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Laser-induced photothermoacoustic pressure-wave
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A linear time-domain thermoelastic (photothermoacoustic) theory of a composite solid–liquid geometry has
been developed. The theory includes multiple interreflections at all interfaces, acoustic diffraction and viscosity
effects, and natural mixed, rigid, and free boundary conditions at the solid surface where laser-pulse incidence
occurs (air–polystyrene interface). The theory was applied to experimental pressure-wave pulses from a
Nd:YAG laser in a polystyrene well target and water system used for photomechanical drug delivery studies.
Good fits of the linear theory to tripolar experimental pressure waveforms were possible at laser-pulse irradi-
ances &100 MW/cm2, especially at distances ø5 mm from the solid–fluid interface. It was further determined
from the combined theoretical and experimental approach that the onset of significant hydrodynamic nonlin-
earity in the water appears for laser-pulse irradiances in the 165-MW/cm2 range, especially at axial distances
z,8 mm, as expected theoretically from the laser-ablation-induced nonlinearity of stress-wave propagation in
the solid–water system. © 2005 Optical Society of America

OCIS codes: 170.7170, 170.7180.
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. INTRODUCTION
he field of drug delivery and cell permeabilization with

aser-induced stress waves has witnessed a rapid develop-
ent in recent years, with several research groups report-

ng various levels of success in generating reliable and re-
roducible cell membrane permeabilization results.1–4

uch attention has been paid to the experimenter’s abil-
ty to control the rising edge of the laser photoacoustic
tress pulse in the fluid (water) as a tool to control cell
ermeabilization.1,2 It is broadly believed that nonlinear
hotoacoustic waves must be generated in water to in-
uce cell permeabilization. A review of the literature,
owever, has revealed that photoacoustic pulse shapes in
ell-loaded wells filled with water may exhibit a wide
ange of linear and nonlinear behavior with poor under-
tanding of the parameters that lead to a particular re-
ponse. Reported results are sometimes consistent with
hermoelastic wave propagation3 and sometimes with
onlinear shock waves.4 This may be related to the fact
hat there appears to be no full understanding of the ef-
ects and ranges of the various experimental control pa-
ameters that lead to nonlinearity. This, in turn, compro-
ises the reproducibility of the photomechanical

xperiment and the predictability and optimization of the
ell permeabilization and drug delivery yield. Reflecting
he same situation, theoretical photoacoustic treatments
f the pulse generation and propagation mechanism in
he fluid vary widely, ranging among linear, fully nonlin-
ar, and quasi-linear approaches, even within the same
0740-3224/05/051024-13/$15.00 © 2
esearch group. To control the photomechanical pulse be-
avior and to obtain consistently reproducible waveforms
mong the different groups, a theoretical treatment of the
inear thermoelastic mechanism5 and an understanding
f its transition to nonlinear stress-wave generation
hould be considered. The major measurable difference
etween the nonlinear impulse response and the linear
hermoelastic response is the crucial steepening of the
uid pressure-pulse rising edge with increasing laser

rradiance.6

In this paper a first step in this direction, the problem
f linear photomechanical pressure-pulse generation in
ater, the fluid of choice in many cell membrane perme-
bilization studies,1–4 is formulated. A laser pulse inci-
ent on the outer surface of a standard solid black poly-
tyrene well target in a conventional configuration for cell
ermeabilization1–4 is considered as the source of a pho-
othermoacoustic (PTA) pulse in the solid. Coupled small-
mplitude (linear) wave equations are solved in the solid
nd fluid, and the resulting predictions are compared
ith experimental data obtained with a variable-fluence
ulsed Nd:YAG laser and commercially available polysty-
ene wells filled with water. Unlike the two boundary-
ondition modes always used separately in the laser pho-
oacoustics literature3,7 (which were unable to match our
xperimental results), following excitation by an incident
ingle-shot laser pulse, the present one-dimensional
odel introduces natural mixed (free and rigid) boundary

onditions and accounts for acoustic diffraction and fluid
005 Optical Society of America
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iscosity effects, as well as for multiple acoustic reflec-
ions at the air–solid and solid–fluid interfaces. A study of
he onset of deviations between the linear theory and the
xperimental data is used as a practical criterion to deter-
ine the threshold laser irradiance required for the gen-

ration of large-amplitude photoacoustic waves in the
uid and the transition to nonlinearity.

. THEORY OF PHOTOTHERMOACOUSTIC
ASER PULSES IN FLUIDS
. Coupled Photothermoacoustic Boundary-Value
roblems
n a nonviscous fluid undergoing small acoustic perturba-
ions affecting the density up to the linear term,

rfsr,td = rf0 + r1sr,td, s1d

here subscript 0 indicates equilibrium values. Introduc-
ng a scalar velocity potential

Vsr,td = = Cfsr,td, s2d

t can be shown that Cfsr , td sm2 s−1d satisfies (Ref. 7,
hap. 2)

]2Cfsr,td

]t2 − cf0
2¹2Cfsr,td = − STf0cf0

2b

CP
D ]S1sr,td

]t
. s3d

lso introducing the heat conduction equation and the
diabatic medium ratio of specific heats, g=CP /Cv, such
hat g.1 for condensed media (Ref. 7, Chap. 2), leading
o

g − 1 =
Tf0cf0

2b2

CP
! 1,

n equation for PTA wave generation in a nonviscous
eat-conducting fluid can be written as

]2Cfsr,td

]t2 − cf0
2¹2Cfsr,td = −

cf0
2b

rf0CP
= · Qsr,td, s4d

here b sK−1d is the coefficient of volume v, expansion b
v−1sudv /dTuPd, cf0 is the equilibrium value of the speed of
ound in the fluid within the linear regime, and CP is the
pecific heat at constant pressure. Qsr , td is the direc-
ional source in the fluid. In this formalism Q=0 as the
ource for the acoustic disturbance in the fluid originates
n the supporting optically absorbing solid in the form of a
TA pulse. The small-amplitude pressure rise in the fluid

s related to the potential Cf by8

Pfsr,td = − rf0

]

]t
Cfsr,td, s5d

here the pressure increase Pfsr , td is assumed to involve
nly the PTA pressure rise. The electrostrictive compo-
ent of the pressure is ignored.9

