Hamilton-Jacobi formulation and quantum theory of thermal wave
propagation in the solid state

Andreas Mandelis
Photoacoustics Laboratory, Department of Mechanical Engineering, University of Toronto, Toronto, Ontario,
Canada M5S 144

(Received 27 December 1984; accepted for publication 7 June 1985)

A mathematical formalism has been developed for the description of the propagation of thermal
waves in solids. The theory is based on the analogy between thermal waves and mechanics as
manifested upon expressing the heat conduction equation in the Hamilton—Jacobi formalism. The
transition of the classical formulation to quantum mechanics is accomplished by defining thermal
wave operators for the generalized coordinates and the canonically conjugated momenta. The
resulting theory shows that propagating, albeit heavily damped, thermal waves can be formally
described by a quantum mechanical thermal harmonic oscillator (THO}. The expectation values
of observables, derived from Ehrenfest’s theorems, are found to be of practical importance for the
description of the thermal wave field in solids with inhomogeneous thermal and thermodynamic

properties.

I. INTRODUCTION

In recent years photoacoustic spectroscopy has been
used for the creation and detection of thermal waves in solids
in general,'"® and in crystalline semiconductors in particu-
lar.>~'? The ability of thermal waves to perform nondestruc-
tive depth-profiling studies in materials has been exploited
mainly qualitatively due to the lack of appropriate theoreti-
cal models in the literature. It has been recognized for some
time that the depth profiling of dopant concentrations in
semiconductors may be the single most important applica-
tion of thermal wave physics.!%!!'> An important theoreti-
cal obstacle, however, to the realization of the full potential
of thermal wave depth profilometry appears to be the com-
plexity of the mathematical description of thermal wave
propagation in continuous solids, especially those which ex-
hibit large local variations of their relevant thermal and ther-
modynamic properties, i.e., the thermal conductivity, the
density, and the specific heat. As a result of the mathemat-
ical difficulties, only two theoretical treatments have ap-
peared in the literature, which assume discrete, multilayered
solid structures with constant thermal and thermodynamic
properties within each thin layer.!*'* Furthermore,
Afromowitz et al.'® have applied discrete Laplace transfor-
mations to the heat conduction equation to treat the produc-
tion of the photoacoustic signal in a solid with continuously
variable optical absorption coefficient as a function of depth,
however, the thermal parameters of the solid were assumed
constant. Thomas et al.? calculated the Green’s function for
the three-dimensional heat conduction equation describing
thermal wave propagation in a thermally uniform solid with
a subsurface discontinuity (“flaw”). In most experimental
situations of interest one has to deal with thermal wave prop-
agation in fields where drastic variations of thermal proper-
ties occur within a thermal wavelength’® from the source of
oscillation. In this limit the thermal wave behavior can be
described formally by using the analogy between classical
mechanical plane wave propagation and thermal wave mo-

2676 J. Math. Phys. 26 (10), October 1985

0022-2488/85/102676-08$02.50

tion. The crucial difference between these two types of waves
is that the former kind is a result of the time harmonic solu-
tions to the Helmholtz equation, which is a hyperbolic par-
tial differential equation of second order in the derivative of
the wave-function field, whereas the latter kind is a result of
time harmonic solutions to the Fourier equation of heat con-
duction, which is a parabolic partial differential equation of
first order in the time derivative of the thermal field wave
function. The above difference has a profound effect in the
nature of the two kinds of waves: the hyperbolic type is able
to propagate freely within matter and suffers attenuation
only when the wave vector in the medium has an imaginary
component, while the parabolic type always exhibits heavy
attenuation as a function of propagation distance in the me-
dium.

In this paper the formal analogy between classical and
quantum wave fields and a thermal wave field will be investi-
gated. It will be shown that the thermal wave field Hamilton-
ian is nondissipative irrespective of the spatial dependence of
the relevant thermal/thermodynamic properties of the sys-
tem. This property, in turn, allows the definition of an ei-
konal equation and Fermat’s principle for thermal wave
propagation, as well as the definition of a fundamental spa-
tial eigenfrequency of the thermal oscillations.

