On the sensitivity of thermophotonic lock-in imaging and polarized Raman spectroscopy to early dental caries diagnosis

Nima Tabatabaei
Andreas Mandelis
Mehdi Dehghany
Kirk H. Michaelian
Bennet T. Amaechi
Dental caries is a chronic disease identified as the leading cause of tooth loss among children and adult populations. The precursor of the disease is a minute amount of mineral loss (demineralization) from the enamel surface as a result of decomposition of hydroxyapatite crystals in the acidic environment of dental plaque. Given enough time, such early caries turns into a cavity, which requires surgical intervention. However, if the caries is detected early enough, not only can it be stopped (i.e., arrested) from progressing deeper into enamel, but also it can be healed (i.e., remineralized) using, for instance, oral hygiene counseling or fluoride therapy. Unfortunately, conventional diagnostic modalities currently used in dentistry lack the sensitivity to detect early caries. The authors’ intention is to compare the ability of polarized Raman spectroscopy and thermophotonic imaging to make early caries diagnosis. Extracted human teeth with no visible stain or defects were artificially demineralized in accordance to a well-known protocol in dentistry for simulated early caries development at several demineralization stages. Samples were then inspected using polarized Raman spectroscopy and thermophotonic imaging. The sensitivities of these two diagnostic modalities are compared, and the results are verified using transverse micro-radiography. It was found that compared to polarized Raman spectroscopy, thermophotonic imaging exhibits superior sensitivity to very early stages of demineralization.

Keywords: thermophotonic lock-in imaging; polarized Raman spectroscopy; dental caries; early caries detection; demineralization.

Address all correspondence to: Andreas Mandelis, University of Toronto, Center for Advanced Diffusion-Wave Technologies, Department of Mechanical and Industrial Engineering, Toronto, Ontario, M5S 3G8, Canada.

Abstract. Dental caries is the leading cause of tooth loss, which can promptly be prevented if detected in early stages of progression. Unfortunately, conventional diagnostic modalities currently used in dentistry lack the sensitivity to detect early caries. The authors’ intention is to compare the ability of polarized Raman spectroscopy and thermophotonic imaging to make early caries diagnosis. Extracted human teeth with no visible stain or defects were artificially demineralized in accordance to a well-known protocol in dentistry for simulated early caries development at several demineralization stages. Samples were then inspected using polarized Raman spectroscopy and thermophotonic imaging. The sensitivities of these two diagnostic modalities are compared, and the results are verified using transverse micro-radiography. It was found that compared to polarized Raman spectroscopy, thermophotonic imaging exhibits superior sensitivity to very early stages of demineralization.
altered in any way prior to the experiments. In order to apply controlled demineralization on samples, a demineralizing solution was prepared. The solution was an acidified gel, consisting of 0.1 M lactic acid gelled to a thick consistency with 6% w/v hydroxyethylcellulose and the pH adjusted to 4.5 with 0.1 M NaOH. Demineralization with acidified gel approximates the natural lesion as it mimics the properties of actual dental plaque in the oral cavity.8 Our previous studies show that this solution can produce a subsurface lesion in enamel with a sound surface layer, a characteristic of early caries.6,7,9 To see the contrast between early caries and the surrounding healthy areas, the interrogated surface of the sample was covered with two coatings of commercial transparent nail polish except for rectangular windows, henceforth referred to as treatment windows [Fig. 1 (c)]. Sample S1 had two treatment windows on the interrogated surface while sample S2 had only one treatment window. The demineralization on the windows was carried out by submerging the samples upside down in a polypropylene test tube containing 30 ml of demineralizing solution. The left and right treatment sides of commercial transparent nail polish except for rectangular windows, henceforth referred to as treatment windows [Fig. 1 (c)]. Sample S1 had two treatment windows on the interrogated surface of the sample was covered with two coatings of commercial transparent nail polish except for rectangular windows, henceforth referred to as treatment windows [Fig. 1 (c)]. Sample S1 had two treatment windows on the interrogated surface of the sample was covered with two coatings. After the treatment the transparent nail polish was removed from the interrogated surfaces with acetone, and inspection was carried out using our thermophotonic imaging and polarized Raman spectroscopy systems.

