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A wavelet domain, nonlinear inverse scattering approach is presented for imaging subsurface defects in a ma-
terial sample, given observations of scattered thermal waves. Unlike methods using the Born linearization,
our inversion scheme is based on the full wave-field model describing the propagation of thermal waves. Mul-
tiresolution techniques are employed to regularize and to lower the computational burden of this ill-posed im-
aging problem. We use newly developed wavelet-based regularization methods to resolve better the edge
structures of defects relative to reconstructions obtained with smoothness-type regularizers. A nonlinear ap-
proximation to the exact forward-scattering model is introduced to simplify the inversion with little loss in
accuracy. We demonstrate this approach on cross-section imaging problems by using synthetically generated
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1. INTRODUCTION

Thermal-wave slice tomography (TWST) has evolved in
recent years as a useful tool for noninvasively imaging
and detecting defects in the bulk properties of a material
sample.! This nondestructive evaluation technique
uses a modulated laser source illuminating an external
surface of the material under test to induce internal ther-
mal waves. Interaction of the thermal-wave field with
material inhomogeneities gives rise to scattered fields
that propagate and are ultimately measured at the sur-
face of the material. The problem of interest in this pa-
per is, given knowledge of the applied thermal-wave field
and the observed scattered fields, to produce a reconstruc-
tion of the internal structure that reproduces as faithfully
as possible features of interest such as defects.

The techniques that we use to solve this inverse prob-
lem are based on the results of Mandelis, who has shown
that the thermal-wave field obeys a scalar Helmholtz
equation with a complex-valued, space-varying propaga-
tion constant.*® The spatial structure of this constant is
related to the thermal diffusivity of the material. Be-
cause defects are reflected in changes in the thermal dif-
fusivity, a reconstruction of the propagation constant, or a
normalized form known as the object function,! yields
quantitative information about the material’s bulk struc-
ture.

Mathematically, the TWST inverse problem is equiva-
lent to an inverse electrical conductivity problem that has
been studied extensively in the geophysical and electro-
magnetics literature.5® These ill-posed inverse prob-
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lems possess a collection of interesting and well-
established difficulties, not the least of which is that a
complicated, nonlinear relationship exists between the
observed scattered fields and the object function. The
first efforts in employing the forward-scattering model of
Refs. 4 and 5 for TWST inversion have been to consider a
linearized form of the exact physics obtained under the
first Born approximation.!®? This model takes into ac-
count diffractive effects and is most accurate when the
thermal diffusivity perturbation is small in both size and
amplitude relative to a known background.!® The initial
inversion results with the Born model have been quite en-
couraging in that images containing quantitatively useful
information about the spatial location and magnitude of
defects have been reconstructed with both simulated and
experimental data.l=3?

Here we extend the use of wave-field inversion methods
for the TWST problem in a number of ways. First, a full,
nonlinear inverse scattering approach!™!2 is used to gen-
erate the reconstruction. The resulting inversion method
is iterative in nature and allows for the more accurate re-
construction of defects whose structure falls outside the
bounds where the Born approximation is valid. We also
make extensive use of wavelet methods in the formula-
tion and the solution of the problem. Our motivation for
employing these mathematical techniques is based on our
previous work in wavelet-based nonlinear inverse
scattering.'® First, the wavelet transform is known to
make sparse the matrix representations of many integral
operators, including those arising in the TWST scattering
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problem.* Thus a transform domain formulation can

build on this sparsity to reduce the computational burden
of generating a reconstruction. Additionally, the TWST
inverse problem is highly ill posed in the sense discussed
in Ref. 15. That is, small perturbations in the data, as
would come from noise, can result in reconstructions with
high-amplitude, oscillatory structure. Roughly speaking,
these nonphysical artifacts arise because the forward-
scattering process is highly smoothing, so that the data
contain little useful information about the high-frequency
structure of the object function. Attempting to extract
such information without some stabilization (also known
as regularization) results in distorted reconstructions.

