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A linear time-domain thermoelastic (photothermoacoustic) theory of a composite solid—liquid geometry has
been developed. The theory includes multiple interreflections at all interfaces, acoustic diffraction and viscosity
effects, and natural mixed, rigid, and free boundary conditions at the solid surface where laser-pulse incidence
occurs (air—polystyrene interface). The theory was applied to experimental pressure-wave pulses from a
Nd:YAG laser in a polystyrene well target and water system used for photomechanical drug delivery studies.
Good fits of the linear theory to tripolar experimental pressure waveforms were possible at laser-pulse irradi-
ances =100 MW/cm?2, especially at distances <5 mm from the solid—fluid interface. It was further determined
from the combined theoretical and experimental approach that the onset of significant hydrodynamic nonlin-
earity in the water appears for laser-pulse irradiances in the 165-MW/cm? range, especially at axial distances
z~8 mm, as expected theoretically from the laser-ablation-induced nonlinearity of stress-wave propagation in
the solid-water system. © 2005 Optical Society of America

OCIS codes: 170.7170, 170.7180.

1. INTRODUCTION

The field of drug delivery and cell permeabilization with
laser-induced stress waves has witnessed a rapid develop-
ment in recent years, with several research groups report-
ing various levels of success in generating reliable and re-
producible cell membrane permeabilization results.'™
Much attention has been paid to the experimenter’s abil-
ity to control the rising edge of the laser photoacoustic
stress pulse in the fluid (water) as a tool to control cell
permeabilization.>® It is broadly believed that nonlinear
photoacoustic waves must be generated in water to in-
duce cell permeabilization. A review of the literature,
however, has revealed that photoacoustic pulse shapes in
cell-loaded wells filled with water may exhibit a wide
range of linear and nonlinear behavior with poor under-
standing of the parameters that lead to a particular re-
sponse. Reported results are sometimes consistent with
thermoelastic wave propagation3 and sometimes with
nonlinear shock waves.* This may be related to the fact
that there appears to be no full understanding of the ef-
fects and ranges of the various experimental control pa-
rameters that lead to nonlinearity. This, in turn, compro-
mises the reproducibility of the photomechanical
experiment and the predictability and optimization of the
cell permeabilization and drug delivery yield. Reflecting
the same situation, theoretical photoacoustic treatments
of the pulse generation and propagation mechanism in
the fluid vary widely, ranging among linear, fully nonlin-
ear, and quasi-linear approaches, even within the same
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research group. To control the photomechanical pulse be-
havior and to obtain consistently reproducible waveforms
among the different groups, a theoretical treatment of the
linear thermoelastic mechanism® and an understanding
of its transition to nonlinear stress-wave generation
should be considered. The major measurable difference
between the nonlinear impulse response and the linear
thermoelastic response is the crucial steepening of the
fluid pressure-pulse rising edge with increasing laser
irradiance.®

In this paper a first step in this direction, the problem
of linear photomechanical pressure-pulse generation in
water, the fluid of choice in many cell membrane perme-
abilization studies,'™ is formulated. A laser pulse inci-
dent on the outer surface of a standard solid black poly-
styrene well target in a conventional configuration for cell
permeabilizationk4 is considered as the source of a pho-
tothermoacoustic (PTA) pulse in the solid. Coupled small-
amplitude (linear) wave equations are solved in the solid
and fluid, and the resulting predictions are compared
with experimental data obtained with a variable-fluence
pulsed Nd:YAG laser and commercially available polysty-
rene wells filled with water. Unlike the two boundary-
condition modes always used separately in the laser pho-
toacoustics literature®’ (which were unable to match our
experimental results), following excitation by an incident
single-shot laser pulse, the present one-dimensional
model introduces natural mixed (free and rigid) boundary
conditions and accounts for acoustic diffraction and fluid
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viscosity effects, as well as for multiple acoustic reflec-
tions at the air—solid and solid—fluid interfaces. A study of
the onset of deviations between the linear theory and the
experimental data is used as a practical criterion to deter-
mine the threshold laser irradiance required for the gen-
eration of large-amplitude photoacoustic waves in the
fluid and the transition to nonlinearity.

2. THEORY OF PHOTOTHERMOACOUSTIC
LASER PULSES IN FLUIDS

A. Coupled Photothermoacoustic Boundary-Value
Problems

In a nonviscous fluid undergoing small acoustic perturba-
tions affecting the density up to the linear term,

pf(r7t) =Pﬂ)+P1(r7t), (1)

where subscript 0 indicates equilibrium values. Introduc-
ing a scalar velocity potential

V(r,t)= VWAr,0), (2)

it can be shown that Wdr,?) (m?%s™1) satisfies (Ref. 7,
Chap. 2)

PYAr,t) Trcn’B) dS(r,t)
LQ—C]IOZVQ\P,(r,t)z— R 1—.

Cp ot
Also introducing the heat conduction equation and the
adiabatic medium ratio of specific heats, y=Cp/C,, such
that y=1 for condensed media (Ref. 7, Chap. 2), leading
to

-1
Y Cp

<1,
an equation for PTA wave generation in a nonviscous
heat-conducting fluid can be written as

PV Ar,t) cn’B
T VAT =~ onCr " Qry, @

where B (K1) is the coefficient of volume v, expansion 3
=v~Y(dv/dT|p), cpp is the equilibrium value of the speed of
sound in the fluid within the linear regime, and Cp is the
specific heat at constant pressure. Q(r,?) is the direc-
tional source in the fluid. In this formalism Q=0 as the
source for the acoustic disturbance in the fluid originates
in the supporting optically absorbing solid in the form of a
PTA pulse. The small-amplitude pressure rise in the fluid
is related to the potential Wy by®

d
Pyr,) = = p— W (r,1), (5)

where the pressure increase P/r,?) is assumed to involve
only the PTA pressure rise. The electrostrictive compo-
nent of the pressure is ignored.’

