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In this paper, thermal-wave diagnostics by means of laser infrared photothermal radiometry(PTR)
have been used for quantitative nondestructive evaluation of cylindrical composite structures. To
quantitatively evaluate the thermal-wave field of a cylindrical composite material, the Green
function corresponding to the composite structure and the PTR measurement scheme has been
developed and subsequently the thermal-wave field has been derived. Furthermore, the
characteristics of the thermal-wave field for two cases of practical interest, i.e., a cylindrical material
with a surface coating and a cylindrical tube filled with a low thermal-conductivity fluid medium
inside, are discussed. Experimental results from a stainless-steel(AISI 302) cylinder are used to
validate the theoretical model. ©2005 American Institute of Physics. [DOI: 10.1063/1.1819999]

I. INTRODUCTION

Photothermal techniques, including photoacoustics(PA),
photothermal radiometry(PTR), and photothermal deflection
(PTD), have become powerful tools for the thermophysical
characterization and nondestructive evaluation(NDE) of
various materials in the past few decades.1–5 In all of these
applications of the photothermal techniques, measurement of
thermophysical properties and/or detection of defect struc-
tures is based on the thermal-wave fields inside the samples
which ultimately depend on a few important factors, such as
optical excitation scheme(using either an expanded beam,
1D limit, or a focused beam, 3D limit), sample materials
(homogeneous or inhomogeneous), and sample geometry
(plane or curved surface). The rapid development of photo-
thermal techniques has allowed the evaluation not only of
homogeneous materials5 but also of layered and/or buried
structures6 using either a planar or a pointlike thermal-wave
excitation source. However, research using all current photo-
thermal techniques so far has been mainly focused on
samples with flat surfaces although some attempts have been
made to evaluate cylindrical or spherical subsurface defect
structures lying below a flat surface.4,5 Very recently, the
PTR technique was extended to the study of homogeneous
cylindrical (curved surface) materials, in which both theoret-
ical model and experimental validation were performed7 on
steel rod samples. Motivated by the growing interest in ap-
plying photothermal methods to composite industrial cylin-
drical samples, in this paper we extend the PTR technique to
the study of inhomogeneous(layered) cylindrical structures.
Specifically, we present both theoretical and experimental
PTR studies on metallic-layered cylindrical samples. Based
on the Green-function method,8 the oscillating temperature
(thermal-wave field) of the cylindrical surface under photo-
thermal excitation by a periodically modulated spatially uni-
form beam is obtained and the theoretical model is further
validated by experiments. It is expected that the study of

cylindrical composite structures is especially useful for char-
acterization and nondestructive evaluation of materials, such
as cylinders with coatings, hollow tubes, and/or case-
hardened steels such as screws and nails, to name a few. This
is so because most of these cylindrical-type products usually
undergo industrial processing, such as heat treatment, after
manufacturing. Although the properties of the bulk material,
of which such products are made, can be known, the prop-
erties of the products, especially the properties of the surface
layer change significantly after the heat treatment. Given that
there is an increasing industrial interest in characterizing the
surface layer, the deviation of its thermophysical properties
from those of the untreated material can be used for nonde-
structive monitoring of the effects of processing(e.g., heat
treating) on the sample. Moreover, this technique can also be
useful in the nondestructive thickness evaluation of coatings
on cylindrical samples, if the properties of the coating and
the cylindrical sample are known. The paper is organized as
follows. We first work out an appropriate Green function
suitable for the PTR measurement scheme; then we present
an analytical expression for the thermal-wave field, followed
by discussion of the physical behavior of the PTR signal.
Finally, experimental results are presented and compared to
the theory to validate the model.

II. THEORY

The thermal-wave field in an infinitely long composite
cylindrical sample consisting of two concentric regions of
radii a (region I) andb (region II) can be derived based on
the Green-function method. The thermal conductivity and
diffusivity of regions I and II are denoted withsk1,a1d and
sk2,a2d, respectively. The geometry and the coordinates of
the boundary-value problem are shown in Fig. 1.

The composite cylindrical solid is externally excited by a
uniform-intensity laser beam of infinite extent in the direc-
tion perpendicular to the plane of the paper in Fig. 1, which
represents a transverse cross section of the infinitely long
solid. The beam is assumed to be perfectly collimated alonga)Electronic mail: chwang@mie.utoronto.ca
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the axial direction and subtending a sector of angleu0. Due
to the nature of the radiometric signal(Planck radiation)
from opaque solids such as metals and coatings, only the
oscillating temperature of the external surface of the cylinder
is of interest. To obtain an expression for the thermal-wave
field on the surface, the governing thermal-wave equation for
region II must be solved. Considering harmonic modulation
of the incident exciting light, the thermal-wave equation for
region II can be written as

¹2Tsr ,vd − s2
2svdTsr ,vd = −

1

k2
Qsr ,vd, s1d

wheres2svd=siv /a2d1/2=s1+idÎv /2a2 is the thermal wave
number in region II,v is the angular modulation frequency,
and Qsr ,vd is the volume thermal source at coordinates
sr ,wd in region II of the material. Based on the Green-
function method, the general solution for Eq.(1) can be ex-
pressed as8

Tsr,vd = sa2/k2d E E E
V0

Qsr 0,vdGsr ur 0;vddV0

+ a2R
S0

fGsr ur 0
s;vd¹0Tsr 0

s;vd

− Tsr 0
s,vd¹0Gsr ur 0

s;vdgdS0, s2d

whereS0 is the entire surface(including S2, the exterior sur-
face atr =b, andS1, the interior interface atr =a) surround-
ing the domain volumeV0 (i.e., region II) which includes the
harmonic sourceQsr 0,vd . r 0

s is the source coordinate point
in the bulk or on surfaceS0. dS0 indicates an infinitesimal
area vector along the outward direction normal to the bound-
ary surfaceS0: dS0=ndS0 with n being the outward unit
vector, as shown in Fig. 1.Gsr u r 0;vd is the Green function
which takes different forms depending on the types of the
homogeneous boundary conditions, either Dirichlet, Neu-
mann, or third kind, imposed on the investigated region II.