The geometry used in our experiments employed a
arge laser beam sù5 mmd and thus corresponds to the
ne-dimensional limit of Eq. (4). Figure 1 describes the
hree effective coupled layers: The ambient gas (air) is
emi-infinite and occupies the spatial region −`,zø−L.
t has density r and speed of sound c . The solid of thick-
a a
ess L occupies the domain −Løzø0 and has properties
f density rs, speed of sound cs, specific heat at constant
ressure CPs, optical absorption coefficient at the laser-
ulse wavelength ms, bulk modulus Ks, and isobaric vol-
me expansion coefficient bs. The fluid occupies the half-
pace 0øz,`. The reason that we do not consider the
nite thickness of the fluid layer is that in our experi-
ents no reflections from the water–air interface (ex-

ected to be inverted pulses10) were observed. This sim-
lifies the solution, but the finite dimensions of the fluid
an be readily incorporated in the theory. The coupled-
ave equations in the solid and fluid are most conve-
iently dealt with by introducing in the solid a particle–
olecule displacement potential Fssr , td, which is related

o the displacement vector Ussr , td by11,12

Ussr,td = = Fssr,td. s6d

nly longitudinal waves are assumed to propagate in a
hin isotropic solid because of laser PTA excitation by a
arge-spot-size laser beam. As a result, =3Ussr , td=0,
nd the displacement potential satisfies the wave equa-
ion

¹2Fssr,td −
1

cs
2

]2

]t2Fssr,td = SKsbs

rscs
2DQssr,td, s7d

here Qssr , td is the temperature increase above the am-
ient (equilibrium) value. The thermoelastic pressure in
he solid is determined by11

Pssr,td = − rs

]2

]t2Fssr,td. s8d

n the remainder of the theoretical development, the one-
imensional version of the wave equations is used for the
xperimental case of a large and (assumed) uniform laser
eam source. Analytical solutions of the coupled PTA
roblem in one and higher dimensions in the form of spec-
ral integrals can be obtained by converting the time-
omain equations to their frequency-domain counterparts
hrough Fourier transformations (FTs). In the solid layer
he equation for the FT of the one-dimensional displace-
ent potential

ig. 1. One-dimensional cross-sectional geometry of the model
howing the direction of the incident laser pulse.
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fssz,vd =
1

2p
E

−`

`

Fssz,tdexps− ivtddt s9d

s the Helmholtz equation,

d2

dz2fssz,vd + ks
2fssz,vd = SKsbs

rscs
2Dqssz,vd, − L ø z ø 0,

s10d

here ks=v /cs and qssz ,vd is the FT of the temperature
rofile Qssz , td [Eq. (7)]. The FT of the heat conduction
quation in the solid following a laser pulse is the
hermal-wave equation

d2

dz2qssz,vd − S iv

as
Dqssz,vd = −

1

ls
Hsz,vd, s11d

here as and ls are, respectively, the thermal diffusivity
nd conductivity of the solid medium. The spectral com-
onent Hsz ,vd of the source term, at any angular fre-
uency v of the thermal source, is given by

Hsz,vd = msI0 expf− mssL + zd + ivtg. s12d

ere I0 is the laser irradiance. For a short laser pulse, the
iffusion term in Eq. (11) can be neglected and the FT of
he temperature field can be readily calculated as

qssz,vd = − S iI0ms

vrsCsP
Dexpf− mssL + zdg, s13d

here the modulation factor expsivtd will henceforth be
mitted. This expression is the driving force of the PTA
ave in Eq. (10). The general solution to that equation is

fssz,vd = As1 expsikszd + As2 exps− ikszd

+ Ds expf− mssL + zdg, s14ad

here As1 and As2 are integration constants to be deter-
ined and Ds is defined as follows:

Ds = −
iKsbsI0ms

rs
2cs

2CsPvsms
2 + ks

2d
. s14bd

similar treatment of the fluid in terms of the FT of the
elocity potential cfsz ,vd, assuming a nonviscous fluid
ith no direct internal PTA source, yields the FT of Eq.

4):

d2

dz2cfsz,vd + k0f
2cfsz,vd = 0, 0 ø z ø `. s15d

ere k0f=v /c0f is the acoustic wave number in the fluid
or small-amplitude (linear) acoustic perturbations. The
bounded) general solution of Eq. (15) is

cfsz,vd = C1 exps− ik0f zd. s16d

n the fluid (air) region of the laser incidence, zø−L, the
T of the PTA field is an equation similar to Eq. (15) with
general solution

casz,vd = C2 expfikasz + Ldg. s17d

he constants sAs1 ,As2 ,C1 ,C2d in Eqs. (14)–(17) can be
etermined through the boundary conditions at the two
nterfaces z=0 and −L. For an isotropic solid, the ther-
oelastic stress tensor sij (Refs. 9 and 11) becomes
niaxial:

szzsz,td = rscs
2uzzsz,td − KsbsQssz,td. s18d

quation (18) is strictly valid in the adiabatic sound
ropagation regime, i.e., for frequencies11 v!vl

cs
2rsCsP /ls. If the strain tensor is written in terms of

he displacement potential,

uzzsz,td =
]2

]z2Fssz,td, s19d

he equations for continuity of the force per unit area
pressure) at the solid–fluid and solid–gas interfaces can
e deduced from Eq. (18) and their FTs can be taken as

rscs
2

d2

dz2fs0,vd − Ksbsqss0,vd = − pfs0,vd = irf0vcfs0,vd,

s20ad

rscs
2

d2

dz2fss− L,vd − Ksbsqss− L,vd

= pas− L,vd

= iravcas− L,vd, s20bd

here pjsz ,vd is the FT of Pjsz , td. Given our use of differ-
nt elastic potentials in the solid and the fluid, the other
ontinuity condition at the two interfaces is taken to be
hat of velocities (and accelerations) instead of displace-
ents:

Vssz,td =
]

]t
Ussz,td =

]2

]z]t
Fssz,td ⇒ vssz,vd = iv

d

dz
fssz,vd.

s21d

pon equating the velocity FTs across the interfaces z
0 and −L, we obtain the additional boundary conditions

iv
d

dz
fss0,vd =

d

dz
cfs0,vd, s22ad

iv
d

dz
fss− L,vd =

d

dz
cas− L,vd. s22bd

ontinuity of the accelerations across the same interfaces
eads to a pair of boundary conditions identical to Eqs.
22). Equations (20a), (20b), (22a), and (22b) constitute
he entire set of the Fourier-transformed boundary condi-
ions that must be used to determine the integration con-
tants sAs1 ,As2 ,C1 ,C2d. After some algebra and with the
implification exps−msLd=0 for optically opaque solid ma-
erials as in the case of our experiments (black polysty-
ene wells), the coefficients As1, As2 of the PTA frequency
lement in the fluid can be determined:
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s2