The geometry used in our experiments employed a
large laser beam (=5 mm) and thus corresponds to the
one-dimensional limit of Eq. (4). Figure 1 describes the
three effective coupled layers: The ambient gas (air) is
semi-infinite and occupies the spatial region —c<z<-L.
It has density p, and speed of sound c,. The solid of thick-
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Fig. 1. One-dimensional cross-sectional geometry of the model
showing the direction of the incident laser pulse.

ness L occupies the domain —L <z<0 and has properties
of density p,, speed of sound c,, specific heat at constant
pressure Cp,, optical absorption coefficient at the laser-
pulse wavelength w,, bulk modulus K, and isobaric vol-
ume expansion coefficient B;. The fluid occupies the half-
space 0<z <, The reason that we do not consider the
finite thickness of the fluid layer is that in our experi-
ments no reflections from the water—air interface (ex-
pected to be inverted pulseslo) were observed. This sim-
plifies the solution, but the finite dimensions of the fluid
can be readily incorporated in the theory. The coupled-
wave equations in the solid and fluid are most conve-
niently dealt with by introducing in the solid a particle—
molecule displacement potential & (r,#), which is related
to the displacement vector Ug(r,?) byn’12

Ug(r,t) = VO (r,f). (6)

Only longitudinal waves are assumed to propagate in a
thin isotropic solid because of laser PTA excitation by a
large-spot-size laser beam. As a result, VX Ug(r,t)=0,
and the displacement potential satisfies the wave equa-
tion

) 1 & KB,

V q)s(rrt) - E§¢s(r7t) = scsz ®S(r7t)7 (7)
where O,(r,t) is the temperature increase above the am-
bient (equilibrium) value. The thermoelastic pressure in
the solid is determined by11

&
Ps(r’t) == psgq)s(r5t) . (8)

In the remainder of the theoretical development, the one-
dimensional version of the wave equations is used for the
experimental case of a large and (assumed) uniform laser
beam source. Analytical solutions of the coupled PTA
problem in one and higher dimensions in the form of spec-
tral integrals can be obtained by converting the time-
domain equations to their frequency-domain counterparts
through Fourier transformations (FTs). In the solid layer
the equation for the FT of the one-dimensional displace-
ment potential
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1 (=
bs(z,w) = —f D (z,t)exp(- iwt)de 9)
27 ) _,

is the Helmholtz equation,

d? K.,
@¢s(z,w>+kf¢s<z,w)= 5 |9z,0), -L<z<0,

PsCs

(10)

where k,=w/c, and J,(z, ) is the FT of the temperature

profile O.(z,¢) [Eq. (7)]. The FT of the heat conduction

equation in the solid following a laser pulse is the

thermal-wave equation
d2

@ﬁs(z,w) - (

iw) 1

— ﬁs(z,w)=——H(z,w), (11)
S )\S

where «, and \, are, respectively, the thermal diffusivity
and conductivity of the solid medium. The spectral com-
ponent H(z,w) of the source term, at any angular fre-
quency o of the thermal source, is given by

H(z,w) = udo exp[— py(L +2) +iwt]. (12)

Here I is the laser irradiance. For a short laser pulse, the
diffusion term in Eq. (11) can be neglected and the FT of
the temperature field can be readily calculated as

IO:u's

9,(z,0) = —( : )exp[— w@+2)],  (13)

WPs CsP

where the modulation factor exp(iwt) will henceforth be
omitted. This expression is the driving force of the PTA
wave in Eq. (10). The general solution to that equation is

¢s(z,0) = Ay exp(ikgz) + Ago exp(-ikz)
+ Dy exp[- u (L +2)], (14a)

where A;; and A,y are integration constants to be deter-
mined and D, is defined as follows:

iKs:BsIOIus

D,=- . 14b
pszcszcst(Ms2 + k32) ( )

A similar treatment of the fluid in terms of the FT of the
velocity potential ¥4z,w), assuming a nonviscous fluid
with no direct internal PTA source, yields the FT of Eq.
(4):

d2

@w,(z,w)woﬁw,(z,w):o, 0<z<o. (15)

Here ko= w/c(y is the acoustic wave number in the fluid
for small-amplitude (linear) acoustic perturbations. The
(bounded) general solution of Eq. (15) is

Uz, 0) = Cy exp(=ikos2). (16)

In the fluid (air) region of the laser incidence, z<-L, the
FT of the PTA field is an equation similar to Eq. (15) with
a general solution

%(Z,w) = CQ exp[ika(z + L)] (17)

The constants (Ag;,A42,C1,Co) in Eqgs. (14)—(17) can be
determined through the boundary conditions at the two
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interfaces z=0 and —L. For an isotropic solid, the ther-
moelastic stress tensor o;; (Refs. 9 and 11) becomes
uniaxial:

o-zz(z,t) = pscszuzz(z,t) - Ksﬁs(as(z,t)' (18)

Equation (18) is strictly valid in the adiabatic sound
propagation regime, ie., for frequencies!! w<w,
EcSstCsp/ \. If the strain tensor is written in terms of
the displacement potential,

&
uzz(zat)z Eq)s(zat); (19)

the equations for continuity of the force per unit area
(pressure) at the solid—fluid and solid-gas interfaces can
be deduced from Eq. (18) and their FTs can be taken as

pscfi—zqsm,w) - K,B,9,(0,0) = - p{0,0) = ippwiy0,0),
(20a)
d2
pics” b= L0) = Kty L, )
=po(-L,0)
= ip,wi(- L,0), (20b)

where pj(z, ») is the FT of Pj(z,t). Given our use of differ-
ent elastic potentials in the solid and the fluid, the other
continuity condition at the two interfaces is taken to be
that of velocities (and accelerations) instead of displace-
ments:

J &+ d
V(z,t) = 5Us(z,t) = @q)s(z,t) 0 vy(z,0) = iw;qﬁs(z,w).
(21)

Upon equating the velocity FTs across the interfaces z
=0 and -L, we obtain the additional boundary conditions

d d
to—~¢5(0,0) = ——44{0, 0), (22a)

d d
lwacﬁs(—lx,w) = Edja(_L’w)' (22b)

Continuity of the accelerations across the same interfaces
leads to a pair of boundary conditions identical to Egs.
(22). Equations (20a), (20b), (22a), and (22b) constitute
the entire set of the Fourier-transformed boundary condi-
tions that must be used to determine the integration con-
stants (A41,A49,C1,Cq). After some algebra and with the
simplification exp(—u,L)=0 for optically opaque solid ma-
terials as in the case of our experiments (black polysty-
rene wells), the coefficients A,q, Age of the PTA frequency
element in the fluid can be determined:
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A32
_ IOKsﬁs/Ls[/'Lsca(pa/ps) + iw]EXp(_ lksL)
0,2, Copo* () + k) (1 +14)[1 - R Ry exp(- 2ik,L)]
(23a)
Ag=-RpAg, (23b)
where
PiCi
rj=—— (24)
PiCj

is the acoustic impedance at the interface (i,j) represent-
ing energy flow between adjacent media and
1-r;
ij
= 25
7 1+r ij ( )
is the reflectance of the acoustic interface. Because of Eq.
(5) and expressing C; in terms of A,y by the boundary con-
ditions, we can write the FT of the pressure wave as