The classical mechanical Hamiltonian of the thermal
wave field will be further shown to be that of a harmonic
oscillator in the temperature potential field. This observa-
tion allows the quantization of the thermal wave field, which
sets the foundations of the microscopic description of wave
phenomena occurring within propagation distances on the
order of a thermal wavelength, such as thermal diffraction.
The macroscopic thermal wave equations can indeed be re-
covered in a quantum mechanical expectation function form
after introducing expansions of the thermal wave field obser-
vables in terms of integrals over complete sets of eigenfunc-
tions of the thermal Schridinger equations. The formalism
allows the explicit evaluation of the macroscopic tempera-
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ture field in continuous solids with nonhomogeneous ther-
mal/thermodynamic properties as a result of the propaga-
tion of thermal wave fronts in the potential field defined by
the temperature-dependent generalized coordinate. A simi-
lar approach was used successfully'”'® in the quantization of
light rays propagating in solids, where both Schrodinger-
type'” and Dirac-type'® theories were advanced for the de-
scription of the optical wave field observables.

Il. HAMILTON-JACOBI FORMULATION OF THERMAL
WAVE PHYSICS

The generation of thermal waves in a medium is the
result of the presence of a harmonic heat source at the origin,
modulated at some angular frequency o, The most com-
monly used heat sources are modulated laser beams,">->%1
electron beams,>*!! or ac current sources.'® The tempera-
ture field @ (r,t) in the medium excited by the heat source is
given by the macroscopic Fourier heat conduction equation,
which is a statement of energy balance in the medium:

Ve[k (r)VE(r,2)] — plr)c(r) % G(rt)=0, (2.1)
where k (r), p(r), and c(r) are the (generally spatially variant)
thermal conductivity (W/m °K), density (kg/m®), and specif-
ic heat (J/kg °K), respectively, of the medium. For most ex-
perimental thermal wave solid state geometries ¢(r) implies
the specific heat at constant volume, however, constant pres-
sure specific heats must be used when the experimental con-
ditions require it. In this work the one-dimensional counter-
part of (2.1) will be used in order to simplify the formalism,
with the three-dimensional case constituting a straightfor-
ward extension of the fundamental concepts developed here-
in.

A harmonic time dependence of the one-dimensional
temperature field of the form

0 (x,t) = T (x) exp (iwgt ) (2.2)
yields the Fourier—-Helmholtz equation
d d .
2 [kt L 7] — iwopte) ) T =0. (23
dx dx

In passing we note that (2.3) is in the form of the Liouville
equation with the single eigenvalue A = iw,. The Lagrangian
function, which corresponds to (2.3), is?®

2 T
=liw [@] + iwof ydy (2.4)
2 dx o
and satisfies the Euler equation
9L d 4L _ 2.5)

T dx @r /dx)

In thermal wave configurations the following boundary con-
ditions are usually assumed**;

Tix=0=T,,
dT (x) _

ol ("

where the domain of the temperature field encompasses the
one-dimensional volume (x). The surface (s) which encloses
(x) is defined by the origin (x = 0) and some suitable point
L< + «. The Hamiltonian is given by

(2.6a)

—kx)—— (2.6b)
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ar
HTpr) =p, 28] - 2
dx
= p%/2k (x) — (i/2) wgolx)e(x)T?, (2.7)
with p; the generalized momentum defined by
L dT (x)

= = kx)—=, 2.8
Pr=garsan ¥ % 2.8)

Equations (2.7) and (2.8) show that for the thermal wave
problem the generalized coordinate and momentum are the
field temperature and heat flux, respectively. The Hamilton-
ian form (2.7) is not appropriate, however, for use in the
consideration of thermal wave dynamics, because it is an
explicit function of the spatial coordinate {x). A canonical
transformation is required, such that both coordinate and
momentum will be constants of the motion. Consider the
following parametric transformations:

pley) 12
J [ kp) | Y (29)
r= [k (xlo{xelx)] T ), .10

and

1 f [P(V)C(V) V4 2.11)

k(y)
The generating function, which produces the desired canoni-
cal transformation, is Hamilton’s principal function®' S, in
which the time coordinate has been replaced by the spatial
coordinate (x). The Hamilton—Jacobi equation

95 _ _H( Ta_S)
ax aT

! (:‘i) + L oo plxetx) T2 (2.12)

2k (x) 2
transforms to the following equations, after introduction of
the new variables ¢ and 7:

2
s__JL (a_S) _ iworz]. (2.13)
riq 2 L\ar
Using separation of variables in the form
Siné&ay=W(r,a)—ad (2.14)

yields an equation for Hamilton’s characteristic function
Wir, a):

A [(a—W)2 — iwofz] = a = const.
2 ar

Equation (2.15) is the canonical transformation in which the
new coordinate £ is cyclic and the transformed Hamiltonian
is a constant of the motion and assumes the meaning of the
total generalized energy of the thermal wave field:

H (T, QZ) =a=F.
ar

In the Hamilton—-Jacobi theory of thermal waves the gener-
alized coordinate is 7{{ ) and the generalized momentum is
P, = dW /3r. The functional form of the canonical Hamil-
tonian

H(r,p,)=3Jp} + K (2.17)
shows that thermal wave field behavior is equivalent to that

(2.15)

(2.16)
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of a thermal harmonic oscillator (THO), with the effective
mass m = J ~! and spring constant X, which is subject to a
restoring, conservative force F = — Kt generated by the ef-
fective harmonic potential field V' (r) = 1K7>. The frequency
of the oscillation in the canonical coordinates can be found
via the use of the action-angle variable

I, = §p,df = § aW(T -2) ]d (2.18)
Defining the spring constant
— iwg/, (2.19)

the integral of (2.18) can be evaluated between O and 27 to
yield the frequency of the motion*' of the THO,

v, =2 _ 1 gy (2.20)
al, 27
so that an angular frequency can be written as
0,=2nv, = (KJ)"* [m~"]
or
(L—4) f [‘0000’)00’)
n = d
1 _ L
=4 —‘-—Jlf a, (@, ¥) dy, (2.21)
L o

where a, (@, y) is the local thermal diffusion coefficient of the
Rosencwaig-Gersho theory?? at depth y in the medium.
Here, £2, is the spatial angular frequency of oscillation of the
THO and is defined in terms of the spatial extent of the medi-
um or, in the case of semi-infinite media, in terms of

1 (-
lim (— f a, (@ y) dy)-
L-—> L (1}

The Hamilton—Jacobi formulation of the thermal wave
problem leads to an eikonal equation of thermal wave phys-
ics, upon combination of (2.15) and (2.16):

(V.WpP= (2.22)

Equation (2.22) is the rule for the construction of the surfaces
of constant phase, via the equation

(2.23)

The thermal gradient of W determines the normal to
such surfaces. Any surface (s) that satisfies the condition
(2.23) is a surface of constant thermal phase and thus defines
a thermal wave front. The thermal ray trajectories are deter-
mined everywhere in space by (2.22) and are perpendicular
to the wave fronts, whose phase velocities are given by

o E (D)
P |ow far) JE—7(n)

W (r, a) = const.

2.24
5 (2.24)
At this stage, a variational Fermat’s principle can be formu-
lated for the description of geometrical thermal ray trajec-
tories, analogous to those of classical mechanics and geomet-
rical optics. This principle can be expressed as follows:

6f(v 3 —6fp,ds=0,

where ds is the incremental length in the configuration space
spanned by the generalized coordinate r and the conjugate

(2.25)
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momentum p,..

Finally, it is interesting to note that there exist three
Poisson brackets for the canonical variables of the one-di-
mensional thermal wave problem,

{r.p.}=1, (2.26a)

{r,H}=Up,, (2.26b)

{p., H} = iwgrJ, (2.26¢)
along with the relation

aH _o% 227

@ %

which is a consequence of the fact that the total generalized
energy of the medium is conserved over one cycle of spatial
oscillation of the THO.

lll. QUANTUM THEORY OF THERMAL WAVE PHYSICS

The classical theory of thermal wave fields in one di-
mension, which was presented in Sec. I above, is capable of
describing only macroscopic thermal wave phenomena,
such as the trajectories of thermal rays and the eikonal equa-
tion (2.22). In this limit of geometrical thermal wave physics
the Fermat’s principle (2.25) can be used successfully; how-
ever, it cannot rederive the Fourier—Helmholtz equation
(2.3) through purely algebraic manipulations. Furthermore,
the Fourier-Helmholtz equation is itself a reduced form of
the canonical Hamilton—Jacobi equation (2.16) and thus it
suffers from the mathematical disadvantages of noncanoni-
cal differential equations with regard to the degree of diffi-
culty in obtaining the most general solution. In this section it
will be shown that the thermal wave equation can be recov-
ered and the most general solution can be obtained relatively
easily from geometrical thermal ray physics via quantiza-
tion, as by-products of thermal wave Ehrenfest’s theorems.
A complete analogy to the traditional quantum theory can
be drawn upon replacing all classical variables of the Hamil-
ton—Jacobi theory with thermal wave quantum mechanical
operators:

T>T=r, (3.1
3
—p = —i5-Z, 3.2
P, — P, b — (3.2)
Ho =2 (3.3)
a

The constant 4 appearing in (3.1)~{3.3) is the thermal wave
equivalent of Planck’s constant. The Hamiltonian operator
H is in units of the generalized energy of the THO:

[H]=[E]=WK/m’
so that
[6]=W°K/m?

Equation (3.3) is now assumed to admit eigenfunction solu-
tions

Ay =i 3'2’ (3.4)
Use of the definitions (3.1) and (3.2} in (2.17) and insertion in
(3.4) yields the canonical coordinate-dependent “Schro-
dinger equation” of thermal wave quantum mechanics:
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_5? ( )—¢(r,;)+ Virihrg) =15 drg ) (39

%
where
Vi(r)=1K7m (3.6)
Separation of variables in the form
Wr$) = lr) exp (— iEL /B) (3.7)

gives the coordinate-independent “Schrédinger equation”
d2

r

— 8i)

The solutions to (3.8) are, in principle, the eigenfunctions of
the quantum mechanical harmonic oscillator; however, at
this point it must be recognized that the constant 4 is consis-
tent with real values of the generalized energies only if it is a
complex quantity of the form

b=(1+ib|. (3.9)
If (3.9) is satisfied, the anticipated harmonic oscillator eigen-
values® E,, = (n + 1)612, will be real, as can be verified from
(2.21). Using (3.9) and (2.19) in (3.8) results in the following
equation:

(3.8)

2
AR g_‘;i (1) + (o) )7P(r) = 2EP(7). (3.10)
Defining a new variable
z,=(4oy/Ib |*)"*r, (3.11)
Eq. (3.10) becomes
d? 5 _
e [T“’(wo| 2 J)] $lz) =0 (3.12

Equation (3.12) has well-defined solutions if and only if

E/of|6|J=p+1} (3.13a)
and
z, = ze'™*, (3.13b)
so that (3.12) may be transformed to
2 1 2
L4+ (p+ -2 40 = (.14

Equation (3.14) is a parabolic wave equation or Weber—Her-
mite equation® with eigenvalues

E, =obl6 V(0 +}). (3.15)

For general values of p the solutions to (3.14) are the Weber
functions, @p(z) = D, (z), where

— 2, — 7/4 _ T _p 12
Dyle) =27"e [F[(l—p)/Z] ’F‘( 2’2’2)

27w (1 —p, 3 zz)}
- lF 1
Ir'(—p/2?) 2 22
where F, (a;c;z) is a degenerate hypergeometric function
given by?®
c—a—1
—uye! (1 + ) du,

(3.17)

with z = |z|e®, — 7 <6 <. For integral values of p, i.e.,
for p = n, where n is a positive integer, the Weber functions

(3.16)

jam, —a ©

T (a)

Filase;z) =
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can be expressed by means of Hermite polynomials®®:

D, (2) =2~ "2~ 7/AH (2/2) (3.18a)
=(- 1)"e”/“:—z:e"’/2. (3.18b)

In the particular case where p = n the eigenvalues of the
Weber—Hermite equation are

=(n+iat?|BJ. (3.19)
Equations (2.11), (2.20), and (2.21) give
12, =w¥?J, (3.20)
so that (3.19) can be written
=n+i5| |2 (3.21a)
= (n+1)802,. (3.21b)

Now Eq. (3.21) can be used to interpret# of the thermal wave
quantum theory in terms of the generalized energy of ther-
mal wave packets (thermionsl!), as the constant ratio of the
energy to the angular frequency of such wave packets:
E=5602,=bv,. (3.22)

Equation (3.22) in conjunction with (2.22) and (2.24) yields a
thermal wave equivalent of the de Broglie relation,

2= [ v (3.23)
p- k (§ )