=
I0Ksbsmsfmscasra/rsd + ivgexps− iksLd

rs
2cs

2CsPv2sms
2 + ks

2ds1 + rasdf1 − RfsRas exps− 2iksLdg
,

s23ad

As1 = − RfsAs2, s23bd

here

rij =
rici

rjcj
s24d

s the acoustic impedance at the interface si , jd represent-
ng energy flow between adjacent media and

Rij =
1 − rij

1 + rij
s25d

s the reflectance of the acoustic interface. Because of Eq.
5) and expressing C1 in terms of As2 by the boundary con-
itions, we can write the FT of the pressure wave as

pfsz,vd = rsv
2TfsAs2svdexps− ik0fzd, s26d

here

Tij =
2

1 + rij
s27d

s the acoustic transmission coefficient at the interface
i , jd. Specifically, Tfs represents the fraction of PTA wave
nergy in the solid transmitted into the fluid. To link the
T of the PTA pressure wave in the fluid to existing the-
retical formalisms and make its physical interpretation
ore transparent, use of Eq. (23a) in Eq. (26) and expan-

ion of the denominator yields

pfsz,vd =
I0KsTfs

css1 + rasd
frasGRssvd + GFssvdg

3exps− ik0fzdo
n=0

`

sRfsRasdn expf− is2n + 1dksLg.

s28d

n Eq. (28) the summation represents infinite interreflec-
ions of the PTA wave inside the solid layer. With each
uccessive reflection from one of the solid boundaries, the
raction of reflected energy decreases by the product

fsRas of the interface reflectances. The coefficients GRssvd
nd GFssvd are defined as follows:

GRssvd ;
bs

rsCsP
S ms

2

ms
2 + ks

2D , s29d

GFssvd ;
ibs

rsCsP
S msks

ms
2 + ks

2D , s30d

here GRssvd and GFssvd are air–solid interface factors
nown as the transfer functions for rigid and free bound-
ries, respectively.7,13 The linear combination of these fac-
ors, the former factor weighed by the acoustic impedance
t the air–solid interface, indicates the effects of natural
ixed boundary conditions at the air–solid interface. Un-
ike treatments in the literature where either rigid (sub-
cript R) or free (subscript F) boundary conditions have
een imposed arbitrarily,7,13,14 the present approach has
ormulated a natural combination of the two limiting
ases. The combination of these two terms in Eq. (28) is
onsistent with the following physical mechanism: If the
coustic (thermoelastic) transit time across a depth equal
o the optical absorption depth ms

−1 in the solid is short
ompared to the period corresponding to the particular
requency component of the external force, Tv=2p /v, i.e.,

tms
=

1

msfcssra/rsdg
! Tv, s31d

here cssra /rsd is the speed of sound in the solid modified
y the discontinuity in material densities at the solid–air
oundary where absorption occurs, then the solid behaves
ike a rigid body. The acoustic energy is released before
he photothermoelastically excited molecules of the solid
an move to perform forced oscillation at the particular
requency. In this case the free boundary component
Fssvd given by Eq. (30) is negligible compared with the
igid component rasGRssvd. At the other extreme, if tms
Tv, the forced oscillation occurs well before the acoustic

nergy from within the optical absorption depth is fully
eleased or propagated. In this (optically translucent or
ransparent) case the solid is under motion while the
ave evolves. Therefore it behaves like a freely moving
ody, and the gas–solid term rasGRssvd is negligible com-
ared with GFssvd. For the discussion that follows, it is
onvenient to redefine the two superposition components
f the pressure wave in the fluid [Eq. (28)].

pfsz,vd ; pf
sRdsz,vd + pf

sFdsz,vd s32d

s due to rigid and free boundary conditions, respectively,
here

pf
sRdsz,vd =

I0KsTfs

cs
S ras

1 + ras
DfssL,vdGRssvdexps− ik0fzd,

s33ad

pf
sFdsz,vd =

I0KsTfs

cs
S 1

1 + ras
DfssL,vdGFssvdexps− ik0fzd.

s33bd

hese are the FTs of the pressure waves under fully rigid
nd free boundary conditions, respectively. Here

fssL,vd ; o
n=0

`

sRfsRasdn expf− is2n + 1dksLg s34d

s an acoustic transfer function in the solid of finite thick-
ess L where an acoustic field of unit intensity is under-
oing infinite interreflections.

. Diffraction Effects in the Fluid
ext, the transfer function in the brackets of Eq. (28)
ust be modified to allow for diffraction in the fluid. This

s a way of introducing three-dimensional effects into a
ne-dimensional formalism. Taking into account the
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aussian nature of the laser beam of finite spot size W in-
ident on the solid, the Fourier component of the laser-
ulse profile can be modified:

Isx,y,z;vd = I0 expf− sr/Wd2 − mssz + Ld + ivtg. s35d

he acoustic wave in the fluid will cross the boundary
rom the near field to the far field at distances such that
@LD, where the diffraction length in the fluid at angular
requency v is

LDsvd =
vW2

2cf0
. s36d

t can be shown that diffraction effects in the fluid can be
ccommodated in the one-dimensional theory if the trans-
er functions GRssvd and GFssvd are modified as follows7:

GRs,Fssvd → GRs,Fs
sDd sr,vd =

GRs,Fssvd

1 − isz/LDd
expF−

r2

1 − isz/LDdG .

s37d

he origin of the diffraction term above rests with the ex-
ent to which the optically generated acoustic waves re-
ain plane across the beam diameter. As in wave optics,

he acoustic wave field of a circular laser beam of constant
iameter and intensity exhibits near-field (Fresnel) and
ar-field (Fraunhofer) structure.15 Diffraction determines
he transition of the PTA field from the near-field to the
ar-field configuration with a given laser beam spot size
nd a realistic Gaussian transverse profile. Diffraction ef-
ects become pronounced when the detection distance is
arge compared to the spot size. For detection of the PTA
ressure wave on the axis of symmetry (e.g., by a sensi-
ive hydrophone), one only needs to consider GRs,Fs

sDd s0,vd.
n this case, a diffraction transfer function is introduced
or convenience:

GRs,Fs
sDd s0,vd = GRs,Fssvdgfsvd, s38d

here

gfsv,zd =
1

1 − isVf/vd
, Vfszd ;