As discussed elsewhere,7,8 Eq. (2) gives the most general
formula to evaluate the thermal-wave field in the region un-
der investigation. However, in most cases, Eq.(2) can be

simplified depending on specific material properties and
boundary conditions imposed on the solid. For solids with
high attenuation of the incident light, such as metallic
samples, the absorption of the incident light occurs at the
surface, and therefore, the volume source can be neglected.
In this paper, we will focus on opaque materials. Moreover,
considering that illumination of the external surface by a
laser beam leads to optical-to-thermal energy conversion es-
sentially at the surface and that the thermal coupling(loss)
coefficient between a metallic solid and the surrounding gas
(air) is on the order of 10−3,9 the adiabatic second-kind(Neu-
mann) boundary condition at the external surface can be ap-
plied. Furthermore, to convert the proper Green function
(i.e., one with homogeneous boundary conditions) to an im-
proper one which can be applied to multilayered solids with
nonhomogeneous interface conditions, we assume a third-
kind boundary condition(general case) on the interior sur-
face of region II(i.e., atr =a).8 The homogeneous boundary
conditions for the appropriate Green function and inhomoge-
neous boundary conditions for the temperature field, respec-
tively, can be written as

k2U ]

]n
Gsr ur 0;vdU

r0=a
= h1Gsaur 0;vd, s3ad

k2U ]

]n
Gsr ur 0;vdU

r0=b
= 0, s3bd

− k2U ]

]n
Tsr 0,vdU

r0=a
= uF1sr 0,vdur0=a − uh1Tsur 0;vdur0=a,

s4ad

k2U ]

]n
Tsr 0,vdU

r0=b
= uF2sr 0,vdur0=b, s4bd

whereh1 fW m−2 K−1g is the heat transfer coefficient at the
inner surfaceS1. F1 andF2 are the heat fluxessW m−2d im-
posed on the interior and the exterior surface, respectively.
Therefore, in the absence of volume thermal sources in re-
gion II and in the underlying region I, and with the homoge-
neous boundary conditions for the Green function shown in
Eqs.(3) and (4), the general thermal-wave field represented
by Eq. (2) reduces for an axially infinitely long cylinder to

Tsr,w,vd = − sa2/k2dR
S1

F1sr 0,vdGsr ur 0;vddS0

+ sa2/k2dR
S2

F2sr 0,vdGsr ur 0;vddS0, s5d

whereGsr u r 0;vd is the Green function for region II which
must be derived so as to satisfy the appropriate boundary
conditions. It should be emphasized that the condition for
Eq. (2) to be reduced to Eq.(5) is that the Green function
must be proper(i.e., homogeneous boundary conditions must
be satisfied at all surfaces enclosing the volumeV0).

The details of the derivation of the Green function for
the specified geometry are given in the Appendix. Section I
of the Appendix gives the Green function and the spatial

FIG. 1. Cross section of an infinitely long composite cylinder consisting of
two concentric regions of radiia (region I) andb (region II) under external
illumination by a uniform light beam impinging on part of its surface sub-
tending a sector of angleu0.

014911-2 Wang, Mandelis, and Liu J. Appl. Phys. 97, 014911 (2005)

Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



impulse-response function in region II and I, respectively, for
a two-layer concentric cylindrical structure. The relevant
Green function to be used in the exterior regionaø r øb is
Eq. (A1.23). In the interior region 0ø r øa, the spatial
impulse-response functionHsr ,r 0;vd, Eq. (A1.24), which is
not a Green function, must be used instead. However, great
care must be taken since the Green-function derivation for
region II has employed a nonhomogeneous(continuity)
boundary condition atr =a. Therefore, the function Eq.
(A1.23) is an improper Green function. As a result, it cannot
be applied readily to obtain the thermal-wave field in region
II, because it does not satisfy the requisite homogeneous
boundary condition atr =a to validate the field Eq.(5). A
proper Green function for theequivalentexterior region II,
which satisfies a homogeneous third-kind boundary condi-
tion at r =a, must be used instead. This Green function is
given in Eq.(A2.16). However, in Eq.(A2.16) there is no
direct thermal-wave coupling to the underlayer in region I;

there is only an indirect involvement of the inner region at
thermal equilibrium through the heat transfer coefficienth1.
A direct involvement of region I into the proper Green func-
tion for region II, Eq.(A2.16), can be introduced through
correlating the thermal parameterssk1,a1d in the impulse-
response Eq.(A1.23) in region II to the(otherwise arbitrary)
constanth1 in Eq. (A2.16). This line of reasoning leads to the
equivalence relations(A3.3) and (A3.4) in Sec. III of the
Appendix. Those relations show that for the specified value
of h1, the proper Green function Eq.(A2.16), and its integral,
Eq. (5), can be used as an equivalent Green function and as a
valid thermal-wave field distribution integral, respectively, to
describe the effects of the double layer, despite the nonho-
mogeneous interior boundary conditions. In summary, the
appropriate Green function to be used in Eq.(5) can finally
be written with the observation coordinate,r, as the running
variable in the form

Gsr ur 0;vd =
1

2pa2
o

m=−`

`
eimsw−w0d

fYmsbd − Xmsadg

3H Kmss2r0dfKmss2rd − XmsadImss2rdg − YmsbdImss2r0dfKmss2rd − XmsadImss2rdg sa ø r ø r0d
Kmss2rdfKmss2r0d − XmsadImss2r0dg − YmsbdImss2rdfKmss2r0d − XmsadImss2r0dg sr0 ø r ø bd J s6d

where Imszd, Kmszd are the complex-argument modified
Bessel functions of the first kind and of the second kind of
orderm, respectively, and

Xmsad ;
Km8 ss2ad − h1mKmss2ad
Im8 ss2ad − h1mImss2ad

sm= 0,1,2 . . .d, s7d

Ymsbd ;
Km8 ss2bd
Im8 ss2bd

sm= 0,1,2 . . .d, s8d

h1m ;
Im8 ss1ad

b21Imss1ad
sm= 0,1,2, . . .d s9d

and

b21 ; k2/k1. s10d

In view of the structure of Eq.(5), the prescribed heat fluxes
F1 and F2 at the interior and exterior surface, respectively,
must be specified. In our case, there is no incident heat flux
prescribed at the interior surfacer =a, therefore,