Farther insight into the nature of the constant 4 is obtained
upon writing (3.22) in the form

- E __E
(1—i) [(1/L) §§ a,(@o) dy]  (Ka)’

(3.24)

where k ;, is the one-dimensional component of the complex
thermal wave vector'®

ky = kthz_’
and
Ik'.h l = 277'/1 th* (3.25b)

The presence of an imaginary component in the thermal
wave vector is responsible for the exponential attenuation of
thermal waves propagating in a continuous medium. From
another point of view, a medium whose thermal wave vector
is given by (3.25) can be described as thermally lossy, in ana-
logy to optically lossy media arising in the propagation of
electromagnetic radiation.”” Equations (3.24) and (3.25b)
show that b is proportional to the wavelength (4 ., ) of the
thermal wave packet, averaged over the entire extent of the
propagation medium. The proportionality of & to {1,,) is
analogous to that observed between the Planck’s constant of
the quantum theory of light rays and the wavelength of the
optical radiation.!” It is also consistent with the correspon-
dence principle of quantum mechanics: The thermal wave
Schrédinger equation (3.5) can be transformed using the sub-
stitution

Yr)=Aexp [iW(r5)/8]
to an equation for W:

(3.25a)

(3.26)
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2
()] -

Letting & — 0 in accordance with the requirement of the
correspondence principle, Eq. (3.27) becomes identical to
(2.15) of the classical mechanical Hamilton—Jacobi theory:

§ wetro ()28 e

(3.27)

H(rp.)+ 'aaZ W(rg§)=0, (3.28)
with W (r,£) being Hamilton’s characteristic function, for
which the eikonal equation (2.22) is valid.

In the thermal wave quantum mechanical theory, the
eigenvalue equation

HY,(r) = E, ¥, (1) (329)
has the set of eigenfunctions

¥.(28) =N, D,(z) exp ( —iE, 5 /b), (3.30)
where

z=(dwy/1B|}) e~ "y, (3.31)

the E, are given by (3.21), and the N, are normalization
constants, which can be determined using the orthogonality
property of the Weber functions®*:

r D* (@D, (2)dz = (2m)"*n15,,,. (3.32)
The normalization condition for ¢, is
[* weswiesrz=1 3.3

Equations (3.30), (3.32), and (3.33) determine the normaliz-
ing constants

N, = [1/(2m)2n1] "2, (3.34)

IV. EXPECTATION FUNCTIONS AND EHRENFEST’S
THEOREMS

The most important application of thermal wave quan-
tum mechanics is its ability to calculate expectation func-
tions for various macroscopic observables, especially those
which are difficult or impossible to derive explicitly from the
macroscopic Fourier—Helmholtz equation, such as the tem-
perature and the heat flux fields in the medium of thermal
wave propagation. In this section we shall derive the expec-
tation values for the potential energy of the THO, expecta-
tion functions for the temperature and the heat flux, and a
macroscopic heat diffusion equation of the thermal wave
center of gravity in the sense and form of Ehrenfest’s theo-
rems.

A. Potential energy of THO
We have

R T 78)
=N5|Gn(;)|2f°° 2D (2)dz, 4.2)

where
G, (E) = exp(—i E, £ /b). (4.3)
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Using (3.18a) in (4.2), and the Hermite polynomial identity?®

r x%e=* H2(x)dx =Jx(2n + 12"~ 'n! (4.4)
it can be shown that
(= Vi), =2n+1 (4.5)
and, substituting (3.31) in (4.5),
V(). =420+ 1) (k|5 |20} e~ "2,
=}n + Yo J |5 |
=3E,. (4.6)

Equation (4.6) indicates that, for any value of #, the average
potential energy is half of the total generalized energy per
cycle of oscillation, a result similar to that obtained in the
case of the classical mechanical harmonic oscillator.