2cf0z

W2 . s39d

quation (38) is valid for on-axis detection only and has
een satisfied in our experiments upon careful positioning
f a hydrophone along the symmetry axis of the polysty-
ene well. gfsvd indicates lateral spreading and curvature
haping of the otherwise plane wave fronts beyond dis-
ances of the order of the size of the local acoustic distur-
ance, a function of the laser beam spot size. Vfszd repre-
ents the inverse of the transit time at each distance z
long the axis required for acoustic energy in the fluid to
ross the spatially broadened source aperture. Using the
ree and rigid boundary components of the FT of the pres-
ure signal, Eqs. (32) and (33) can be modified to take into
ccount diffraction effects in the fluid:

pfsz,vd =
I0KsTfs

css1 + rasd
fssL,vd

3fr G svd + G svdgg svdexps− ik zd. s40d
as Rs Fs f 0f
. Time-Domain Photothermoacoustic Pressure Waves
ssuming pulsed excitation of the structure in Fig. 1 of
rbitrary temporal profile I0FPstd, with Fourier transform
0fPsvd, the FT of the generated temperature field is given
y

qssz,vd = − S iI0ms

vrsCsP
DfPsvdexpf− mssL + zdg s41d

nstead of Eq. (13). Under this excitation pulse, Eq. (40)
hat represents the Fourier spectrum of the PTA pressure
ave in the fluid must be multiplied by fPsvd. When in-
erted, this yields the time-dependent PTA pressure wave

fsz,td

=
I0KsTfs

css1 + rasd
FrasE

−`

`

GRssvdfssL,vdfPsvdgfsvdexpsivtddv

+E
−`

`

GFssvdfssL,vdfPsvdgfsvdexpsivtddvG , s42d

here t= t− sz /c0fd is a retarded time measured from the
uid origin (the solid–fluid interface). Considering Eqs.

33) for pf
sRdsz ,vd and pf

sFdsz ,vd for the weighted compo-
ents of the pressure wave, we can identify the first and
econd term under the integral signs on the right-hand
ide of Eq. (42) with the inverse FT of these two quanti-
ies as the time-dependent pressure spectral component
nder rigid boundary conditions Pf

sRdsz ,td and under free
oundary conditions Pf

sFdsz ,td, respectively. It is easy to
erify that the following relation exists between these two
omponents:

Pf
sFdsz,td = S 1

rasmscs
D d

dt
Pf

sRdsz,td. s43d

his relationship indicates that, for any shape of the laser
ulse, the line shape of the PTA response in a free bound-
ry configuration is the derivative with respect to the re-
arded time of the line shape of the PTA response in a
igid boundary configuration. This is the mixed-
oundary-condition generalization of a similar relation
erived by Burmistrova et al.13 Inserting Eq. (34) into Eq.
42), it can be shown that the infinite set of pulse interre-
ections at the two interfaces of the solid layer will ap-
ear at any arbitrary position z in the fluid at delay times
efined by

tnszd = t −
z

c0f
− s2n + 1d

L

cs
, n = 0,1,2, . . . , s44d

here the origin of times is the onset of the laser pulse. In
he special case of the first transmitted pressure pulse
cross the solid–fluid boundary, n=0, the PTA diffraction
esponse in the fluid [Eq. (33a)] can be simplified as fol-
ows:
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Pf
sRdsz,t0d =

I0KsTfs

cs
S ras

1 + ras
DE

−`

`

GRssvdgfsvdexpsivt0ddv.

s45d

he respective diffractionless PTA response is simply
iven by

P0f
sRdsz,t0d =

I0KsTfs

cs
S ras

1 + ras
DE

−`

`

GRssvdexpsivt0ddv.

s46d

et us invoke the convolution theorem and note that

FT−1fgfsz,vdg = Gfsz,td = 2phdstd − Vfszdexpf− VfszdtgHstdj,

s47d

here Hstd is the Heaviside function and dstd is the Dirac
elta function. Using Eqs. (29) and (30) we find from Eqs.
45) and (46)

Pf
sRdsz,t0d = mscsrasE

−`

`

P0f
sFdsz,t8dexpf− Vfszdst0 − t8dgdt8.

s48d

his convolution formula is a generalization of a relation
erived by Terzic and Sigrist16 for a semi-infinite optically
bsorbing fluid layer without the presence of a solid over-
ayer. The same relationship can be found for all subse-
uent reflection pulses in the present geometry by replac-
ng t0 with tn. Terzic and Sigrist, however, found different
xponent coefficients Vfszd for direct optical incidence on
paque and transparent fluids,16,17 representing the
ingle-layer fluid configuration.

. Viscosity Effects
hen Eq. (15) for the FT of the one-dimensional velocity

otential is modified to allow for viscous effects in Eq. (4),
he resulting Helmholtz equation can be written as

d2

dz2cfsz,vd + kbf
2cfsz,vd = 0, 0 ø z , `, s49d

here the viscous wave number in the fluid, kbf, is a com-
lex quantity:

kbf
2 =

k0f
2

1 + inb
, nb ;

k0fb

rfc0f
. s50d

ere b is the total fluid viscosity (bulk and shear). The ef-
ects of viscosity can be straightforwardly incorporated in
he PTA pressure-wave formalism by simply substituting
bf for k0f in all relevant spectral equations. The complex
ature of the viscous wave number implies spatial ampli-
ude attenuation of the Fourier component of the propa-
ating wave in the form

exps− ikbfzd = expf− k0fsz/zAdsinsu/2dg

3expf− ik0fsz/zAdcossu/2dg, s51d

here u=tan−1snbd is a loss angle characterizing the dis-
ppearance of mechanical energy from the photomechani-
al system through conversion in the form of thermal fric-
ion. The characteristic damping distance zA is defined as

zA = s1 + nb
2d1/2/k0f. s52d

. EXPERIMENTAL CONFIGURATION AND
OMPUTATIONAL IMPLEMENTATION
F THE THEORY

he experimental setup used for our tests is shown in Fig.
. The laser used to generate PTA pressure waves was a
-switched Nd:YAG laser (Quantel, 1064 nm, 5-ns pulse
idth, beam size 5–6 mm in diameter). A 45-deg high-