F1sa,w0,vd = 0. s11d

Assuming that the incident light intensity on the exterior
surface is uniform, in conformity with our experimental PTR
configuration, the thermal-wave flux on that surface must be
weighted using a projection factor in the form of the cosine
of the incident uniform light intensity which can be ex-
pressed as(Fig. 1)

F2sb,w0;vd = HF0 coss90° − w0d, u1 ø w0 ø u2

0, other angles
J .

s12d

Substituting Eq.(12) into Eq. (5), we find

Tsr,w,vd =
a2F0b

k2
R

S2

Gsr ur 0;vdcoss90° − w0ddw0. s13d

Now interchangingsr ,wd⇔ sr0,w0d in the Green function
Eq. (6) so as to allow integration over the source coordinates
sr0,w0d, and lettingr0=b (surface source), Eq. (13) becomes

Tsr,w,vd =
F0

2pk2
E

u1

u2

o
m=−`

`
Kmss2rd − XmsadImss2rd
Im8 ss2bdfYmsbd − Xmsadg

3eimsw0−wd coss90° − w0ddw0. s14d

Using the identity

o
m=−`

`

eimsw−w0d = 1 + 2o
m=1

`

cosfmsw − w0dg s15d

and10

I−nszd = Inszd K−nszd = Knszd, s16d

after some algebraic manipulation, we finally obtain the
thermal-wave field in region II
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Tsr,w,vd =
F0

2pk2
H2SK0ss2rd − X0sadI0ss2rd

I08ss2bdfY0sbd − X0sadg
Dsin

u0

2
+ SK1ss2rd − X1sadI1ss2rd

I18ss2bdfY1sbd − X1sadg
Dsu0 + sinu0dcosSp

2
− wD

+ 2o
m=2

` SKmss2rd − XmsadImss2rd
Im8 ss2bdfYmsbd − Xmsadg DcosFm

2
sp − 2wdGFsinfsm+ 1du0/2g

m+ 1
+

sinfsm− 1du0/2g
m− 1

GJ . s17d

Here Xmsad and Ymsbd sm=0,1,2. . .d are given in Eqs.
(7)–(10). As a check, Eq.(17) can be easily reduced to the
single-layer(homogeneous cylinder) model7 if we set param-
eterssk1,a1d in region I equal to parameterssk2,a2d in re-
gion II, i.e., sk1,a1d→ sk2,a2d in Eqs.(9) and (10).

Equation(17) gives the thermal-wave field at any point
inside region II. From the structure of this expression, it is
seen that the frequency dependence of the thermal-wave field
of cylindrical samples under uniform illumination is a func-
tion of the thermophysical properties and geometrical dimen-
sions of both interior and exterior materials, as expected.

III. NUMERICAL SIMULATIONS

Although Eq.(17) explicitly demonstrates the relation-
ship between the thermal-wave field and the thermophysical
parameters, as well as several geometric and measurement
configuration factors for a composite cylindrical sample of
infinite axial extent, the complicated functional dependence
of the signal on the various system parameters makes any
qualitative attempts for further understanding the system be-
havior difficult. To gain more physical insight into the char-
acteristics of the ac temperature field, it is instructive to
study its dependence on each individual parameter involved
in Eq. (17). Although the thermal-wave field can be calcu-
lated at any point inside region II, our simulations will be
restricted to the sample surface atr =b, from which experi-
mental measurement data can be obtained using the PTR
technique. In all the simulations, the amplitude and phase of
the surface temperature oscillation are normalized to the cor-
responding amplitude and phase of a flat surface of a semi-
infinitely thick sample of the same material as either the
interior (region I) or the exterior solid(region II), depending
on the sample structure. The procedure of the normalization
with a flat surface renders the characteristics of the surface
curvature more pronounced, since the common frequency
dependencies of the signals from the flat and curved surfaces
can be eliminated. In the usual manner, the aforementioned
normalizations are performed in the form of the ratio and the
difference of the two individual amplitudes and phases, re-
spectively. The amplitude and phase of a flat surface are
calculated based on the well-known 1D theoretical model
which is valid under the condition that the incident-beam
size is much larger than the thermal diffusion length of the
material within the modulation frequency range of interest.
Under illumination with a constant thermal-wave fluxF0 on
the surface of the flat sample, the thermal-wave field evalu-
ated at the surface is given by11

Ts0,vd = F0S Îa

kÎv
De−ip/4, s18d

where a and k are the thermal diffusivity and the thermal
conductivity of the material, respectively. The thermal-wave
field given in Eq.(18) clearly exhibits the well-known de-
pendence of the amplitude on the inverse of the square root
of the frequency as well as a constantsp /4d phase lag of the
temperature oscillation with respect to the incident thermal
flux in a semi-infinite solid. The simulations were performed
using MATLAB in which the modified Bessel function of the
first kind and second kind with complex variables can be
calculated directly.

Figure 2 shows the effect of thickness of an aluminum
coating on an AISI 1018 steel rod(composition: 0.14%–
0.2% C, 0.6%–0.9% Mn) in a composite cylindrical system.
In the simulation, the exterior radiusb is fixed at b
=1.5 mm, while the interior radiusa is set as a variable
parameter. The thermal-wave field is calculated atw=90°
(see Fig. 1) and the beam size is assumed to be large enough
so as to cover the entire upper part of the cylinder; therefore,
u0=180° is assumed in the calculation. The amplitude and
phase of the thermal-wave field are normalized by a semi-
infinite AISI 1018 steel flat surface. The other parameters
used in the simulation areF0=1 W/m2, k1=51.9 W/m K,
a1=13.57310−6 m2/s for AISI 1018 steels,12 and k2