PAz,0) = p,0*TrA o (w)exp(-ikyz), (26)
where
2
Ty= 1+ @7

is the acoustic transmission coefficient at the interface
(i,7). Specifically, Ty, represents the fraction of PTA wave
energy in the solid transmitted into the fluid. To link the
FT of the PTA pressure wave in the fluid to existing the-
oretical formalisms and make its physical interpretation
more transparent, use of Eq. (23a) in Eq. (26) and expan-
sion of the denominator yields

IOKsTfs

Cs(l + ras) [rasFRs(w) + FFs(w)]

PAz,w) =

Xexp(—iko2) D, (RpRq,)" expl—i(2n + 1)kL].
n=0

(28)

In Eq. (28) the summation represents infinite interreflec-
tions of the PTA wave inside the solid layer. With each
successive reflection from one of the solid boundaries, the
fraction of reflected energy decreases by the product
R/R,, of the interface reflectances. The coefficients I'p (w)
and I'p,(w) are defined as follows:

) B e 29)
Jw)="—"—"| "% 5|
" psCsP MSZ + ks2
iBS Msks
(@) = ) 30
() psCsP</'Lsz+ksz> B

where I'p,(w) and I'ps(w) are air—solid interface factors
known as the transfer functions for rigid and free bound-
aries, respectively.”'® The linear combination of these fac-
tors, the former factor weighed by the acoustic impedance
at the air—solid interface, indicates the effects of natural
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mixed boundary conditions at the air—solid interface. Un-
like treatments in the literature where either rigid (sub-
script R) or free (subscript F) boundary conditions have
been imposed arbitrarily, "> the present approach has
formulated a natural combination of the two limiting
cases. The combination of these two terms in Eq. (28) is
consistent with the following physical mechanism: If the
acoustic (thermoelastic) transit time across a depth equal
to the optical absorption depth ,us'l in the solid is short
compared to the period corresponding to the particular
frequency component of the external force, T ,=27/ w, i.e.,

1

=<
* msles(paps)]

where c,(p,/p;) is the speed of sound in the solid modified
by the discontinuity in material densities at the solid-air
boundary where absorption occurs, then the solid behaves
like a rigid body. The acoustic energy is released before
the photothermoelastically excited molecules of the solid
can move to perform forced oscillation at the particular
frequency. In this case the free boundary component
I'ps(w) given by Eq. (30) is negligible compared with the
rigid component r,I'gs(w). At the other extreme, if 7,
>T,, the forced oscillation occurs well before the acoustic
energy from within the optical absorption depth is fully
released or propagated. In this (optically translucent or
transparent) case the solid is under motion while the
wave evolves. Therefore it behaves like a freely moving
body, and the gas—solid term r,JI'z,(w) is negligible com-
pared with I'p(w). For the discussion that follows, it is
convenient to redefine the two superposition components
of the pressure wave in the fluid [Eq. (28)].

T, (31)

pAz,0) =pP(z,0) + p(z,0) (32)

as due to rigid and free boundary conditions, respectively,
where

IOKsTfs< Tas

147 )fs(L,w)rRs(w)eXp(_ lk0f2)7

pz,0) =

s as

(33a)

IOKsTfs
p;‘F)(Za w) = c (

s

1o )fs(L, o)l'py(w)exp(- ikog).

(33b)

These are the FTs of the pressure waves under fully rigid
and free boundary conditions, respectively. Here

fiL,0) = >, (RiR,)" exp[-i(2n + DkL]  (34)

n=0

is an acoustic transfer function in the solid of finite thick-
ness L where an acoustic field of unit intensity is under-
going infinite interreflections.

B. Diffraction Effects in the Fluid

Next, the transfer function in the brackets of Eq. (28)
must be modified to allow for diffraction in the fluid. This
is a way of introducing three-dimensional effects into a
one-dimensional formalism. Taking into account the
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Gaussian nature of the laser beam of finite spot size W in-
cident on the solid, the Fourier component of the laser-
pulse profile can be modified:

I(x,y,z;0) =Iyexp[— (r/W)? - u(z + L) +iwt]. (35)

The acoustic wave in the fluid will cross the boundary
from the near field to the far field at distances such that
z>Lp, where the diffraction length in the fluid at angular
frequency o is

wW?

Cﬂ)‘

Lp(w) = (36)

It can be shown that diffraction effects in the fluid can be
accommodated in the one-dimensional theory if the trans-
fer functions I'p,(w) and I'py(w) are modified as follows”:

7"2
P T i) |

(37)

FRs,Fs( w)
1-i(z/Lp)

e ps(w) — T (r, o) =

The origin of the diffraction term above rests with the ex-
tent to which the optically generated acoustic waves re-
main plane across the beam diameter. As in wave optics,
the acoustic wave field of a circular laser beam of constant
diameter and intensity exhibits near-field (Fresnel) and
far-field (Fraunhofer) structure.'® Diffraction determines
the transition of the PTA field from the near-field to the
far-field configuration with a given laser beam spot size
and a realistic Gaussian transverse profile. Diffraction ef-
fects become pronounced when the detection distance is
large compared to the spot size. For detection of the PTA
pressure wave on the axis of symmetry (e.g., by a sensi-
tive hydrophone), one only needs to consider F](.,g)’Fs(O,w).
In this case, a diffraction transfer function is introduced
for convenience:

Rs Fs(O w) FRS Fs(w)gf(w) s (38)

where

glw,z) = Ofz) = W2 (39)

1
1-i(Qfw)’
Equation (38) is valid for on-axis detection only and has
been satisfied in our experiments upon careful positioning
of a hydrophone along the symmetry axis of the polysty-
rene well. g{w) indicates lateral spreading and curvature
shaping of the otherwise plane wave fronts beyond dis-
tances of the order of the size of the local acoustic distur-
bance, a function of the laser beam spot size. {}{z) repre-
sents the inverse of the transit time at each distance z
along the axis required for acoustic energy in the fluid to
cross the spatially broadened source aperture. Using the
free and rigid boundary components of the FT of the pres-
sure signal, Egs. (32) and (33) can be modified to take into
account diffraction effects in the fluid:

OKs fs
e+ fs(L o)

X[reslrs(@) + Tps(w) Igd w)exp(— iko2).  (40)

piz0) =

Mandelis et al.