nergy flat reflection mirror was used to direct the laser
eam to the target. A focusing lens was used to change the
eam size as required at the target so as to ensure the one
imensionality of the PTA response. Black conical poly-
tyrene target wells were filled with purified water. The
nside diameter of the target was 7.10±0.15 mm (top) ta-
ered down to 6.4±0.15 mm (bottom). The nominal base
hickness of the black polystyrene wells varied from
.1 to 1.4 mm. Two membrane needle hydrophones (Mod-
ls 2312 and 2313, Force Technology, Brøndby, Denmark)
ith a 1-mm-diameter sensitive element were used de-
ending on laser fluence. The hydrophone was positioned
long the axis of the cylindrical well at different depths to
easure the pressure-wave pulses. The hydrophones
ere calibrated up to 20 MHz. The detected signals were
isplayed on a fast digital oscilloscope (Tektronix, Model
302). The pressure-wave pulses were captured by the
ingle sequence mode, and the oscilloscope was triggered
y the pressure-wave pulse itself. Each waveform was ob-
ained up to three times and stored for statistical pur-
oses, but waveforms from a single target were not aver-
ged because of base ablation. The energy of the Nd:YAG
aser could be varied in the range of 60–365 mJ. All ex-
eriments took place at room temperature. The hydro-
hone transfer function was obtained from the manufac-
urer and was used to determine the frequency-domain
oll-off and the time-domain broadening of the PTA im-
ulse response of an essentially delta function laser pulse
,5 nsd on the time scale of the acoustic response (of the
rder of microseconds). We calculated the absolute pres-
ure at the peak of the response from the hydrophone
anufacturer’s data using a table of conversion factors

volts per pascal) for each frequency component of the sig-
al and an instrumental sensitivity correction factor to
ultiply each spectral component of Eq. (42) before the

nverse Fourier transformation in the time domain.
Computational implementation of the PTA pressure

heory [Eq. (42)] was partly guided by the observed re-

ig. 2. Experimental setup of our laser PTA drug delivery
ystem.
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ults and was separated into a system transfer function
actor and a fluid pressure response factor. System trans-
er function factors were the effect of the solid target
ssL ,vd; the effect of diffraction in water gfsvd; and the ef-
ect of the hydrophone response and the spectrum of input
ulse waveform, both grouped together in fpsvd. The in-
rasolid reflections are computationally a modification of
he first (directly transmitted) impulse response of the
olid into the fluid, appropriately time shifted by Dtn
2nsL /csd [Eq. (44)] and scaled by the reflectance product
fsRas for each full reflection. The inverse Fourier trans-

orm was first calculated with fpsvd=1 representing the
mpulse response of the solid–liquid geometry correspond-
ng to an infinitely narrow laser pulse (mathematically a
irac delta function). The actual response in the time do-
ain was then considered as a convolution of this with

he product of the input pulse and the numerical hydro-
hone transfer function fpsvd. But for some constant mul-
iplication factors, multiplying the diffraction transfer
unction [Eq. (39)] by frasGrssvd+Gfssvdg gives the total
ystem transfer function for the first direct pressure-
ulse transmission across the solid–fluid boundary. Tak-
ng the inverse Fourier transform of the total system
ransfer function gives the impulse response in the time
omain as

hfstd =
1

2
csmss1 + rasdFS 1

1 + B
DexpscsmstdHs− td

− S Ras

1 − B
Dexps− csmstdHstdG

+
csmsBsB − rasd

1 − B2 exps− csmsBtdHstd, s53d

here Bszd;2sc0fz /csmsW2d and t is the retarded time.
ince the system impulse response is known, then the
TA response to any given input pulse signal can be found
y convolving the input pulse with the impulse response.
ssuming an arbitrary input photoacoustic pulse I0FPstd

hat satisfies FPstd=0 for tø0, it can be shown that the
otal system response is given by

fsz,td = I0C1f1s0dexpscsmstdHs− td + I0fC1 expscsmstdf1std

− C2 exps− csmstdf2std + C3 exps− csmsBtdf3stdgHstd,

s54d

here

f1std =E
t

`

FPstdexps− csmstddt, s55ad

f2std =E
0

t

FPstdexpscsmstddt, s55bd

f3std =E
0

t

FPstdexpscsmsBtddt. s55cd

he remaining constants in Eq. (53) are defined as
C1 =
csmss1 + rasd

2s1 + Bd
, C2 =

csmss1 + rasdRas

2s1 − Bd
,

C3 =
csmsBsB − rasd

s1 − B2d
. s55dd

As discussed above, the nonlinear frequency response
f the hydrophone and its high-frequency roll-off was re-
ponsible for the significant broadening of the acoustic
ignal s.1 msd compared to the actual laser pulse width.
his type of broadened pressure pulse width observed in
ur experiments has also been reported by authors who
sed similar hydrophone polyvinylidene fluoride (PVDF)
etection schemes with up to a few s,10d megahertz
esponse.4 On the other hand, when broadband,
-mm-thick PVDF transducers were used, the temporal
esolution of pressure waveforms achieved was of the or-
er of a few nanoseconds, both in the literature1 as well as
n our system; however, the sensitivities of the PVDF
ransducer and the signal-to-noise ratio were too compro-
ised compared with the hydrophone transducers to yield

ood parametric measurements, so we finally opted for
he latter. For computational analysis purposes in this
tudy, the convoluted temporal pulse shape of the trans-
ucer acting as a low-pass filter was taken as FPstd and
tted to a numerical functional form, an extension of the
emporal shape best fit reported by Terzic and Sigrist16:

FPstd = HA1S t

tR
D2

expf− A2st/tRdg

+ A3S t

tR
D3

expf− A4st/tRdgJHstd. s56d

iven a convenient form for FPstd such as the one above,
hen Pfsz ,td can be found in closed form with symbolic
athematics software such as MAPLE. Once the analyti-

al form for Pfsz ,td is known, it can be used to fit the ex-
erimental data. Here sA1–A4d are constants determined
y fitting to the frequency response data of the
anufacturer-supplied hydrophone transducer upon in-

erse FT to the time domain, as is tR, a parameter repre-
enting the laser plus transducer (instrumental) rise
ime. We found that this method of mathematically de-
cribing the transient excitation waveform empirically
nd using it in the convolution of the theoretical PTA re-
ponse obtained from the experimental data proved to be
aster and more effective than purely numerical integra-
ion or time-domain convolution schemes.7,15