=237 W/m K, a2=97.1310−6 m2/s for aluminum
coating.13 It is seen that with increasing Al coating thickness,
both amplitude and phase curves of the composite structure
change toward those of a homogeneous aluminum cylinder
of the same diameter. When the thickness of the Al coating is
small compared to the thermal diffusion length in the coat-
ing, the thermal-wave field is dominated by the contribution
of the steel substrate. This can be seen in both amplitude and
phase curves in the cases of 25- and 100-mm Al coating
thicknesses when compared with that of pure 1018 steel rod,
especially at the lower frequencies. This can be understood
by the larger thermal diffusion length at lower frequencies
which results in a signal dominated by the thicker substrate
steel. The thermal diffusion lengthm=Îa /pf for AISI 1018
steel and aluminum at 10 Hz is,0.76 and 1.76 mm, respec-
tively. The contribution from the surface coating is mainly
seen at higher frequencies, at which the thermal-wave field is
dominated by the coating material due to the shorter thermal
diffusion lengths. This is manifested by the fact that both
amplitude and phase curves deviate from those of the pure
1018 steel rod and move toward the aluminum curve. As the
coating thickness increases, the contribution from the alumi-
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num coating gradually dominates and ultimately transits to
the behavior of a pure aluminum rod. This includes smaller
amplitudes, Fig. 1(a), and a shift of the phase interference
peak pattern to higher frequencies, Fig. 2(b). As a check, the
simulation results using a homogeneous model7 are also
shown in Fig. 2(b) to indicate the consistency of the two
models.

Figures 3 and 4 show, respectively, the effects on the
thermal-wave field of changing thermal conductivity and
thermal diffusivity of the coating, when the coating is rela-
tively thin, i.e.,a=1.4 mm andb=1.5 mm. In the simulation,
the surface thermal-wave field is calculated atw=90°, with
u0=180°. The other parameters used for 1018 steel and alu-
minum coating are the same as above. The amplitude and
phase are also normalized with the 1018 steel flat-surface
material. In both plots of Figs. 3 and 4, the long “tail” in
amplitude at high frequencies and “dip”(lag) in phase at
intermediate frequencies are due to the increasing thermal
contribution from the coating which is a better conductor and
diffuser than the substrate steel, as discussed in Fig. 2. In
Fig. 3, it is seen that as the thermal conductivity of the coat-
ing increases, the amplitude tail decreases, while the phase
lag (i.e., absolute magnitude of the phase) increases, as ex-

pected from the domination of the surface thermal-wave field
by the coating at higher frequencies(larger than 10 Hz).
When the frequency is above 1 kHz, the amplitude changes
slope and the phase turns around. This can be explained by
the way the data are normalized to the values of the flat
sample; at very high frequencies, the curvature will not mat-
ter compared to the small diffusion length and the signals
will settle at a constant amplitude ratio, as witnessed by the
flat parallel curves atf .10 kHz in Fig. 3(a) (zero slope) and
by the zero phase difference in Fig. 3(b), essentially corre-
sponding to two flat semi-infinite solids made of aluminum
and steel, respectively; the phase difference will become zero
no matter what the solids are, as per Eq.(18). On the con-
trary, the normalized amplitude increases, the phase lag de-
creases, Fig. 4, when the thermal diffusivity of the coating
increases. These trends are, at first glance, inconsistent with
the expected thermal-wave behavior of the cylindrical solid,
but they are the result of assuming in the simulation that
thermal diffusivity and conductivity are independent param-
eters: as can be seen from the simple flat surface Eq.(18),
under this independence assumption, the PTR signal is pro-

FIG. 2. Effect of thickness of an aluminum coating on an AISI 1018 steel
rod in a composite cylindrical structure. The parameters used in the simula-
tion are F0=1 W/m2, k1=51.9 W/m K, a1=13.57310−6 m2/s for AISI
1018 steels, andk2=237 W/m K, a2=97.1310−6 m2/s for aluminum
coating.

FIG. 3. Effect of the thermal conductivity of an aluminum coating on an
AISI 1018 steel rod in a composite cylindrical structure. The radii of the
interior solid and full cylinder area=1.4 mm andb=1.5 mm, respectively.
Thermal diffusivity of the coatinga2=97.1310−6 m2/s. k1=51.9 W/m K,
a1=13.57310−6 m2/s for AISI 1018 steels.
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portional toÎa and inversely proportional tok. The former
dependence gives rise to the observed behavior. It will be
noted, however, that if the proper dependence ofa on k is
explicitly accounted for, namely,a=k/rC, where r is the
density andC is the specific heat of the material, then
Ts0,vd~1/k1/2, as expected intuitively. The same physical
situation is encountered with the cylindrical geometry of Eq.
(17), albeit with more complicated mathematics. In practice,
the main use of these models is for fitting to experimental
data and extracting values of the thermal diffusivities and
conductivities. In the fits, the two thermophysical parameters
are taken as independent quantities and for this reason, it is
valuable to study their effects on the thermal-wave behavior
independently. Furthermore, as the thermal conductivity of
the coating changes, Fig. 3, the positions of the phase
thermal-wave interference extrema(peak and dip) remain es-
sentially unchanged, while the same positions change signifi-
cantly as the thermal diffusivity changes, Fig. 4. This is the
result of the fact that thermal diffusivity contributes to the
thermal-wave field as the bulk transport parameter, control-
ling the subsurface position of the heat centroid,11 whereas
conductivity simply controls the overall magnitude of the

field. Therefore, field dependence on the former is a much
more sensitive function of coating thickness than on the lat-
ter. This behavior is of particular significance for measuring
thermal diffusivity of the coating from the peak-to-trough
position change in the phase plot, provided the coating thick-
ness is known, or vice versa. To measurea2 without exact
knowledge of thek2 value, one may assign a plausiblek2

value, since, from Fig. 3, that value does not change the
thermal-wave interference-related relative maximum-to-
minimum distance on the frequency axis in either amplitude
or phase channel. On the other hand, from Fig. 4, changes in
a2 cause changes in that distance in both amplitude and
phase. Therefore, thea2 value can be calibrated from that
measurement and easily obtained for practical applications of
the technique.