C. Time-Domain Photothermoacoustic Pressure Waves
Assuming pulsed excitation of the structure in Fig. 1 of
arbitrary temporal profile I4Fp(t), with Fourier transform
Iofp(w), the FT of the generated temperature field is given
by

il 0Ms
WPy CsP

Uz, 0) == ( )fp(w)EXp[— ms(L+2)] (41

instead of Eq. (13). Under this excitation pulse, Eq. (40)
that represents the Fourier spectrum of the PTA pressure
wave in the fluid must be multiplied by fp(w). When in-
verted, this yields the time-dependent PTA pressure wave

Pz,t)
_ LTy, - |
c(1+r0) f 3 I'py()fs(L, w)fplw)glw)expiondo
+f Trs(0)f5(L, w)fp(w)gdw)expliondw |, (42)

where 7=t—(2/c(p) is a retarded time measured from the
fluid orlgm (the solid—fluid interface). Considering Egs.
(33) for p (2 ) and p(F)(z w) for the weighted compo-
nents of tfle pressure wave we can identify the first and
second term under the integral signs on the right-hand
side of Eq. (42) with the inverse FT of these two quanti-
ties as the time-dependent pressure spectral component
under rigid boundary conditions P(R)(z, 7) and under free
boundary conditions P(F)(z,r), respectively. It is easy to
verify that the following relation exists between these two
components:

d
PPz, 1) = ( )d—T F(z,7). (43)

r(lSlL‘LScS

This relationship indicates that, for any shape of the laser
pulse, the line shape of the PTA response in a free bound-
ary configuration is the derivative with respect to the re-
tarded time of the line shape of the PTA response in a
rigid boundary configuration. This is the mixed-
boundary-condition generalization of a similar relation
derived by Burmistrova et al.'® Inserting Eq. (34) into Eq.
(42), it can be shown that the infinite set of pulse interre-
flections at the two interfaces of the solid layer will ap-
pear at any arbitrary position z in the fluid at delay times
defined by

z L
(2)=t-—-2n+1)—,
Cof Cg

n=0,1,2,..., (44)

where the origin of times is the onset of the laser pulse. In
the special case of the first transmitted pressure pulse
across the solid—fluid boundary, n=0, the PTA diffraction
response in the fluid [Eq. (33a)] can be simplified as fol-
lows:
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PP(z,7) =

IOKsTfs ( Tas

Tor. ) j_m I'gs(w)gdw)explior))dow.

S
(45)
The respective diffractionless PTA response is simply

given by

P§i(z,70) =

IOKsTfS< Tas

1+7,

)f Ips(w)exp(iwry)dw.

S
(46)
Let us invoke the convolution theorem and note that

FT gz, 0)] = Gylz,t) = 27{8(t) - Qz)exp[— V)t IH(®)},
(47)

where H(t) is the Heaviside function and &(¢) is the Dirac
delta function. Using Egs. (29) and (30) we find from Eqgs.
(45) and (46)

P)(PR)(Z7 TO) = /‘Lscsrasf PE)?(ZJ')EXP[— Qf(z)(TO - t’)]dt’ .

(48)

This convolution formula is a generalization of a relation
derived by Terzic and Sigrist'® for a semi-infinite optically
absorbing fluid layer without the presence of a solid over-
layer. The same relationship can be found for all subse-
quent reflection pulses in the present geometry by replac-
ing 79 with 7,. Terzic and Sigrist, however, found different
exponent coefficients (){z) for direct optical incidence on
opaque and transparent fluids, 617 representing the
single-layer fluid configuration.

D. Viscosity Effects

When Eq. (15) for the FT of the one-dimensional velocity
potential is modified to allow for viscous effects in Eq. (4),
the resulting Helmholtz equation can be written as

2
e @) R Yz,0) =0, 0=z<e=,  (49)

where the viscous wave number in the fluid, %, is a com-
plex quantity:

kof kosb
T, W= .
1+ Ly PrCor

Here b is the total fluid viscosity (bulk and shear). The ef-
fects of viscosity can be straightforwardly incorporated in
the PTA pressure-wave formalism by simply substituting
kyp for kopin all relevant spectral equations. The complex
nature of the viscous wave number implies spatial ampli-
tude attenuation of the Fourier component of the propa-
gating wave in the form

exp(— ikye) = exp[— kodz/z,)sin(6/2)]
Xexp[ - ikodz/zs)cos(0/2)], (51)

kbf2 = (50)

where 6=tan~!(v;) is a loss angle characterizing the dis-
appearance of mechanical energy from the photomechani-
cal system through conversion in the form of thermal fric-
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tion. The characteristic damping distance z, is defined as

za=(1+1,2) 2 kyy. (52)

3. EXPERIMENTAL CONFIGURATION AND
COMPUTATIONAL IMPLEMENTATION
OF THE THEORY

The experimental setup used for our tests is shown in Fig.
2. The laser used to generate PTA pressure waves was a
Q-switched Nd:YAG laser (Quantel, 1064 nm, 5-ns pulse
width, beam size 5—6 mm in diameter). A 45-deg high-
energy flat reflection mirror was used to direct the laser
beam to the target. A focusing lens was used to change the
beam size as required at the target so as to ensure the one
dimensionality of the PTA response. Black conical poly-
styrene target wells were filled with purified water. The
inside diameter of the target was 7.10+0.15 mm (top) ta-
pered down to 6.4+0.15 mm (bottom). The nominal base
thickness of the black polystyrene wells varied from
1.1 to 1.4 mm. Two membrane needle hydrophones (Mod-
els 2312 and 2313, Force Technology, Brgndby, Denmark)
with a 1-mm-diameter sensitive element were used de-
pending on laser fluence. The hydrophone was positioned
along the axis of the cylindrical well at different depths to
measure the pressure-wave pulses. The hydrophones
were calibrated up to 20 MHz. The detected signals were
displayed on a fast digital oscilloscope (Tektronix, Model
3302). The pressure-wave pulses were captured by the
single sequence mode, and the oscilloscope was triggered
by the pressure-wave pulse itself. Each waveform was ob-
tained up to three times and stored for statistical pur-
poses, but waveforms from a single target were not aver-
aged because of base ablation. The energy of the Nd:YAG
laser could be varied in the range of 60—365 mdJ. All ex-
periments took place at room temperature. The hydro-
phone transfer function was obtained from the manufac-
turer and was used to determine the frequency-domain
roll-off and the time-domain broadening of the PTA im-
pulse response of an essentially delta function laser pulse
(~5 ns) on the time scale of the acoustic response (of the
order of microseconds). We calculated the absolute pres-
sure at the peak of the response from the hydrophone
manufacturer’s data using a table of conversion factors
(volts per pascal) for each frequency component of the sig-
nal and an instrumental sensitivity correction factor to
multiply each spectral component of Eq. (42) before the
inverse Fourier transformation in the time domain.
Computational implementation of the PTA pressure
theory [Eq. (42)] was partly guided by the observed re-

black polystyrene wells
filled with purified water

I NEYAG |
1064 nm

Fig. 2. Experimental setup of our laser PTA drug delivery
system.