. EXPERIMENTAL RESULTS,
OMPUTATIONAL FITS TO DATA, AND
ISCUSSION
igures 3–14 show experimental PTA results under vari-
us laser intensity and hydrophone location conditions. To
btain best fits to the entire time record of the pressure
esponses, the exact values of A1–A4 were not as impor-
ant as the value of tR in Eq. (56). Overall, the important
tting factors are (i) the product zs=csms of the optical ab-
orption coefficient and the speed of sound in the solid, (ii)
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he fluid diffraction parameter Bszd, (iii) the acoustic im-
edance coefficient at the air–solid boundary ras, and (iv)
he effective instrumental excitation width tR. With re-
ard to ras, it is interesting to note that increasing the
as–solid acoustic impedance term ras in Eq. (28) in-
reases the pressure magnitude, since more energy is con-
ned in the region z.−L (Fig. 1). This term is affected
hen a variable acoustic impedance layer is added to the

olid–air interface before exposure to laser pulses. Such
urface loading laser ultrasonic effects have been ob-
erved experimentally in our experiments (when we use a
hin layer of gel) and also previously by a number of au-
hors. They have been reviewed in some detail by
utchins.18 We selected the reported results in this work
mong waveform data obtained using either the Force hy-
rophone transducer Model 2312 (low pulse energies of 60
nd 100 mJ) or Model 2313 (high pulse energies of 165
nd 265 mJ). These particular sets of data were chosen so
s to show the trends in goodness of fit as a function of
ncident pulse energy, among other measurements. This,
s turn, is insightful regarding the onset of nonlinear pho-
othermoelastically driven hydrodynamic behavior in the
ystem. All data figures include experimental pressure-
ave traces and superposed theoretical best fits. The pa-

ameters used for the theoretical fits are ra
1.293 kg/m3, cas20 °Cd=344 m/s, rf=998 kg/m3, c0f
1481 m/s, W=5.5 mm, and bT=0.8310−4/ °C.19 Viscous
amping in the form of a complex wave number kbf [Eq.
50)] was first introduced into the computational fitting
rocedure, but it was found that all theoretical fits in this
ork were able to be accommodated with no viscous
amping.
In Fig. 3 data from the 60-mJ laser pulse are shown,

ith the transducer located at z=2 mm away from the
olid polystyrene target bottom (the well). The bipolar
ulse width (compression peak followed by the rarefaction
rough) is fitted well for both primary (i.e., early) response
nd secondary response (first reflection, following a round
rip of acoustic energy in the solid target). The temporal
elay between the primary and the reflected pulses deter-
ines precisely the thickness of the bottom of the well,

ig. 3. Experimental PTA data and theoretical fit for laser-pulse
nergy of 60 mJ and an axial hydrophone distance z=2 mm. The
t parameters are B=0.162, csms=2.23108 s−1, L=1.27310−3 m,

=1.86310−4, t =9.52310−8 s.
as R
ssuming the speed of sound in polystyrene to be cs
2358 m/s (an average between values reported in the

iterature4,20). The various fitted parameters, including
he optimal thickness L of the well bottom, are shown in
he caption of Fig. 3. Nominal thickness L was in the
.1–1.4-mm range. The secondary pressure compression
third extremum in the fundamental tripolar pulse) is not
tted well in Fig. 3. This relatively sharp peak and simi-

ar peaks in subsequent plots are not accounted for in our
heory. Satellite experiments over longer time scales that
sed a series of laser irradiances showed that the rapid
amped oscillations following the primary photoacoustic
ulse and its first reflection were due to transducer ring-
ng with a period ,0.1 ms. Similar photoacoustic ringing
ffects have been reported by Sigrist.15 We attempted to
liminate these resonances mathematically by multiply-
ng the PTA response expression of Eq. (42) with the FT of

simple damped harmonic-oscillator model of the form

fmstd = Am exps− t/tmdcossvmt + fmd, t ù 0. s57d

uantities with the subscript m denote values at reso-
ance. The transducer transfer function in the frequency
omain consists of two contributions at v±=v±vm:

Fmsvd =
Amtm

4p
F exps− ifmd

1 + ivt + tm
+

expsifmd

1 + ivt − tm
G . s58d

nfortunately, the high-frequency background noise ren-
ered the precise identification of the resonance fre-
uency vm difficult from experiment to experiment with
eak-to-peak variations as large as 0.05 ms, which signifi-
antly reduced the utility of the mathematical elimination
rocedure as it tended to distort the temporal position of
he diffraction peaks. Therefore the attempt was aban-
oned, and pressure transients were used as obtained.
ere, the best fit consisted of matching the curvature of

he structure at the foot of the experimental ringing peak,
hich is most likely due to diffraction. It can be argued

hat the experimental pulse shape between 2.0 and 2.2 ms
s the superposition of diffraction and transducer reso-
ant ringing.
Figure 4 shows similar curves at hydrophone position

=5 mm. Here again, the fundamental compression and
arefaction (bipolar) waveform zone is well fitted with the
rst resonant ringing of the transducer occuring ,0.14 ms
fter the onset of the PTA pulse. The best-fitted theoreti-
al second (diffraction) maxima of both primary and re-
ected pulses are delayed with respect to the resonant
eak that precedes the theoretical maximum. The same
rend occurs in Fig. 5 obtained with the hydrophone posi-
ion at z=8 mm. The degree of waveform reproducibility
rom shot to shot was calculated in terms of the temporal
osition of the various PTA extrema for pressure-pulse
races from three wells at each location of the hydrophone
s follows: 0.11 ms or ±1.05% for z=2 mm, 0.13 ms or
1.2% for z=5 mm, and 0.16 ms or ±1.6% for z=8 m.
imilar reproducibility tolerances were measured with all
ther laser fluences (Fig. 15). It can be seen in Fig. 5 that
he experimental trough (negative peak) of the fundamen-
al bipolar rarefaction begins to trail the compression
eak very slightly at farther locations of the hydrophone
ompared with z=2 mm. This is also clear from the theo-
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etical fits. It is thus concluded21 that, even at these very
ow laser-pulse energies, this trend is consistent with the
nset of hydrodynamic nonlinearity in water. From Figs.
–5, in this almost purely linear hydrodynamic region,
he best-fitted values of B=Bszd increase essentially lin-
arly with z, as predicted by the definition of B in Eq. (53)
nd Ref. 17. The best-fitted value of B for each transient
s mostly sensitive to the temporal difference between the
rimary compression and the rarefaction peaks. An opti-
al compromise to best fit both the primary and the re-

ected traces had to be made in all cases with the re-
orted values reflecting this compromise.
For laser-pulse energy of 100 mJ, Fig. 6 shows the z