In the foregoing discussion, the interior material and the
coating have thermal conductivities of the same or similar
order of magnitude and the surface thermal-wave field is
determined by both the interior and exterior materials de-
pending on the diameter of the cylinder and the thickness of
the coating. In practice, another special category of the two-
layer cylindrical composite structure of considerable impor-
tance is a cylindrical tube or pipe. In this case, the thermal-
wave field is determined by the tube material only, with
negligible contribution from the fluid or gas inside. For a
metallic tube filled with either air(hollow) or low thermal-
conductivity fluids, the thermal-conductivity ratio given in
Eq. (10) is usually very large.

b21 = k2/k1 < 102 W m−1 K−1/s10−2 – 10−1dW m−1 K−1

→ 103 – 104.

As a result,h1m→0, Eq.(9), which implies that the thermal-
wave field is more or less confined within the exterior region
and is determined by the interior and exterior diameters and
the thermal diffusivity of the tube material only. Figure 5
shows the effect on the thermal-wave field of the thickness of
a copper tube as the tube wall, calculated using either the
approximate formula withh1m=0 in Eq.(17) or the full for-
mula. The tube was assumed to be filled with air. As above,
the calculation was made usingw=90° and u=180°. The
other parameters used in the simulation area2=117
310−6 m2/s, k2=401 W/m K for copper13 and a1=22.5
310−6 m2/s, k1=0.0263 W/m K for air.13 The exterior di-
ameter of the tube was fixed at 2b=4.7 mm. The amplitude
and phase were normalized with those from a semi-infinite
copper material with a flat surface. As a reference, the
thermal-wave field of a solid copper cylinder is also shown
in the plot. It is seen from Fig. 5(a) that the normalized
amplitude increases rapidly at lower frequencies as the wall
thickness of the tube decreases, representing a rapid depar-
ture from the solid copper cylinder with enhanced thermal-
wave confinement within the copper tube. At higher frequen-
cies, the thermal diffusion length becomes shorter and the
walls of the copper tube become “thermally thick,”11 thus
shifting the normalized amplitude toward unity, as expected.
In Fig. 5(b) the phase exhibits increased thermal-wave inter-
ference character with decreasing wall thickness and the in-
terference

FIG. 4. Effect of the thermal diffusivity of an aluminum coating on an AISI
1018 steel rod in a composite cylindrical structure. The radii of the interior
solid and full cylinder area=1.4 mm andb=1.5 mm, respectively. Thermal
conductivity of the coatingk2=237 W/m K. k1=51.9 W/m K, a1=13.57
310−6 m2/s for AISI 1018 steels.
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pattern(thermal standing wave) extremum shifts to higher
frequencies and broadens, as expected. At frequencies
,10 kHz, the effects of curvature become less pronounced
due to the decreasing thermal diffusion length, with the result
that the normalized phase difference tends to be zero as ex-
pected from planar structures. In this limit, the thermal wave
in the wall is purely one dimensional in an effectively semi-
infinite solid and Eq.(18) becomes valid, which also renders
the amplitude ratio flat and equal to unity.

In order to see the difference between the exact and ap-
proximate calculations, the approximate calculation with
h1m=0 is also shown in Figs. 5(a) and 5(b) (empty squares).
The approximate calculation is performed for the case ofa
=2.2 mm andb=2.35 mm only, to avoid overcrowding the
plots. Detailed examination of the approximate and exact
calculations in this and other simulations reveals that differ-
ences between the two results in both amplitude and phase
appear in the second decimal place, which implies an excel-
lent approximation. Therefore, for a hollow metallic tube, the
thermal-wave field is only a function of tube dimension, and
of thermal diffusivity and conductivity of the tube material.

This conclusion provides a welcome simplicity for measur-
ing thermophysical properties of hollow cylindrical samples.

The effect of the thermal diffusivity of the tube on the
thermal-wave field is shown Fig. 6. Again, the signal is nor-
malized with a semi-infinite copper sample with a flat sur-
face, and the temperature is measured atw=90° and u
=180°. The radii of the interior and exterior of the tube are
a=2.1 mm andb=2.35 mm, respectively. The thermal con-
ductivity of the tube is assumed to be 401 W/m K. In a
manner similar to that observed in Fig. 4(a), the normalized
amplitude increases as the thermal diffusivity increases ow-
ing to the nominally independent nature of the conductivity
and diffusivity parameters. The most important feature that
can be seen from Fig. 6(b), common with Fig. 4, is that the
positions of the thermal-wave phase interference extrema
change very sensitively with the change in thermal diffusiv-
ity of the tube material, shifting to higher frequencies with
increasing values of this parameter, as expected. The phase
profile (shape), however, does not change. Detailed exami-
nation of the various phase curves in Fig. 6(b) shows that all
the curves corresponding to different thermal diffusivities are
shifted along the frequency axis by a factor which depends
monotonically on the thermal diffusivity of the material. This

FIG. 5. Effect of the wall thickness of a copper tube on the thermal-wave
field, calculated using either an approximate formula[h1m=0 in Eq. (17)—
black squares) or the full Eq.(17)—solid or dashed line]. The tube is filled
with air. The parameters used in the simulation area2=117 m2/s, k2

=401 W/m K for copper anda1=22.5310−6 m2/s, k1=0.0263 W/m K
for air.

FIG. 6. Effect of the thermal diffusivity of a copper tube on the thermal-
wave field. The interior and exterior radii of the tube area=2.1 mm and
b=2.35 mm, respectively. Thermal conductivity of the tube is assumed to be
401 W/m K.
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is a very important feature for measuring the thermal diffu-
sivity of the tube material as it can be uniquely determined
by the position of phase peak or trough.

As can be seen from Eq.(17), the thermal-wave field is
also a function of the measurement anglew. Although all the
above simulations are calculated atw=90°, the surface
thermal-wave field measured by PTR depends on the mea-
surement arrangement in practice. From the structure of Eq.
(17), and in comparison with its one-layer analog in Ref. 7,
Eq. (11), it is seen that the dependence of the thermal-wave
field on the measurement anglew is the same as that for
homogeneous solids, which has been discussed in detail
previously.7 Nevertheless, for the sake of completeness, the
measurement angle effect will be briefly addressed in the
experimental section.