The thermophotonic experimental setup was built using a continuous-wave fiber-coupled 808-nm near-infrared (NIR) laser illuminating the sample (JENOPTIK, Germany) with beam size of 20 mm and a fluence of 2 W/cm², a mid-infrared camera focused on the interrogated surface of the sample (Cedip Titanium 520 M, France, spectral range of 3.6 to 5.1 μm and frame rate of 360 Hz), a signal generation/acquisition device (National Instruments NI-6229 BNC), and a 4-axis sample positioning system, Fig. 1(a).9 The laser power was modulated sinusoidally by the signal generation device at 1 Hz to generate photothermal waves inside the sample. The data acquisition/signal processing program (designed in LabView environment) captured and averaged the camera frames and their corresponding reference/modulation signal values. Finally, amplitude and phase images were calculated using a standard 2D quadrature demodulation of the camera data as graphically shown in Fig. 1(b).9

Raman spectra of the tooth samples were acquired using a fully automated Renishaw inVia confocal Raman microscope. Excitation was provided by a linearly polarized 633-nm Spectra Physics He-Ne laser with an output power of 30 mW and beam size of 1 x 1 mm² yielding an optical fluence of 3 W/cm² at the laser output. In this system, a set of mirrors, positioned on automated stages, directs the laser beam to the microscope compartment where a Raman excitation spot size of approximately 50 μm is obtained through a 50x objective lens. Scattered light is collected using a 180-deg backscattering geometry and directed to an optical notch filter that eliminates the intense Rayleigh scattering. A rotary stage holds a half-wave plate (HWP) and an analyzer in the beam path at normal incidence; these components are used to determine the polarization characteristics of the Raman spectra of tooth enamel. The scattered light is dispersed by an 1800 line/mm holographic diffraction grating and focused on a CCD camera with a concave lens. Parallel- and cross-polarized components of the scattered light were recorded at a series of points on the enamel of the tooth samples. The HWP was employed only for the parallel polarization measurements. All spectra were recorded using 50% of the available laser power, with a 50-s acquisition time and five accumulations. The Raman band at 960 cm⁻¹, due to the totally symmetric phosphate (PO₄³⁻) vibration within hydroxyapatite, exhibits strong polarization dependence; accordingly spectra were acquired only in the 800 to 1100 cm⁻¹ range, as shown in Figs. 1(f) and 1(g). Peak intensities were obtained by numerically fitting the data to Lorentzian functions. Several experiments showed that the background intensity in the spectra has negligible effects on the parallel/cross-polarization intensity ratios for healthy and demineralized enamel.

The use of short laser wavelengths in Raman spectroscopy sometimes gives rise to significant fluorescence backgrounds that mask weak Raman bands. In this work the 633 nm excitation yielded acceptable backgrounds which did not adversely affect intensity measurements. Specifically, baseline effects were minimal as there were no stains on the samples and therefore the capability of Raman spectroscopy with regard to caries detection was not affected.10 This wavelength is slightly shorter than that used in the thermophotonic system, an advantage in PRS since the intensity of Raman scattering is inversely proportional to the fourth power of excitation wavelength (∝ 1/λ⁴).

Figure 2 represents the thermophotonic phase images of S1 and S2 before and after the treatment using identical linear contrast mapping. Figures 2(a) and 2(b) show that even before applying the artificial demineralization, thermophotonic imaging can sense the inhomogeneities of the sample. The phase image of S1 after the treatment, Fig. 2(c), clearly reveals the
Figure 2 Thermophotonic phase images of (a) S1 and (b) S2 before demineralization treatment and (c) S1 and (d) S2 after treatment using the linear contrast mapping shown in the figure. The squares (20 × 20 pixels) indicate the regions used for statistical analysis.

