, the Green function in region Il can be expressed as
1 & @mieeo)
G(rlroiw) == >

27y e Z(a,b)

x{ = Ki(a2b)[p(@)l m(o2r) = g(@)Ki(oor) Jlm(oar o) + 11 (02b) [p(@) I m(02r) = g(@)Ki(oar ) IK(oarg) (@< <)
= Kl (opb)[p(@)lm(oar o) = 9(@)K(02r o) I m(02r) + 1 (0ab)[p(@) (02 o) = 9(@) K02l o) IKn( o) (rg<T <b)
(A1.23)
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1 <
Glrlroiw) = 5~ 2 €M fn(r,rg). (A2.3)
w —00
é_(roa ¢o ) m=
: Substituting Eq.(A2.3) into (A2.1) and taking Eq.(A2.2)
into account, we find thaft,, must satisfy the equation

i 1d| o m?
;a[rgfm(r,ro)} - [oz(w) + ;}fm(r,ro)
or-r
=- u. (A2.4)
ar
FIG. 10. Cross section of an infinitely long hollow cylinder of raaliire- The homogeneous solution of Eap2.4) is
gion 1) andb (region Il) with a spatially impulsive thermal-wave source at
(ro, o), asro=h. t (o) bl m(or) + cKm(ot) (@<sr <ry)
r,ro) =
M Aol (07) + eKin(oT)  (rg<r <b)
The impulse-response function in regidn is (A2.5)
L B o @ ) To solve the constants,, ¢, dy, ande, in Eq. (A5), the
H(r.row) = 27Tazan:2_oc Z(a,b) [In(e2ro)Kn(ozb) following boundary conditions are employed:
At r=rq, continuity of Green function and discontinuity
— Ia(ab)Ky(oarg)Jln(oyr)  (0<r<a). of its derivative
(A1.24) fn (20 r=rt = Fn (1T )=, (A2.6)
The following definitions and recursion relations for any in-
teger or noninteger are employed during the derivation of d e d o 1
the Green function and impulse-response functfon: drfm (r:ro)lr=ry dr]cm (r0)le=rg arg’ (A2.7)
I/ (aTg) :dE |V(Uf)|r:r0- (Al1.25 Homogeneous boundary conditionsrata:
r
of (r,10)
, v ke =T = hyf (1,70 o (A2.8)
IV(O'ro) =ol ,,+1(0'r0) + r_l V(O’ro), (A126) ar r=a
0
and atr=b:
14
Kl (oTg) = = oK 11(aTg) + —K,(aTy). (A1.27) af (r,r
’ Y e -k ”‘(T") = hofi (1,10 (A2.9)
=b
The Wronskian formula . r
1 Now solving Egs.(A2.6), (A2.7), (A2.8), and (A2.9), we
I (arg)K (aTg) =1 (arg)K(arg) = - (A1.28  obtain

0

- (Xm(a) ) [KeT0) = Yin(D) (02 )] (A2.10)

is very useful for simplifying products of modified Bessel ,
’ Piying P V(D) = (@]

functions and their derivatives especially in the denominator
of the Green function and impulse-response function.

Section 2. Green function for an infinitely long hollow _ (1>[Km(0ro) — Yn(®)lm(oTo)] (A2.11)
cylinder with a delta-function thermal-wave source at " \a [Yn(b) =X ()] ’ '
(rg»®g), a<rg=<b, Fig. 10. Third-kind boundary conditions

o

are prescr_ibed at bothxa and r=b. _ o 4= <Ym(b)>[Km(oro) — X(@) (02T )] (A2.12
srs< = , .
In regiona<r=<Mh, the Green function satisfies m o [Y,(b) - X(a)]
19| 9 1 P
FE[rEG(r“OM)} +Fa—(PZG(Hro,w)—o2(w)G(r|fo,w) . :(l)[Km(Uro)—Xm(a)lm((ﬂo)] (A2.13)
_ _ " [Ym(b) - Xm(a)] ’ .
__or—rg)dle - ¢ (A2.1)
B ar ' ' where the following function definitions were used:
The polar Dirac delta function can be expanded as X, (a) = Kr’,n(a'a) - lem(C"a)’ (A2.14)
L I(oa) — myl(0a)
8o @) = — im(e=eo), A2.2
(o-e0)=p, 2 ¢ (A2.2 Kiy(ob) = mK(ob)
Ym(b) = ' (D) — Mol (ob) (A2.15)
The Green function can be expanded in the basis of the com- 7! 2l
plete set of polar angle eigenfunctiofed™¢=#0}: with
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m=h/k m=hyk. (A2.15b)

Finally, the Green function can be expressed as

1 oo
Grlrgiw)=>— 2
100 = . VD)~ Xofa]
Kin(aTo[Km(oT) = Xin(@)Im(01) ] = YD) (0T o) [Kin(0T) = Xn(@)I(o1)] - (a1 <T()
Km(a'r)[Km(a'rO) - Xm(a)lm(a'ro)] - Ym(b)lm(o'r)[Km(a'rO) - Xm(a)lm(o'ro)] (rO <rs<b)
Section 3. Equivalence between a two-layer composite cylinder with a homogeneous Neumann condition at the exterior
surface(r=b) (Sec. 1) and a hollow cylinder (Sec. Il) with a homogeneous Neumann conditigrbafexterior surface) and

a homogeneous third-kind boundary condition atar (interior surface)
In Sec. |, the impulse-response function, E41.23), evaluated at=a can be rearranged as follows:

eim(<p—<po)

(A2.16)

Glalrgia) = 5 3 el
T p=—
1 ’ ’
5“ m(02D)Kin(aar o) = Kp(oob) o1 o))
X (o) . (A3.1)
g
[Irln(o-Za)Kr,‘n(o-Zb) - Ir,n(O'zb)Kr{n((Tza)] + m 1 [Ir{n((sz)Km(O'za) - Im(O'za)KFn(O'zb)]
Boal m(o1@)

In Sec. Il, the Green function at=a can also be rearranged assummg=0 corresponding to a homogeneous Neumann
condition at the exterior surface, in order to compare it with the case in Sec. |

1
1 ~[I(2b)Kn(oar o) = Ki(20) 1 i oar o) ]
o a
G(a|r0;w) = E elm(‘p %0 X 2 ’ ’ ’ ’ ’ )
2T e [ m(022)Ki(a2b) = 17 (02b) KT (058) ] + my[ 1 (0ob) K 022) — | 02) K(o2b) ]
(A3.2)
Comparing Eq(A3.1) and(A3.2), we find the following equivalence relations;
I (or@)
m, = — 1 (A3.3)
Y Baalm(01)
and
kyl (01
= A m7A1Y (A3.4)
)

On replacing the otherwise arbitrary constants and h; in Eq. (A1.23) with the foregoing expressions which contain
thermal-wave parameters from the underlayer region I, the impulse-response furdi@8) can be transformed into an
improper Green function for region Il. As such, EgA1.23) with (A3.3) and (A3.4) satisfies the field Eq5) with those
particular values ofn; andh;.
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