IV. EXPERIMENTAL RESULTS

In order to validate the theoretical model, PTR experi-
ments were performed using a stainless-steel tube(AISI 302,
composition: 0.15% C, 17%–19% Cr, 8%–10% Ni, and 2%
Mn) with interior and exterior diameters of 2.4 and 3.0 mm,
respectively. Tube-type hollow samples were chosen because
(a) the sample structure is simple because the inner layer is
air. For the purpose of validation of the theoretical model,
the simpler the sample structure, the better the results, since
fewer physical and geometrical parameters will be involved;
(b) AISI 302 stainless-steel tubes are common products used
as gas pipes, therefore, they are easy to obtain; and(c) the
thermophysical properties of the material have been mea-
sured. Further applications of the model to cylindrical coat-
ing materials and hardened steel rods are in progress and will
be reported later. The experimental setup is shown in Fig. 7.
The thermal-wave optical source was a high-power semicon-
ductor laser(Jenoptik JOLD-X-CPXL-1L,10 W). The out-
put of the laser was modulated by a periodic current driver
(high-power laser diode driver, Thor Labs), the frequency of

which was controlled by the computer and also served as the
lock-in reference. The beam was expanded, collimated, and
then focused onto the surface of the sample with a spot size
ranging from,1 to 21 mm by adjusting the position of the
converging lens. The harmonically modulated infrared radia-
tion from the sample surface was collected by an off-axis
paraboloidal mirror system and detected by a HgCdTe detec-
tor (EG&G Judson Model J15016-M204-S204-S01M-WE-
60). The signal from the detector was amplified by a low-
noise preamplifier(EG&G Judson PA101) and then fed into
a lock-in amplifier(EG&G Instruments, Model Model 7265)
interfaced with a PC.

The experimental setup was initially optimized using a
flat sample such that both sample and detector were on the
focal plane of the off-axis mirrors as shown in Fig. 7. As
already discussed elsewhere,7 when the flat sample was re-
placed by a cylindrical surface, some adjustment had to be
made such that the top point of the sample(i.e., the point
tangential to the focal plane) was exactly placed(within ex-
perimental error) at the focal point of the paraboloidal mirror
system. Therefore, the detector was monitoring the thermal-
wave field emissions from this point. Thermal radiation in-
formation from other points of the sample would not be re-
ceived by the detector, which is especially true for curved
surfaces due to the strong defocusing(receding) effect of the
curvature. After this adjustment, the laser beam was ex-
panded to,20 mm in diameter by moving the lens so that
the laser beam was large enough to conform to the “infinite”
z-axis illumination assumed in the model and also to validate
the 1D model in the case of a flat sample. Figure 8 shows the
experimental results and the corresponding theoretical fits for
the aforementioned AISI 302 stainless-steel tube. The fitting
was performed using the full expression Eq.(17) and the
positions of the interferometric extrema in the phase
frequency-scan curve. In the fitting process, the thermal dif-

FIG. 7. Experimental setup for PTR of cylindrical solids.
FIG. 8. Experimental and best-fit results(amplitude and phase) for a cylin-
drical stainless-steel tube(AISI 302) with interior and exterior diameters of
2.40 mm and 3.0 mm, respectively.
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fusivity of the tube material and the laser incidence anglew
are set as the only fitting parameters. The corresponding the-
oretical amplitude value in Fig. 8 was obtained using the
values of these two fitted parameters as obtained from the
phase channel without further adjustment. The only required
input parameters for the fitting are the geometric dimensions
of the tube, i.e., interior and exterior diameters. It is seen that
both amplitude and phase show excellent agreement between
experimental data and theoretical model best fits. The best-
fitted AISI 302 steel thermal diffusivity in Fig. 8 was found
to be 3.98310−6 m2/s, which is in excellent agreement with
the literature value of 3.91310−6 m2/s for this type of
steel.13 Considering the experimental arrangement in which
the laser beam is incident onto the sample at an angleF
s30°,35°d, Fig. 7, in the fitting process we also introduced
the measurement anglew as a fitting parameter to allow us to
take into account this experimental factor. The best-fit angle
result isw=57.3° (w is as defined in Fig. 1) which translates
into F=32.7° in Fig. 7, again, exhibiting very good agree-
ment with the angle measured in the experimental setup.

V. CONCLUSIONS

We have formulated a thermal-wave model suitable for
characterizing cylindrical composite(layered) structures us-
ing photothermal radiometry. Based on the derived Green
functions for the two-layer cylindrical structures, the
thermal-wave field from a cross section of an infinitely long
two-layer cylinder was obtained. The physical characteristics
of the thermal-wave field from coated cylindrical samples
and hollow tubular samples have been discussed. As ex-
pected, the PTR signal of the coated cylindrical samples is a
weighted contribution of both the interior and exterior mate-
rials depending on modulation frequency and thermal diffu-
sivity which control the extent of the thermal probe length. It
was found that both thermal conductivity and diffusivity of
the coating affect the behavior of the PTR signal. However,
only the thermal diffusivity affects the frequency positions of
the thermal-wave field maxima and minima, especially in the
phase channel. In the case of hollow opaque tubes(or tubes
filled with low thermal-conductivity fluids), the PTR signal
was further found to be dependent on the thermal diffusivity
of the tube material only. The theoretical model was further
tested through suitable experiments in which a cylindrical
stainless-steel tube was examined using PTR and the fre-
quency scans were compared to theoretical best fits, thus
allowing the measurement of the thermal diffusivity of the
steel. The latter was found to be in excellent agreement with
literature values. This work offers a quantitative nondestruc-
tive PTR technique for thermophysical characterization of
broad classes of composite cylindrical solids of industrial
relevance(e.g., hardened steel rods, screws, pistons, etc.)
which cannot be measured using flat sample geometries and
plane thermal-wave theories.
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APPENDIX

Section 1. Green function and spatial impulse-response
functions for an infinitely long composite cylinder with a
delta-function thermal-wave source atsr0,w0d, aø r0øb,
Fig. 9. A homogeneous Neumann condition is prescribed at
r =b.