Demineralization, on the other hand, always starts from the close-to-surface enamel with micro-cavities, increasing light scattering and absorption near the surface and therefore shifting the thermal-wave centroid towards the interrogated surface of enamel. Moreover, it can be seen that thermophotonic imaging can reliably differentiate between the healthy, 2-D, 4-D, and 20-D regions. Consequently, the bar plots suggest that polarized Raman spectroscopy is not sensitive enough to detect the onset or the very early stages of demineralization while thermophotonic imaging can reliably detect it. The reason for the enhanced sensitivity of thermophotonic imaging is the fact that, unlike Raman spectroscopy, this form of detection belongs to the group of energy conversion methodologies with reduced signal baseline and enhanced dynamic range advantages where one excites optically and detects thermally whereas in Raman spectroscopy excitation and detection are both optical. Finally, Fig. 3(c) shows the TMR profiles obtained at the center of the artificial caries created in S1 and S2 as the verification of the comparison made in this paper. It can be seen that both of the artificially

where $I_{//}$ and I_{\bot} are the peak to fluorescence baseline intensity of the 960 cm$^{-1}$ band in the parallel and cross spectra, respectively. However, the question remains as to how sensitive the ρ_{960} is to the early structural changes in enamel. The bar plot of Fig. 3(a) represents the mean ρ_{960} obtained from S1 and S2 along with the standard deviation of these measurements over the healthy, 2-D, 4-D, and 20-D regions. The number next to each error bar depicts the number of Raman experiments carried out on that region. The 47 Raman measurements suggest that one cannot statistically differentiate the 2-D and 4-D treatment windows from healthy areas, nor can one garner any statistical difference between the 2-D and 4-D early caries. However, the well-developed 20-D caries of S2 is detectable by polarized Raman spectroscopy. In analogy to Fig. 3(a), the bar plot of Fig. 3(b) shows the mean thermophotonic phase values and their standard deviations over the regions of interest in S1 and S2 (shown by the squares in Fig. 2). It can be seen that the phase value decreases as more mineral is removed from enamel to manifest the shifting of the thermal-wave centroid towards the interrogated surface of enamel. Moreover, it can be seen that thermophotonic imaging can reliably differentiate between the healthy, 2-D, 4-D, and 20-D regions. Consequently, the bar plots suggest that polarized Raman spectroscopy is not sensitive enough to detect the onset or the very early stages of demineralization while thermophotonic imaging can reliably detect it. The reason for the enhanced sensitivity of thermophotonic imaging is the fact that, unlike Raman spectroscopy, this form of detection belongs to the group of energy conversion methodologies with reduced signal baseline and enhanced dynamic range advantages where one excites optically and detects thermally whereas in Raman spectroscopy excitation and detection are both optical. Finally, Fig. 3(c) shows the TMR profiles obtained at the center of the artificial caries created in S1 and S2 as the verification of the comparison made in this paper. It can be seen that both of the artificially

$\rho_{960} = \frac{I_{\bot}}{I_{//}}$, (1)

Figure 3 The mean (a) Raman depolarization ratio and (b) thermophotonic phase values obtained in healthy, 2-D, 4-D, and 20-D regions of samples S1 and S2 along with their standard deviations. (c) The mean transverse micro-radiography mineral profiles of 2-D, 4-D, and 20-D treatment windows.
generated caries of S1 are truly in the initial stages of formation when they can easily get arrested and remineralized, but the caries in S2 has undergone a gigantic mineral loss near the surface, which may even be detected by visual inspection, Fig. 1(e).

In conclusion, using a well-known controlled dental demineralization protocol, we have compared the sensitivity of polarized Raman spectroscopy and thermophotonic lock-in imaging to the structural changes of early enamel caries. Our results show that polarized Raman spectroscopy cannot reliably detect the onset of early caries, while thermophotonic imaging not only can detect such early structural changes, but also images the extent of the caries with high contrast. The results are verified by destructive transverse micro-radiography mineral profiles.

Acknowledgments

We are grateful to the Ontario Ministry of Research and Innovation (MRI) for the 2007 (inaugural) Discovery Award to A. M., to the Canada Research Chairs Programs, the Federal and Provincial Governments for a CFI-ORF award and the Natural Sciences and Engineering Research Council of Canada for several Discovery Grants to A. M.

References