laser beam 45 flat

reflecting mirror
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sults and was separated into a system transfer function
factor and a fluid pressure response factor. System trans-
fer function factors were the effect of the solid target
fs(L, w); the effect of diffraction in water g{w); and the ef-
fect of the hydrophone response and the spectrum of input
pulse waveform, both grouped together in f,(w). The in-
trasolid reflections are computationally a modification of
the first (directly transmitted) impulse response of the
solid into the fluid, appropriately time shifted by Ar,
=2n(L/c,) [Eq. (44)] and scaled by the reflectance product
R R, for each full reflection. The inverse Fourier trans-
form was first calculated with f,(w)=1 representing the
impulse response of the solid-liquid geometry correspond-
ing to an infinitely narrow laser pulse (mathematically a
Dirac delta function). The actual response in the time do-
main was then considered as a convolution of this with
the product of the input pulse and the numerical hydro-
phone transfer function f,(w). But for some constant mul-
tiplication factors, multiplying the diffraction transfer
function [Eq. (839)] by [rys[,s(w)+I's(w)] gives the total
system transfer function for the first direct pressure-
pulse transmission across the solid—fluid boundary. Tak-
ing the inverse Fourier transform of the total system
transfer function gives the impulse response in the time
domain as

1 1
hn) = Seam(1+ ras)[ ( B )eXp(csMsT)H (-7

RQS
-5 Jexp(- comn

CsMsB(B - ras)
y

e BIHG),  (53)
where B(z)EZ(cofz/cs,ust) and 7 is the retarded time.
Since the system impulse response is known, then the
PTA response to any given input pulse signal can be found
by convolving the input pulse with the impulse response.
Assuming an arbitrary input photoacoustic pulse IyFp(t)
that satisfies Fp(t)=0 for £<0, it can be shown that the
total system response is given by

PAz,7) =1,C1f1(0)exp(cspus NV H (= 7) + Io[Cy exp(egus T)f1(7)
- CQ eXP(— Csls T)fQ(T) + CS exp(_ CSIU'SB T)f3(7-)]H( T)a

(54)
where
f1(T)=J Fp(t)exp(- c ust)dt, (55a)
f2(T)=f FP(t)eXp(Cs/-Lst)dt’ (55b)
0
f3(7)=f Fp(t)exp(cyuBt)dt. (55¢)
0

The remaining constants in Eq. (53) are defined as
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CS/'LS(l + ras)Ras
2(1-B)

CSMS(l + ras)

™ 91+B) T T*

’

_ cs/'LsB(B - ras)

] (55)
As discussed above, the nonlinear frequency response
of the hydrophone and its high-frequency roll-off was re-
sponsible for the significant broadening of the acoustic
signal (>1 us) compared to the actual laser pulse width.
This type of broadened pressure pulse width observed in
our experiments has also been reported by authors who
used similar hydrophone polyvinylidene fluoride (PVDF)
detection schemes with up to a few (~10) megahertz
response.4 On the other hand, when broadband,
9-um-thick PVDF transducers were used, the temporal
resolution of pressure waveforms achieved was of the or-
der of a few nanoseconds, both in the literature! as well as
in our system; however, the sensitivities of the PVDF
transducer and the signal-to-noise ratio were too compro-
mised compared with the hydrophone transducers to yield
good parametric measurements, so we finally opted for
the latter. For computational analysis purposes in this
study, the convoluted temporal pulse shape of the trans-
ducer acting as a low-pass filter was taken as Fp(¢) and
fitted to a numerical functional form, an extension of the
temporal shape best fit reported by Terzic and Sigrist!®:

£\2
Fp(t) = {A1<—) exp[—Ay(t/7p)]

R

3

R

Given a convenient form for Fp(¢) such as the one above,
then PAz,7) can be found in closed form with symbolic
mathematics software such as MAPLE. Once the analyti-
cal form for P{z, 7) is known, it can be used to fit the ex-
perimental data. Here (A;—A,) are constants determined
by fitting to the frequency response data of the
manufacturer-supplied hydrophone transducer upon in-
verse FT to the time domain, as is 75, a parameter repre-
senting the laser plus transducer (instrumental) rise
time. We found that this method of mathematically de-
scribing the transient excitation waveform empirically
and using it in the convolution of the theoretical PTA re-
sponse obtained from the experimental data proved to be
faster and more effective than purely numerical integra-
tion or time-domain convolution schemes.”!

4. EXPERIMENTAL RESULTS,
COMPUTATIONAL FITS TO DATA, AND
DISCUSSION

Figures 3-14 show experimental PTA results under vari-
ous laser intensity and hydrophone location conditions. To
obtain best fits to the entire time record of the pressure
responses, the exact values of A{—A, were not as impor-
tant as the value of 75 in Eq. (56). Overall, the important
fitting factors are (i) the product {,=c,u, of the optical ab-
sorption coefficient and the speed of sound in the solid, (ii)



Mandelis et al.