In region I with thermophysical propertiessk1,a1d, Fig.
9, the spatial thermal-wave impulse-response function,
Hsr ,r 0;vd, satisfies

1

r

]

]r
Fr

]

]r
Hsr ,r 0;vdG +

1

r2

]2

]w2Hsr ,r 0;vd − s1
2svdHsr ,r 0;vd

= 0. sA1.1d

In region II with thermophysical propertiessk2,a2d, the
Green function satisfies8

1

r

]

]r
Fr

]

]r
Gsr ur 0;vdG +

1

r2

]2

]w2Gsr ur 0;vd − s2
2svdGsr ur 0;vd

= −
dsr − r0ddsw − w0d

a2r
, sA1.2d

wheresi =Îiv /ai, si =1,2d. The polar Dirac delta function
can be expanded as

dsw − w0d =
1

2p
o

m=−`

`

eimsw−w0d. sA1.3d

Both Green function and impulse-response function in re-
gions I and II can be expanded in the basis of the complete
set of polar angle eigenfunctionsheimsw−w0dj:

FIG. 9. Cross section of an infinitely long composite cylindrical solid con-
sisting of two concentric regions of radiia (region I) andb (region II) with
a spatially impulsive thermal-wave source atsr0,w0d, aø r0øb.
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Gsr ur 0;vd =
1

2p
o

m=−`

`

eimsw−w0dfmsr,r0d, sA1.4d

Hsr ,r 0;vd =
1

2p
o

m=−`

`

eimsw−w0dRnsr,r0d. sA1.5d

Substituting Eq.(A1.5) into Eq. (A1.1), we obtain for the
radial function

1

r

d

dr
Fr

]

]r
Rnsr,r0dG − Fs1

2svd +
n2

r2GRnsr,r0d = 0.

sA1.6d

The solution for the above equation is

Rnsr,r0d = anInss1rd sr ø ad. sA1.7d

Similarly, substituting Eq.(A1.4) into Eq. (A1.2) and taking
Eq. (A1.3) into account, we obtain for the radial function

1

r

d

dr
Fr

]

]r
fmsr,r0dG − Fs2

2svd +
m2

r2 G fmsr,r0d

= −
dsr − r0d

a2r
. sA1.8d

The homogeneous solution of Eq.(A1.8) is

fmsr,r0d = HbmImss2rd + cmKmss2rd sa ø r ø r0d,

dmImss2rd + emKmss2rd sr0 ø r ø bd J
sA1.9d

where Imszd, Kmszd are the complex-argument modified
Bessel functions of the first kind and of the second kind of
orderm, respectively. To solve for the constantsam, bm, cm,
dm, andem in Eqs.(A1.7) and(A1.9), the following boundary
conditions are employed. Atr =r0,

ufmsr,r0dur=r0
+ = ufmsr,r0dur=r0

−, sA1.10d

d

dr
ufmsr,r0dur=r0

+ −
d

dr
ufmsr,r0dur=r0

− = −
1

a2r0
. sA1.11d

At r =a, thermal-wave field and flux continuity conditions
apply

uHsr ,r 0;vdur=a = uGsr ur 0;vdur=a, sA1.12d

Uk1
]Hsr ,r 0;vd

]r
U

r=a
= Uk2

]Gsr ur 0;vd
]r

U
r=a

. sA1.13d

At r =b, the adiabatic(homogeneous) Neumann condition is
assumed

U ]Gsr ur 0;vd
]r

U
r=b

= 0. sA1.14d

Solving Eqs. (A1.10), (A1.11), (A1.12), (A1.13), and
(A1.14) using Eqs.(A1.7) and (A1.9), we find

am = S b21

a2a
D fImss2r0dKm8 ss2bd − Im8 ss2bdKmss2r0dg

Zsa,bd
,

sA1.15d

bm = − Spsad
a2

D fImss2r0dKm8 ss2bd − Im8 ss2bdKmss2r0dg
Zsa,bd

,

sA1.16d

cm = Sgsad
a2

D fImss2r0dKm8 ss2bd − Im8 ss2bdKmss2r0dg
Zsa,bd

,

sA1.17d

dm = − SKm8 ss2bd
a2

D fpsadImss2r0d − gsadKmss2r0dg
Zsa,bd

,

sA1.18d

em = S Im8 ss2bd
a2

D fpsadImss2r0d − gsadKmss2r0dg
Zsa,bd

, sA1.19d

where the various primes indicate derivatives as defined in
Eqs. (A1.25), (A1.26), (A1.27), and (A1.28) below. Addi-
tional definitions of special functions are as follows:

psad ; b21Imss1adKm8 ss2ad − Im8 ss1adKmss2ad, sA1.20d

gsad ; b21Imss1adIm8 ss2ad − Im8 ss1adImss2ad, sA1.21d

Zsa,bd ; psadIm8 ss2bd − gsadKm8 ss2bd, sA1.22d

with
b21 ; k2/k1 b21 ; k2s2/k1s1. sA1.22bd

Finally, the Green function in region II can be expressed as

Gsr ur 0;vd =
1

2pa2
o

m=−`

`
eimsw−w0d

Zsa,bd

3H − Km8 ss2bdfpsadImss2rd − gsadKmss2rdgImss2r0d + Im8 ss2bdfpsadImss2rd − gsadKmss2rdgKmss2r0d sa ø r ø r0d
− Km8 ss2bdfpsadImss2r0d − gsadKmss2r0dgImss2rd + Im8 ss2bdfpsadImss2r0d − gsadKmss2r0dgKmss2rd sr0 ø r ø bd J .

sA1.23d
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The impulse-response function in region(I) is

Hsr ,r 0;vd =
b21

2pa2a
o

n=−`

`
einsw−w0d

Zsa,bd
fInss2r0dKn8ss2bd

− In8ss2bdKnss2r0dgInss1rd s0 ø r ø ad.

sA1.24d

The following definitions and recursion relations for any in-
teger or nonintegern are employed during the derivation of
the Green function and impulse-response function:10

In8ssr0d =
d

dr
uInssrdur=r0

, sA1.25d

In8ssr0d = sIn+1ssr0d +
n

r0
Inssr0d, sA1.26d

Kn8ssr0d = − sKn+1ssr0d +
n

r0
Knssr0d. sA1.27d

The Wronskian formula

In8ssr0dKnssr0d − Inssr0dKn8ssr0d =
1

r0
sA1.28d

is very useful for simplifying products of modified Bessel
functions and their derivatives especially in the denominator
of the Green function and impulse-response function.