B. Temperature field

It should be noticed that expectation values are calculat-
ed as integrals over the variable z, which is related to the
generalized temperature 7 via (3.31) and, ultimately, to the
temperature 7 via (2.10}. In the present quantum formalism,
however, z is considered a dummy variable when under the
integral sign, spanning the range of values ( — 0, + o). The
expectation function for T (x) can be found from

@om= | 92028 etnint Mz (7
=(N,N,, /22"~ ) G¥(§)G(E)
[Var2'n + )] e sy,
X [\/;2'” - ln!9]m= n—1, (4’8)
0, m#n+1.
Therefore,
(2" 62606,.16) m=n+1,
(2 pm = 4.9)

(/2> GG, 1), m=n—1,

0, m#n+ 1
For the purpose of obtaining an expression for the tempera-
ture field that is consistent with direct solutions'® to the mac-
roscopic Fourier-Helmholtz equation (2.3) in the limit of
constant k, p, and ¢, we choose the particular eigenmodes
n=0,m =1in(4.9), and we get

(2)o1 = (12) G3(5)Gy(E)

= (1) exp [ — ™2, [¢ ], (@.11)

and using (3.31), (2.9), and (2.10) in (4.11), the expectation
(macroscopic) function for the temperature can be written as

(4.10)

T0i=(T _ |6|1/2e—i1r/4
BI=T o1 = 3k R ™
Xexp [ - Jq o, (wo,x')dx’], 4.12)
where
0, (@o:x)=(1 + ila, (@o.X") (4.13)

is the complex local thermal diffusion coefficient of the ex-
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tended Rosencwaig—Gersho theory.?? Equation (4.12) is val-
id for semi-infinite solids, for which the positive root for
2, {w,) was rejected in (2.21). This situation reflects the use of
thermal wave physics for quantitative analysis leading to
depth-profiling at high source modulation frequencies w, so
that

1/|o,(@eL )| €L, (4.14)
where L is the thickness of the propagation medium. If (4.14)
is not satisfied, then the term exp[ — 5o, (wex'}dx’] in
(4.12) must be replaced by 2 cosh [ §50,(@.x')dx'], which is
the result of the retention of the positive root for 2, (w,) in
(2.21). Using

Ey=}|5] |2,| = ()2, |* 75 = Jp7(0) (4.15)

for the average total macroscopic generalized energy of the
THO in (4.12), with 7, = 7 ({ = 0), the expectation function
for the temperature becomes, after some algebraic manipula-
tion and use of (2.6) and (2.8)}2.11),

' S
T =28 e | - [ aoomiax], 816
where
Q(x)EQo k(x)a(x)c(x) 1/4

k (0p(0)c(0)

() ol

x [%ln(kpc)]x - o] 1 (4.17)
Equation (4.16) reduces immediately to
T (x) = [Qo/(1 + ik (@gpe/2Kk)'/?]
xexp [ — (1 + ) (wgoc/2k )1/ %x], (4.18)

in the limit of constant %, p, and c. Equation (4.18) has been
previously derived by a number of authors.'*1629:30

C. Ehrenfest’s theorems

These theorems can be easily formulated upon introduc-
ing quantum mechanical commutation relations to replace
the Poisson brackets (2.26). For the conjugate variables r and
P, the following operator relations can be easily proven:

(78-1=15, (4.19a)
(58] _wai; (4.19b)
(5. ) = —boylr. (4.19¢)

Ehrenfest’s theorem for the generalized thermal momentum
can be derived from consideration of the expectation value

d _d ("

T O || el w20)
=%U_m glr:(ﬁz—zi{)t/zmdz]
= (i/6 ) [Hz2])pm- (4.21)

Equation (4.21) was obtained under the assumptions®' that
H is Hermitian and that z is not an explicit function of §.
Equations (3.11), (3.13b), (4.19b), and (4.21) give
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;Emm =(;f"|‘;)e-‘"/‘( ; &) . e

Using the defining equations (2.9}2.11) the term in the
brackets can be calculated:

(Z76) =g |2 70| oD

+ [J/FY*E)] 2. )) nm (4.23)
= 7;"(7-(; ))n m»s
where
F(§)=k(&plC)cld). (4.24)
The equality of expectation values,
d ———
(-‘Er(;»m = 2D s (4.25)

originates in the fact that the potential field (3.6) for the THO
is harmonic and does not involve terms higher than second
order.>2 Equations (4.22) and (4.23) yield the following ther-
mal wave Ehrenfest equation, which relates the expectation
values of the generalized thermal velocity (d /d{ )(7) and the
generalized thermal momentum {p, ):

LAV =i [ @.en..n
H(SF)een., ] 62
For F = const, (4.26) reduces to
PrYam= k%(ﬂn,m, (4.27)

in agreement with (2.8).