the fluid diffraction parameter B(z), (iii) the acoustic im-
pedance coefficient at the air—solid boundary r,, and (iv)
the effective instrumental excitation width 7z. With re-
gard to rg, it is interesting to note that increasing the
gas—solid acoustic impedance term r,, in Eq. (28) in-
creases the pressure magnitude, since more energy is con-
fined in the region z>-L (Fig. 1). This term is affected
when a variable acoustic impedance layer is added to the
solid—air interface before exposure to laser pulses. Such
surface loading laser ultrasonic effects have been ob-
served experimentally in our experiments (when we use a
thin layer of gel) and also previously by a number of au-
thors. They have been reviewed in some detail by
Hutchins.'® We selected the reported results in this work
among waveform data obtained using either the Force hy-
drophone transducer Model 2312 (low pulse energies of 60
and 100 mdJ) or Model 2313 (high pulse energies of 165
and 265 mJ). These particular sets of data were chosen so
as to show the trends in goodness of fit as a function of
incident pulse energy, among other measurements. This,
is turn, is insightful regarding the onset of nonlinear pho-
tothermoelastically driven hydrodynamic behavior in the
system. All data figures include experimental pressure-
wave traces and superposed theoretical best fits. The pa-
rameters used for the theoretical fits are p,
=1.293 kg/m?, ¢,(20 °C)=344 m/s, p;=998 kg/m3, ¢
=1481 m/s, W=5.5 mm, and By=0.8 X 10~4/°C.% Viscous
damping in the form of a complex wave number ks [Eq.
(50)] was first introduced into the computational fitting
procedure, but it was found that all theoretical fits in this
work were able to be accommodated with no viscous
damping.

In Fig. 3 data from the 60-mdJ laser pulse are shown,
with the transducer located at z=2 mm away from the
solid polystyrene target bottom (the well). The bipolar
pulse width (compression peak followed by the rarefaction
trough) is fitted well for both primary (i.e., early) response
and secondary response (first reflection, following a round
trip of acoustic energy in the solid target). The temporal
delay between the primary and the reflected pulses deter-
mines precisely the thickness of the bottom of the well,

75 T
—— Experimental Data
Theoretical Fit

251

Pressure (MPa)

-5p

78 ) . " . . . . 1 )
16 18 2 22 24 26 28 3 32 34 38
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Fig. 3. Experimental PTA data and theoretical fit for laser-pulse
energy of 60 mdJ and an axial hydrophone distance z=2 mm. The
fit parameters are B=0.162, c,u,=2.2X 108 s71, L=1.27X 1073 m,
res=1.86X107% 7,=9.52X107% s,
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assuming the speed of sound in polystyrene to be c,
=2358 m/s (an average between values reported in the
literature®?°). The various fitted parameters, including
the optimal thickness L of the well bottom, are shown in
the caption of Fig. 3. Nominal thickness L was in the
1.1-1.4-mm range. The secondary pressure compression
(third extremum in the fundamental tripolar pulse) is not
fitted well in Fig. 3. This relatively sharp peak and simi-
lar peaks in subsequent plots are not accounted for in our
theory. Satellite experiments over longer time scales that
used a series of laser irradiances showed that the rapid
damped oscillations following the primary photoacoustic
pulse and its first reflection were due to transducer ring-
ing with a period ~0.1 us. Similar photoacoustic ringing
effects have been reported by Sigrist.!® We attempted to
eliminate these resonances mathematically by multiply-
ing the PTA response expression of Eq. (42) with the FT of
a simple damped harmonic-oscillator model of the form

() =A,, exp(- t/7,)cos(wyt + ¢,,), t=0. (57)

Quantities with the subscript m denote values at reso-
nance. The transducer transfer function in the frequency
domain consists of two contributions at w,=w+ w,,:

A [ exp(-ig,)  explidhy,)

l+iw,— 7,

F, (0)= (58)

47 | 14+iw+ 7,
Unfortunately, the high-frequency background noise ren-
dered the precise identification of the resonance fre-
quency w,, difficult from experiment to experiment with
peak-to-peak variations as large as 0.05 us, which signifi-
cantly reduced the utility of the mathematical elimination
procedure as it tended to distort the temporal position of
the diffraction peaks. Therefore the attempt was aban-
doned, and pressure transients were used as obtained.
Here, the best fit consisted of matching the curvature of
the structure at the foot of the experimental ringing peak,
which is most likely due to diffraction. It can be argued
that the experimental pulse shape between 2.0 and 2.2 us
is the superposition of diffraction and transducer reso-
nant ringing.

Figure 4 shows similar curves at hydrophone position
z=5 mm. Here again, the fundamental compression and
rarefaction (bipolar) waveform zone is well fitted with the
first resonant ringing of the transducer occuring ~0.14 us
after the onset of the PTA pulse. The best-fitted theoreti-
cal second (diffraction) maxima of both primary and re-
flected pulses are delayed with respect to the resonant
peak that precedes the theoretical maximum. The same
trend occurs in Fig. 5 obtained with the hydrophone posi-
tion at z=8 mm. The degree of waveform reproducibility
from shot to shot was calculated in terms of the temporal
position of the various PTA extrema for pressure-pulse
traces from three wells at each location of the hydrophone
as follows: 0.11 us or +1.05% for z=2 mm, 0.13 us or
+1.2% for z=5 mm, and 0.16 us or =1.6% for z=8 m.
Similar reproducibility tolerances were measured with all
other laser fluences (Fig. 15). It can be seen in Fig. 5 that
the experimental trough (negative peak) of the fundamen-
tal bipolar rarefaction begins to trail the compression
peak very slightly at farther locations of the hydrophone
compared with z=2 mm. This is also clear from the theo-
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Fig. 4. Experimental PTA data and theoretical fit for a laser-

pulse energy of 60 mJ and an axial hydrophone distance z

=5 mm. The fit parameters are B=0.404, c,u,=2.2X10%s71,

L=1.30x10"m, r,;=1.86X 1074, 7,=8.76 X 10~ s.
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Fig. 5. Experimental PTA data and theoretical fit for a laser-
pulse energy of 60 mJ and an axial hydrophone distance z
=8 mm. The fit parameters are B=0.646, c,u,=2.2X10%s7,
L=1.31X10"%m, r,,;=1.86X107%, 75=8.90X 107% s.

retical fits. It is thus concluded?! that, even at these very
low laser-pulse energies, this trend is consistent with the
onset of hydrodynamic nonlinearity in water. From Figs.
3-5, in this almost purely linear hydrodynamic region,
the best-fitted values of B=B(z) increase essentially lin-
early with z, as predicted by the definition of B in Eq. (53)
and Ref. 17. The best-fitted value of B for each transient
is mostly sensitive to the temporal difference between the
primary compression and the rarefaction peaks. An opti-
mal compromise to best fit both the primary and the re-
flected traces had to be made in all cases with the re-
ported values reflecting this compromise.