2-mm data. Again, the primary compression and rar-
faction peaks are fitted well, with the exception of the
econdary maximum (sharp peak) due to the transducer
esonance that occurs at ,0.16 ms after the onset of the
TA pulse and is much reduced with respect to the 60

mJ case because of the increased absolute PTA signal
pressure peak) level. This fact has allowed a better fit of
he tripolar wave to (minimal) diffraction effects at both
he primary and the first reflection pulses. Figure 7 is the

ig. 4. Experimental PTA data and theoretical fit for a laser-
ulse energy of 60 mJ and an axial hydrophone distance z
5 mm. The fit parameters are B=0.404, csms=2.23108 s−1,
=1.30310−3 m, ras=1.86310−4, tR=8.76310−8 s.

ig. 5. Experimental PTA data and theoretical fit for a laser-
ulse energy of 60 mJ and an axial hydrophone distance z
8 mm. The fit parameters are B=0.646, csms=2.23108 s−1,
=1.31310−3 m, ras=1.86310−4, tR=8.90310−8 s.
ydrophone response at z=5 mm. The response peak am-
litude is significantly weaker than at z=2 mm because of
he more remote location of the transducer with respect to
he source. Thus the resonance effect following the rar-
faction trough appears enhanced, to the detriment of a
ood diffraction fit to the primary tripolar response. The
iffraction fit to the first reflection pulse, however, is
uch improved because of resonance damping at longer

imes, and the diffraction parameter B is larger than that
t the z=2-mm position, as expected [Eq. (53) and
ef. 17].
Figure 8 shows the 100-mJ results at z=8 mm. Here

he diffraction peak of the fundamental tripolar wave is
mproved, trailing behind the resonance peak following
he rarefaction trough. The best-fitted value of Bszd fol-
ows the expected increasing trend with increasing trans-
ucer distance from the point of the PTA disturbance;
owever, the primary theoretical trough minimum trails
ehind the experimental minimum. This is due to the on-
et of measurable nonlinearity of the response at the far

ig. 6. Experimental PTA data and theoretical fit for a laser-
ulse energy of 100 mJ and an axial hydrophone distance z
2 mm. The fit parameters are B=0.011, csms=2.23108 s−1,
=1.25310−3 m, ras=1.86310−4, tR=8.76310−8 s.

ig. 7. Experimental PTA data and theoretical fit for a laser-
ulse energy of 100 mJ and an axial hydrophone distance z
5 mm. The fit parameters are B=0.043, csms=2.23108 s−1,
=1.28310−3 m, r =1.86310−4, t =8.90310−8 s.
as R
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ocation of the hydrophone; it is cumulative in time and
anifests itself as a higher speed of propagation of sound

n the water, thus steepening the rising edge of both the
rimary and the first reflection pressure pulses as pre-
icted theoretically.7,21 The lower B values at 100-mJ
ulse energy compared with the 60-mJ fits cannot be ex-
lained in a straightforward manner within the confines
f the present linear PTA theory. It is strongly suspected,
owever, that the visually observable target surface
corching after each laser pulse that appears at 100 mJ
nd higher energies is probably responsible for the onset
f nonlinear ablation effects on the polystyrene in the
ange of photoacoustic pressures s,5–10 MPad that arise
n the 100-mJ and higher pulse energy experiments. Ab-
ation is expected to affect (increase) the speed of sound cs
n the solid itself or increase the optical absorption coeffi-
ient ms of the polystyrene surface thus decreasing the ab-
olute value of B since B~1/csms. Surface ablation has
een observed in polyimide targets in the same peak pres-
ure range22 and has resulted in a sublinear laser photoa-
oustic response on a plot of peak pressure (stress) versus
aser fluence. This type of sublinear behavior was also
resent in our measurements (Fig. 15). Shot-to-shot re-
roducibility over three transients is indicated by the er-
or bars in Fig. 15. Each transient was obtained with a
ifferent polystyrene target so as to avoid the effects of
ultiple pulse ablation on one target.
In the results with a laser-pulse energy of 165 mJ, Figs.

–11, the peak-to-trough ratio decreases with increasing
ydrophone distance from the bottom of the well. The
ump at the trailing foot of the primary compression peak
s the first transducer resonance and occurs at ,0.14 ms
z=2 mmd and ,0.23 ms sz=5 mmd following the onset of
he laser pulse. It clearly prevents the full formation of
he rarefaction trough at z=2 and 5 mm. The same reso-
ant feature also appears, albeit significantly damped, af-
er the first reflection peak. The farthest positioning of
he hydrophone at z=8 mm shows a well-pronounced
hift of the fundamental rarefaction trough followed by
teepening of the rising edge of the secondary maximum
f the tripolar pulse. The goodness of fit to the first reflec-

ig. 8. Experimental PTA data and theoretical fit for a laser-
ulse energy of 100 mJ and an axial hydrophone distance z
8 mm. The fit parameters are B=0.069, csms=2.23108 s−1,
=1.28310−3 m, ras=1.86310−4, tR=9.02310−8 s.
ion trough is due to the damping of the resonance peak
nder the much stronger PTA pressure pulse and is prob-
bly accidental as it involves nonlinear distortions not ac-
ounted for in the present linear PTA theory. It is clear
hat nonlinearity due to polystyrene material ablation
see the strong sublinear behavior at z=8 mm in Fig. 15)
ignificantly distorts the rarefaction trough, thus also dis-
orting the best-fitted value of the diffraction parameter B
t that feature away from its monotonically increasing be-
avior compared with closer locations of the transducer

Fig. 11).
Finally, for laser-pulse energies of 265 mJ (Fig. 12), it is

lear that nonlinear effects essentially dominate the PTA
undamental tripolar pressure compression wave, with
ransducer ringing distorting the full formation of the rar-
faction trough at the hydrophone position z=2 mm. The
trong resonance effect at z=2 mm is most likely due to
he intense photoacoustic-induced ringing at high fluid
ressures sù15 MPad. The combination of higher laser ir-
adiance and longer distance of the transducer from the
TA pulse generation in the cases of z=5 and 8 mm ap-

ig. 9. Experimental PTA data and theoretical fit for a laser-
ulse energy of 165 mJ and an axial hydrophone distance z
2 mm. The fit parameters are B=0.022, csms=1.983108 s−1,
=1.35310−3 m, ras=1.73310−4, tR=1.05310−7 s.