Furthermore, an equation for the motion of the observ-
able thermal ray center of gravity can be derived in the form
of an Ehrenfest relation

_ -9
(;))m d§2 A A =T dgurr(;»,.,m,(m)

where IT_ (£ ) is the effective generalized thermal momentum
in a medium with variable thermal/thermodynamic param-
eters k (x),o(x), and c(x):

I )=—7—

<d§2

6+ (= gF”‘(;))r(;)]

(4.29)
Ehrenfest’s theorem (4.26) can now be written in a suggestive
form as

d_g- ( ) nm —
whereJ ~! plays the role of a generalized mass of the system,

in agreement with (2.17). Differentiating /7, ({ ) with respect
to § and inserting the resulting expression in (4.28) gives

(€ )) m

ot £
T F1/4(§) d;z

7

% (L), (4.30)

d;’

F”‘(c)]w;»n,,. 0.
(4.31)

Andreas Mandelis 2681

Downloaded 21 Jul 2008 to 128.100.49.17. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Equation (4.31) is Ehrenfest’s theorem, which governs the
motion of the thermal ray heat centroid in the presence of a
harmonic generalized potential energy field ¥ () and for gen-
eral functional forms of F (§ ). An equation similar to(4.31)in
structure has been derived in connection with the eigenvalue
problem of the Liouville equation by Morse and Feshbach
[Ref. (26), Eq. (6.3.22)]. The analogy of the Ehrenfest ap-
proach to the classical mechanical theory became apparent
with (4.30), which involves generalized thermal displace-
ment and momentum. This analogy becomes complete once
(4.28) is written in terms of an integral over eigenfunctions:

;Tzz [" wesrspnag)a

ei1r/4 d 2

Gao/ 517 42
~L[[ vt~ ivhy, a)

= (i/8 )[BT, ) ,m- (4.32)
To evaluate this commutator, the commutation relation

(T am =

i, fr) —fril, = —i6 f% 4.33)
T

can be easily verified from the definition (3.2) of the general-

ized thermal momentum operator p,.. Using (4.33) in (4.32)

and comparing with (4.28) yields the following form of Eh-

renfest’s theorem (4.31):

d ( au )

— I )pw={——) 4.34

i (I1,),, o (4.34)
where U is the effective potential energy

U(r) = K477, (4.35)
with the generalized effective spring constant

2
Kq =K 14" puag) (4.36)

JF1/4(§) d;Z
Equation (4.34) is Ehrenfest’s approach equivalent to the
classical relationship between a restoring force, — V, U, and
the rate of change of momentum due to the action of the
force. The equations of motion (4.30) and (4.34) of the heat
centroid of the thermal rays demonstrate the correspon-
dence between macroscopic heat conduction theory and the
expectation values of our microscopic approach.

D. Position of heat centroid and uncertainty principle

For experimental purposes the position of the heat cen-
troid at a given modulation frequency w, is extremely impor-
tant, as its determination substantiates the depth-profiling
capacity of thermal wave physics. The observed {measured)
wave centroid is mathematically a well-defined quantity for
thermal waves, unlike unattenuated electromagnetic and
other plane waves, due to the damped nature of the former:

()0, = 5563 EIGE 1 “37)
J& G (8)G\(&)ds
= (2/1+4 i) (|2, (@),
so that
- L k)
(€ onl = prrey @l =0 438)
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where a, (x) is the local thermal diffusivity of the propaga-
tion medium.?? If the medium is semi-infinite, (4.38) is un-
derstood to mean

A combination of (4.38) or (4.38’) and (4.16), together with a
measurement of 7" (x) or of a quantity proportional to 7 (x),
demonstrates the potential of our quantum theory for quan-
titative analysis of depth-profiling studies through thermal
wave physics in media of arbitrarily variable a;, (x). This as-
pect of the present theory will be examined in detail in a
future publication.