Section 2. Green function for an infinitely long hollow
cylinder with a delta-function thermal-wave source at
sr0,w0d, aø r0øb, Fig. 10. Third-kind boundary conditions
are prescribed at both r=a and r=b.

In regionaø r øb, the Green function satisfies8

1

r

]

]r
Fr

]

]r
Gsr ur 0;vdG +

1

r2

]2

]w2Gsr ur 0;vd − s2svdGsr ur 0;vd

= −
dsr − r0ddsw − w0d

ar
. sA2.1d

The polar Dirac delta function can be expanded as

dsw − w0d =
1

2p
o

m=−`

`

eimsw−w0d. sA2.2d

The Green function can be expanded in the basis of the com-
plete set of polar angle eigenfunctionsheimsw−w0dj:

Gsr ur 0;vd =
1

2p
o

m=−`

`

eimsw−w0dfmsr,r0d. sA2.3d

Substituting Eq.(A2.3) into (A2.1) and taking Eq.(A2.2)
into account, we find thatfm must satisfy the equation

1

r

d

dr
Fr

]

]r
fmsr,r0dG − Fs2svd +

m2

r2 G fmsr,r0d

= −
dsr − r0d

ar
. sA2.4d

The homogeneous solution of Eq.(A2.4) is

fmsr,r0d = HbmImssrd + cmKmssrd sa ø r ø r0d
dmImssrd + emKmssrd sr0 ø r ø bd J .

sA2.5d

To solve the constantsbm, cm, dm, and em in Eq. (A5), the
following boundary conditions are employed:

At r =r0, continuity of Green function and discontinuity
of its derivative

fmusr,r0dur=r0
+ = fmusr,r0dur=r0

−, sA2.6d

d

dr
fmusr,r0dur=r0

+ −
d

dr
fmusr,r0dur=r0

− = −
1

ar0
. sA2.7d

Homogeneous boundary conditions atr =a:

kU ]fmsr,r0d
]r

U
r=a

= h1fmusr,r0dur=a, sA2.8d

and atr =b:

− kU ]fmsr,r0d
]r

U
r=b

= h2fmusr,r0dur=b. sA2.9d

Now solving Eqs.(A2.6), (A2.7), (A2.8), and (A2.9), we
obtain

bm = SXmsad
a

D fKmssr0d − YmsbdImss2r0dg
fYmsbd − Xmsadg

, sA2.10d

cm = S 1

a
D fKmssr0d − YmsbdImssr0dg

fYmsbd − Xmsadg
, sA2.11d

dm = SYmsbd
a

D fKmssr0d − XmsadImss2r0dg
fYmsbd − Xmsadg

, sA2.12d

em = S 1

a
D fKmssr0d − XmsadImssr0dg

fYmsbd − Xmsadg
, sA2.13d

where the following function definitions were used:

Xmsad ;
Km8 ssad − m1Kmssad
Im8 ssad − m1Imssad

, sA2.14d

Ymsbd ;
Km8 ssbd − m2Kmssbd
Im8 ssbd − m2Imssbd

, sA2.15d

with

FIG. 10. Cross section of an infinitely long hollow cylinder of radiia (re-
gion I) andb (region II) with a spatially impulsive thermal-wave source at
sr0,w0d, aø r0øb.
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m1 ; h1/k m2 ; h2/k. sA2.15bd

Finally, the Green function can be expressed as

Gsr ur 0;vd =
1

2pa
o

m=−`

`
eimsw−w0d

fYmsbd − Xmsadg

3H Kmssr0dfKmssrd − XmsadImssrdg − YmsbdImssr0dfKmssrd − XmsadImssrdg sa ø r ø r0d
KmssrdfKmssr0d − XmsadImssr0dg − YmsbdImssrdfKmssr0d − XmsadImssr0dg sr0 ø r ø bd J . sA2.16d

Section 3. Equivalence between a two-layer composite cylinder with a homogeneous Neumann condition at the exterior
surfacesr =bd (Sec. I) and a hollow cylinder (Sec. II) with a homogeneous Neumann condition at r=b (exterior surface) and
a homogeneous third-kind boundary condition at r=a (interior surface).

In Sec. I, the impulse-response function, Eq.(A1.23), evaluated atr =a can be rearranged as follows:

Gsaur0;vd =
1

2pa2
o

m=−`

`

eimsw−w0d

3

1

a
bIm8 ss2bdKmss2r0d − Km8 ss2bdImss2r0dc

fIm8 ss2adKm8 ss2bd − Im8 ss2bdKm8 ss2adg +
Im8 ss1ad

b21Imss1ad
fIm8 ss2bdKmss2ad − Imss2adKm8 ss2bdg

. sA3.1d

In Sec. II, the Green function atr =a can also be rearranged assumingm2=0 corresponding to a homogeneous Neumann
condition at the exterior surface, in order to compare it with the case in Sec. I

Gsaur0;vd =
1

2pa2
o

m=−`

`

eimsw−w0d 3

1

a
fIm8 ss2bdKmss2r0d − Km8 ss2bdImss2r0dg

fIm8 ss2adKm8 ss2bd − Im8 ss2bdKm8 ss2adg + m1fIm8 ss2bdKmss2ad − Imss2adKm8 ss2bdg
.

sA3.2d

Comparing Eq.(A3.1) and (A3.2), we find the following equivalence relations;

m1 =
Im8 ss1ad

b21Imss1ad
sA3.3d

and

h1 =
k1Im8 ss1ad
Imss1ad

. sA3.4d

On replacing the otherwise arbitrary constantsm1 and h1 in Eq. (A1.23) with the foregoing expressions which contain
thermal-wave parameters from the underlayer region I, the impulse-response function(A1.23) can be transformed into an
improper Green function for region II. As such, Eq.(A1.23) with (A3.3) and (A3.4) satisfies the field Eq.(5) with those
particular values ofm1 andh1.
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