ig. 10. Experimental PTA data and theoretical fit for a laser-
ulse energy of 165 mJ and an axial hydrophone distance z
5 mm. The fit parameters are B=0.036, csms=3.173108 s−1,
=1.35310−3 m, r =1.73310−4, t =9.02310−8 s.
as R
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arently minimizes the contribution of the resonance to
he transient in Figs. 13 and 14. The effect on best-fitted
szd values is to yield nonmonotonic (and thus meaning-

ess) trends in this quantity. Furthermore, the consider-
ble steepening of the fundamental compression wave ex-
ibits an earlier peak than the linear theory predicts at
ll three transducer locations. When not concealed by the
ransducer resonance at the more remote hydrophone po-
itions in Figs. 13 and 14, the falling edges of both funda-
ental and first-reflection compression pulses tend to-
ard the formation of an N-shaped waveform with a

harpened tripolar maximum, characteristic of hydrody-
amic nonlinearity superposed on diffraction.21 This fea-
ure amounts to strong evidence that nonlinear acoustics
egin to dominate this regime of laser pulses. For the
ully nonlinear behavior and perhaps the unipolar pres-
ure pulses reported in similar experiments,1–4 the
resent studies show that energy higher than 265 mJ for
n unfocused laser pulse is required.
The functional relations between the incident laser

ulse (or irradiance) and the generated photoacoustic

ig. 11. Experimental PTA data and theoretical fit for a laser-
ulse energy of 165 mJ and an axial hydrophone distance z
8 mm. The fit parameters are B=0.006, csms=1.983108 s−1,
=1.41310−3 m, ras=1.73310−4, tR=1.07310−8 s.

ig. 12. Experimental PTA data and theoretical fit for a laser-
ulse energy of 265 mJ and an axial hydrophone distance z
2 mm. The fit parameters are B=0.094, csms=1.543108 s−1,
=1.35310−3 m, ras=67310−4, tR=8.93310−8 s.
eak pressure pulse in water are shown in Fig. 15 for
hree locations of the hydrophone transducer along the
ymmetry axis of the polystyrene wells. It is clear that the
elationship between these quantities is linear in the
ave near-field region z=2 mm and that it grows progres-

ively nonlinear at more remote locations in the well. The
ublinear behavior of the curves is consistent with the
redictions of Zweig and Deutsch23 regarding the stress
oupling coefficient for polyimide in the plasma-mediated
blation region. The stress coupling coefficient is defined
s the total momentum transfer to the target during ab-
ation divided by the laser-pulse energy.24 The irradiance
ange of our experiments, 1.26–5.3 MW/cm2, is within
he plasma ablation regime that was shown to exhibit
eak stress sp versus laser irradiance I dependence of the
orm sp~I0.7.23,24 Another possibility for the sublinear
TA pulse behavior at large distances in Fig. 15 is the
igher dimensionality of the generated acoustic wave that
ould tend to distribute acoustic energy in directions

ther than along the axis of symmetry of the well.25 The
ppearance of a higher dimensionality depends on the dif-

ig. 13. Experimental PTA data and theoretical fit for a laser-
ulse energy of 265 mJ and an axial hydrophone distance z
5 mm. The fit parameters are B=0.047, csms=1.543108 s−1,
=1.37310−3 m, ras=67310−4, tR=1.07310−8 s.

ig. 14. Experimental PTA data and theoretical fit for a laser-
ulse energy of 265 mJ and an axial hydrophone distance z
8 mm. The fit parameters are B=0.076, csms=1.543108 s−1,
=1.41310−3 m, r =67310−4, t =1.0310−8 s.
as R
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raction length in the fluid. The dominant mechanism for
he sublinear behavior is determined by the ratio
DF/LNL in the fluid, where LNL is the nonlinearity char-
cteristic length. It can be shown (Ref. 7, Chap. 2.3) that
DF/LNL=ev2W2va /2c0f

3!1 in water. Here e is the non-
inear acoustic parameter of water [4.4±0.9 (Ref. 6)] and
a is the amplitude of the particle (vibrational) velocity. In
his case nonlinear effects due to ablation are expected to
ecome noticeable only in the far field of the PTA wave,
onsistent with the trends in Fig. 15, where the degree of
onlinearity increases with increasing distance from the
ulse generation point. Theoretically a fully nonlinear
odel of the coupled solid–fluid hydrodynamic behavior is

eeded. There are two ways to achieve this with the pulse
ime records generated in our experiments: either
hrough numerical solution of the so-called Khokhlov–
abolotskaya equation26 or through the application of a
heorem (in the form of a boundary-value problem) in
onlinear acoustics, known as the Poisson solution.27

ork toward the implementation of a fully nonlinear PTA
heory at large laser fluences is currently under way.

. CONCLUSIONS
linear time-domain PTA theory has been developed for a

omposite solid–liquid one-dimensional geometry that in-
ludes multiple interreflections at interfaces, acoustic dif-
raction effects, and natural mixed boundary conditions at
he source interface (air–solid). The theory was applied to
xperimental laser-induced pressure-wave pulses in a
olystyrene well target and water system used for photo-
echanical drug delivery studies. A computational algo-

ithm based on best fits of the theory to experimental
ata sets was generated. The results of the fits show the
ollowing trends: (1) At low laser-pulse energies
100 mJ, the linear PTA model fits the data well, espe-

ially at distances ,5 mm from the solid–fluid interface
long the axis of symmetry, with the exception of a pres-
ure bump at the secondary rising edge of the primary tri-

ig. 15. PTA peak pressure of the primary condensation pulse
n water versus incident laser fluence for three locations of the
ydrophone. z=8 mm (triangles), z=5 mm (circles), z=2 mm

squares).
olar pulse, a feature consistent with damped resonant
inging of the transducer. (2) The onset of significant hy-
rodynamic nonlinearity appears for laser-pulse energies
n the 165-mJ range, especially at axial distances z

5 mm consistent with ablation-induced nonlinearity in
he solid polystyrene and transmitted in the underlying
ater layer. (3) The theoretical fits to the data can be used

o measure several geometric, acoustic, optical, and ther-
odynamic parameters of the experimental system in-

luding precise thickness L of the target, its optical ab-
orption coefficient ms and any variations due to laser
blation of the surface, its acoustic velocity cs, the fluid
iffraction parameter Bszd, and the acoustic impedance
as with and without ablation. The present work can be
sed to establish the onset of hydrodynamic PTA nonlin-
arity and control the laser irradiance across the transi-
ion region from linearity to optimize the efficiency of pho-
omechanical drug delivery and induce cell
ermeabilization with laser photomechanical stress
aves.
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