For completeness of the thermal wave quantum treat-
ment an uncertainty principle with an interesting interpreta-
tion will be established. By analogy to quantum mechanics,

(AT)n,n + l'E [ (7-2>n,n +1 = (T);zn,n +1 ] 1/2’ (439)

(Apr)n,n +1 = [ <p12->n,n +1 = <pr :,n +1 ] 1/2. (440)

The expressions involve integrals of the Weber functions
with powers or derivatives of  (or z). They can be simplified
upon noticing that

Punsr [ 2D2ED, lA1d=0
and

(pi)n,n+l
2 _ K2 ® * _d_z
“(p,),,,,.+1<x 6 _ Dn(z) d22Dn+1(z) dZ

(4.38")

(4.41)

= ~s*fn+1n [ D0, (o
—(n+l)f°° 2D (9D, () dz
—%flvz(zwm(z)dz

1 ® w*® —_
+ T f_ i 2D*2\D, ., (z)dz] =0, (4.42)

as each and every integral inside the brackets can be shown
to vanish due to the orthogonality of the Weber polynomi-
als.?* Taking (4.41) and (4.42) into account, (4.39) and (4.40)

give

(AT)n,n +1 (Apr)n,n +1 = ((T)n,n +1 ) ((pr)n,n +1 )’ (4'43)
wherc in/4 ( + 1)1/2
(Dump1 = (2 G2£)G, ()
4w 2
(doo/1B ) 444
and
(pr)n,n +1 = [(40)0/'6 |2)V4/ei”/4] (pz >n,n +1 (445)

and
@uner= =8 [ riag) 2 polab s

= —#N,N,, ,G*)G, ()

ijm D,(2) [-;—z D,,+l(z)] dz.
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It can be shown that

r D.(2) [% D,., (z)] dz= (%)m(n +1) (446)
) tha; i

@ nnir = — (B /2n+ 1) exp [ — |02, |¢ ]

and )
(Pr>n,n+1 = — [’.6(4wo/|b|2)”“/2e"”'/‘]

X(n + 1)1/2 exp [ —e‘"/‘|.{),|§].
(4.47)
Equations (4.43), (4.44), and (4.47) yield the uncertainty prin-
ciple

(AT)n,n +1 (Apr)n,n +1
= —%—(n + )b exp [ - ZJ as(wo,x')dx’],
(1]

which indicates that the uncertainty in either the thermal
wave temperature excursion or its momentum decreases
with increasing modulation frequency w,. The form of the
uncertainty principle is unlike that of ordinary quantum
mechanics?® due to the fact that the quantal thermal wave
formalism requires coupling between the nth and (n + 1)th
eigenmodes to produce temperature expectation functions
with the correct limiting forms. If coupling were considered
entirely within the nth eigenmode, then (i) the relations
(7 nrn = Pr)nr =0 would be true, also familiar from the
quantum mechanical harmonic oscillator theory
({(x) = (p) = 0)*; and (ii) a more typical uncertainty rela-
tion would be obtained:

(AT)n,n (Apr )n,n = (n + 5)6 (4'49)

The thermal-wave uncertainty relation (4.48) is important in
that it sets a lower limit in the precision with which the tem-
perature of the heat centroid of the thermal wave packet can
be measured, when the thermal flux p, is known with a pre-
cision Ap, . =p,:

(4.48)

b x| - g [
|A T(x)'>4,”?oF1/4(x) exp [ (2600) J; a:/z(x,) .
(4.50)

This inequality is a mathematical statement for the maxi-
mum depth resolution with thermal waves in a medium in
which temperature is modulated at @,. Equation (4.48) im-
plies the spread of thermal waves due to diffraction, as the
wave packet travels away from the surface and into the medi-
um. The rapid decrease in the uncertainty minimum with
increasing @, indicates a more precise thermal imaging and
information transfer from subsurface features at high fre-
quencies due to decreased diffraction limitations. This theo-
retical observation has been borne out in several experi-
ments. 1,4,9,10

V. CONCLUSIONS

The thermal wave quantum mechanical formalism de-
veloped in this work as the extension of the thermal-wave
Hamilton-Jacobi theory has been shown to.be capable of
providing exact analytical expressions for the temperature

2683 J. Math. Phys., Vol. 26, No. 10, October 1985

distribution and heat flux for general solids with contin-
uously variable thermal/thermodynamic parameters. These
macroscopic expressions are in the form of Ehrenfest-type
expectation functions and are expected to be useful to depth
profiling analysis in solids with rapidly varying thermal pa-
rameters locally, especially close to the surface, for instance,
to microelectronic processing (e.g., impurity doping, ion im-
plantation, radiation damage).
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