For laser-pulse energy of 100 mdJ, Fig. 6 shows the z
=2-mm data. Again, the primary compression and rar-
efaction peaks are fitted well, with the exception of the
secondary maximum (sharp peak) due to the transducer
resonance that occurs at ~0.16 us after the onset of the
PTA pulse and is much reduced with respect to the 60
-mdJ case because of the increased absolute PTA signal
(pressure peak) level. This fact has allowed a better fit of
the tripolar wave to (minimal) diffraction effects at both
the primary and the first reflection pulses. Figure 7 is the
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hydrophone response at z=5 mm. The response peak am-
plitude is significantly weaker than at z=2 mm because of
the more remote location of the transducer with respect to
the source. Thus the resonance effect following the rar-
efaction trough appears enhanced, to the detriment of a
good diffraction fit to the primary tripolar response. The
diffraction fit to the first reflection pulse, however, is
much improved because of resonance damping at longer
times, and the diffraction parameter B is larger than that
at the z=2-mm position, as expected [Eq. (53) and
Ref. 17].

Figure 8 shows the 100-mdJ results at z=8 mm. Here
the diffraction peak of the fundamental tripolar wave is
improved, trailing behind the resonance peak following
the rarefaction trough. The best-fitted value of B(z) fol-
lows the expected increasing trend with increasing trans-
ducer distance from the point of the PTA disturbance;
however, the primary theoretical trough minimum trails
behind the experimental minimum. This is due to the on-
set of measurable nonlinearity of the response at the far
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Fig. 6. Experimental PTA data and theoretical fit for a laser-
pulse energy of 100 mJ and an axial hydrophone distance z
=2 mm. The fit parameters are B=0.011, c,u,=2.2X10%s7,
L=125X%X10"m, r,;=1.86X 1074, 3=8.76 X 107% s.
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Fig. 7. Experimental PTA data and theoretical fit for a laser-
pulse energy of 100 mJ and an axial hydrophone distance z
=5 mm. The fit parameters are B=0.043, c,u,=2.2%X108s71,
L=1.28%10"3m, r,,=1.86X107%, 7,=8.90X 1078 s.
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Fig. 8. Experimental PTA data and theoretical fit for a laser-
pulse energy of 100 mJ and an axial hydrophone distance z
=8 mm. The fit parameters are B=0.069, c u,=2.2X10%s7,
L=1.28X%10"m, r,;=1.86X107%, 73=9.02X 107 s.

location of the hydrophone; it is cumulative in time and
manifests itself as a higher speed of propagation of sound
in the water, thus steepening the rising edge of both the
primary and the first reflection pressure pulses as pre-
dicted theoretically.7’21 The lower B values at 100-mdJ
pulse energy compared with the 60-mdJ fits cannot be ex-
plained in a straightforward manner within the confines
of the present linear PTA theory. It is strongly suspected,
however, that the visually observable target surface
scorching after each laser pulse that appears at 100 mdJ
and higher energies is probably responsible for the onset
of nonlinear ablation effects on the polystyrene in the
range of photoacoustic pressures (~5-10 MPa) that arise
in the 100-mdJ and higher pulse energy experiments. Ab-
lation is expected to affect (increase) the speed of sound c;
in the solid itself or increase the optical absorption coeffi-
cient u, of the polystyrene surface thus decreasing the ab-
solute value of B since Bx1/c u,. Surface ablation has
been observed in polyimide targets in the same peak pres-
sure range®” and has resulted in a sublinear laser photoa-
coustic response on a plot of peak pressure (stress) versus
laser fluence. This type of sublinear behavior was also
present in our measurements (Fig. 15). Shot-to-shot re-
producibility over three transients is indicated by the er-
ror bars in Fig. 15. Each transient was obtained with a
different polystyrene target so as to avoid the effects of
multiple pulse ablation on one target.

In the results with a laser-pulse energy of 165 md, Figs.
9-11, the peak-to-trough ratio decreases with increasing
hydrophone distance from the bottom of the well. The
bump at the trailing foot of the primary compression peak
is the first transducer resonance and occurs at ~0.14 us
(z=2 mm) and ~0.23 us (z=5 mm) following the onset of
the laser pulse. It clearly prevents the full formation of
the rarefaction trough at z=2 and 5 mm. The same reso-
nant feature also appears, albeit significantly damped, af-
ter the first reflection peak. The farthest positioning of
the hydrophone at z=8 mm shows a well-pronounced
shift of the fundamental rarefaction trough followed by
steepening of the rising edge of the secondary maximum
of the tripolar pulse. The goodness of fit to the first reflec-
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tion trough is due to the damping of the resonance peak
under the much stronger PTA pressure pulse and is prob-
ably accidental as it involves nonlinear distortions not ac-
counted for in the present linear PTA theory. It is clear
that nonlinearity due to polystyrene material ablation
(see the strong sublinear behavior at z=8 mm in Fig. 15)
significantly distorts the rarefaction trough, thus also dis-
torting the best-fitted value of the diffraction parameter B
at that feature away from its monotonically increasing be-
havior compared with closer locations of the transducer
(Fig. 11).

Finally, for laser-pulse energies of 265 mdJ (Fig. 12), it is
clear that nonlinear effects essentially dominate the PTA
fundamental tripolar pressure compression wave, with
transducer ringing distorting the full formation of the rar-
efaction trough at the hydrophone position z=2 mm. The
strong resonance effect at z=2 mm is most likely due to
the intense photoacoustic-induced ringing at high fluid
pressures (=15 MPa). The combination of higher laser ir-
radiance and longer distance of the transducer from the
PTA pulse generation in the cases of z=5 and 8 mm ap-
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Fig. 9. Experimental PTA data and theoretical fit for a laser-

pulse energy of 165 mJ and an axial hydrophone distance z

=2 mm. The fit parameters are B=0.022, c,u,=1.98%x 108 s71,

L=1.35%10"m, r,,=1.73X 104, 73=1.05x 10" s.

_— Experimental Data
. Theoretical Fit

125

751

oo

-75 L L L L
1.0 15 20
Time (ps)

Fig. 10. Experimental PTA data and theoretical fit for a laser-
pulse energy of 165 mJ and an axial hydrophone distance z
=5 mm. The fit parameters are B=0.036, c,u,=3.17Xx 108 s71,
L=1.35X10"3m, r,,=1.78X 1074, 73=9.02X 1078 s.
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Fig. 11. Experimental PTA data and theoretical fit for a laser-

pulse energy of 165 mJ and an axial hydrophone distance z
=8 mm. The fit parameters are B=0.006, c,u,=1.98x10%s71,
L=1.41X10"%m, r,,;=1.73X 1074, 753=1.07x 1078 s.
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Fig. 12. Experimental PTA data and theoretical fit for a laser-
pulse energy of 265 mJ and an axial hydrophone distance z
=2 mm. The fit parameters are B=0.094, c,u,=1.54x10% s,
L=1.35X10"m, r,;=67x10*, 7,=8.93X107%s.

parently minimizes the contribution of the resonance to
the transient in Figs. 13 and 14. The effect on best-fitted
B(z) values is to yield nonmonotonic (and thus meaning-
less) trends in this quantity. Furthermore, the consider-
able steepening of the fundamental compression wave ex-
hibits an earlier peak than the linear theory predicts at
all three transducer locations. When not concealed by the
transducer resonance at the more remote hydrophone po-
sitions in Figs. 13 and 14, the falling edges of both funda-
mental and first-reflection compression pulses tend to-
ward the formation of an N-shaped waveform with a
sharpened tripolar maximum, characteristic of hydrody-
namic nonlinearity superposed on diffraction.?* This fea-
ture amounts to strong evidence that nonlinear acoustics
begin to dominate this regime of laser pulses. For the
fully nonlinear behavior and perhaps the unipolar pres-
sure pulses reported in similar experiments,™ the
present studies show that energy higher than 265 mdJ for
an unfocused laser pulse is required.

The functional relations between the incident laser
pulse (or irradiance) and the generated photoacoustic
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peak pressure pulse in water are shown in Fig. 15 for
three locations of the hydrophone transducer along the
symmetry axis of the polystyrene wells. It is clear that the
relationship between these quantities is linear in the
wave near-field region z=2 mm and that it grows progres-
sively nonlinear at more remote locations in the well. The
sublinear behavior of the curves is consistent with the
predictions of Zweig and Deutsch? regarding the stress
coupling coefficient for polyimide in the plasma-mediated
ablation region. The stress coupling coefficient is defined
as the total momentum transfer to the target during ab-
lation divided by the laser-pulse energy.?* The irradiance
range of our experiments, 1.26—5.3 MW/cm?, is within
the plasma ablation regime that was shown to exhibit
peak stress o, versus laser irradiance I dependence of the
form a'p<><10'71.723’24 Another possibility for the sublinear
PTA pulse behavior at large distances in Fig. 15 is the
higher dimensionality of the generated acoustic wave that
would tend to distribute acoustic energy in directions
other than along the axis of symmetry of the well.?’ The
appearance of a higher dimensionality depends on the dif-

20.0 T
= Experimental Data
Theorstical Fit

15.0f ‘ g

(MPa)

Pressure
o

~10.0 i 1 1 1 1 i 1 1 1
© oz 04 06 08 1 12 14 16 18 2

Time (us)
Fig. 13. Experimental PTA data and theoretical fit for a laser-
pulse energy of 265 mJ and an axial hydrophone distance z
=5 mm. The fit parameters are B=0.047, c,u,=1.54x10% 57,
L=1.37x10"%m, r,;=67x1074, 7=1.07X 10 s.
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Fig. 14. Experimental PTA data and theoretical fit for a laser-
pulse energy of 265 mJ and an axial hydrophone distance z
=8 mm. The fit parameters are B=0.076, c,u,=1.54x108 s71,
L=1.41X10"3m, r,,;=67X107%, 7=1.0X 1078 s.
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Fig. 15. PTA peak pressure of the primary condensation pulse
in water versus incident laser fluence for three locations of the
hydrophone. z=8 mm (triangles), z=5 mm (circles), z=2 mm
(squares).

fraction length in the fluid. The dominant mechanism for
the sublinear behavior is determined by the ratio
Lpgp/Lyy, in the fluid, where Lyy, is the nonlinearity char-
acteristic length. It can be shown (Ref. 7, Chap. 2.3) that
LDF/LNL=ew2W2va/200f3<1 in water. Here € is the non-
linear acoustic parameter of water [4.4+0.9 (Ref. 6)] and
v, is the amplitude of the particle (vibrational) velocity. In
this case nonlinear effects due to ablation are expected to
become noticeable only in the far field of the PTA wave,
consistent with the trends in Fig. 15, where the degree of
nonlinearity increases with increasing distance from the
pulse generation point. Theoretically a fully nonlinear
model of the coupled solid—fluid hydrodynamic behavior is
needed. There are two ways to achieve this with the pulse
time records generated in our experiments: either
through numerical solution of the so-called Khokhlov—
Zabolotskaya equation26 or through the application of a
theorem (in the form of a boundary-value problem) in
nonlinear acoustics, known as the Poisson solution.”
Work toward the implementation of a fully nonlinear PTA
theory at large laser fluences is currently under way.

5. CONCLUSIONS

Alinear time-domain PTA theory has been developed for a
composite solid—liquid one-dimensional geometry that in-
cludes multiple interreflections at interfaces, acoustic dif-
fraction effects, and natural mixed boundary conditions at
the source interface (air—solid). The theory was applied to
experimental laser-induced pressure-wave pulses in a
polystyrene well target and water system used for photo-
mechanical drug delivery studies. A computational algo-
rithm based on best fits of the theory to experimental
data sets was generated. The results of the fits show the
following trends: (1) At low laser-pulse energies
=100 md, the linear PTA model fits the data well, espe-
cially at distances <56 mm from the solid—fluid interface
along the axis of symmetry, with the exception of a pres-
sure bump at the secondary rising edge of the primary tri-
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polar pulse, a feature consistent with damped resonant
ringing of the transducer. (2) The onset of significant hy-
drodynamic nonlinearity appears for laser-pulse energies
in the 165-mJ range, especially at axial distances z
=5 mm consistent with ablation-induced nonlinearity in
the solid polystyrene and transmitted in the underlying
water layer. (3) The theoretical fits to the data can be used
to measure several geometric, acoustic, optical, and ther-
modynamic parameters of the experimental system in-
cluding precise thickness L of the target, its optical ab-
sorption coefficient u, and any variations due to laser
ablation of the surface, its acoustic velocity c,, the fluid
diffraction parameter B(z), and the acoustic impedance
rqs with and without ablation. The present work can be
used to establish the onset of hydrodynamic PTA nonlin-
earity and control the laser irradiance across the transi-
tion region from linearity to optimize the efficiency of pho-
tomechanical drug delivery and induce cell
permeabilization with laser photomechanical stress
waves.
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