Our previous work has demonstrated that wavelet
methods can be employed in two respects for regularizing
these inverse problems.'®6  First, it was shown that tra-
ditional Tikhonov-type smoothness regularization
schemes!” could be implemented quite easily in a wavelet
transform formulation. Second, by exploiting the struc-
ture of the wavelet regularizer, we developed an adaptive
method for determining those elements in the wavelet
transform of the object function for which the data did
and did not provide useful information at each stage of
the inversion. This work provided insight into the man-
ner in which the physics of the problem, along with fac-
tors such as source—receiver configuration, noise level,
and prior information, determined the finest scale as a
function of space that could reasonably be obtained in the
reconstruction. Additionally, we used this decomposition
to reduce further the complexity of solving the inverse
scattering problem.

Here we build on these results in a number of ways.
First, we introduce and demonstrate the utility of a class
of wavelet regularization schemes that are appropriate
for the reconstruction of objects (defects) with sharply de-
fined boundaries. Tikhonov-type regularizers are typi-
cally designed to produce smooth, low-pass reconstruc-
tions that blur important features such as edges in the
image.’® By making use of certain mathematical results
that state that wavelets can be used as bases for a wide
range of function spaces including spaces containing edgy
objects,'® we develop a new scale-space regularization
method that produces significantly sharper reconstruc-
tions.

Additionally, we develop a wavelet-based, reduced-
complexity approximation to the forward-scattering
TWST problem. As discussed in Section 4, at each stage
of the iterative solution method we must compute explic-
itly the inverse of a large, dense matrix, a computation-
ally intensive task. This matrix is related to the solution
of the thermal-wave forward-scattering problem for an
object function equal to the reconstruction obtained at the
previous iteration plus a small correction. By linearizing
the expression for this matrix about the previous esti-
mate, we obtain a recursive formula in which the inverse
matrix at the current iteration is equal to the one from
the last iteration plus an increment that is due to the
change in the material properties. Construction of this
increment requires only the multiplication of three sparse
matrices rather than the inversion of a single, large,
dense matrix.

The remainder of this paper is organized as follows. In
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Section 2 the mathematical model underlying the TWST
problem is defined. Section 3 is devoted to an overview of
the wavelet transform and its application to the thermal-
wave tomographic inverse. The nonlinear inverse scat-
tering algorithm is developed in Section 4, with examples
of its application to synthetic problems provided in Sec-
tion 5. Finally, in Section 6, conclusions and future work
are discussed.

2. PHYSICAL MODEL FOR
THERMAL-WAVE SLICE TOMOGRAPHY

As illustrated in Fig. 1, we consider TWST problems in
which a modulated laser illuminates a point at the top of
the material sample, inducing thermal waves in the bulk.
Upon scattering from inhomogeneities, whose spatial
structure is defined by the real-valued object function
g(r), the fields are measured along an array of points at
either the top (backpropagation geometry) or the bottom
(transmission mode). The inversion routines are based
on K such scattering experiments. The data for the ith
experiment form the vector of in-phase and quadrature
components of the scattered thermal-wave field measure-
ments that are obtained along one of the arrays and that
are due to illumination by the laser at a given point on
the top surface. One such data point for the ith experi-
ment at location r;,, denoted y,(r}), is

Detector Array
(Backpropagation)
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Transmitter
(one position)
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Fig. 1. Experimental setup for thermal-wave slice tomography.
Incident thermal waves originating from a point on the top of the
material sample interact with defects, giving rise to scattered
fields, whose effects are measured by arrays located at the top
and bottom of the sample. The objective of the inverse problem
is to image the internal structure of the material on the basis of
these measurements. The incidence point is generally scanned
across the top.
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yi(ry) = f G(ry, ¥)T;(x")g(r")dr’ + ni(ry), (1)
A

where the integral on the right-hand side of Eq. (1) is the
scattered field and n;(r;,) is taken to be additive measure-
ment noise. Region A is the area of space in which the
defects might be found. The quantity G(r, r’') is the
Green’s function associated with the pseudowave Helm-
holtz equation for a homogeneous medium characterized
by a complex propagation constant that is infinite in two
dimensions and bounded by two planes in the third.*?
Finally, T;(r) is the thermal-wave field internal to A,
which satisfies*?

Ty(r) = Ty(x) + f G(r,r")T;(xr")g(x")dr’,  (2)
A

where T';(r) is the time-harmonic, incident thermal-wave
field generated by the laser source at a given point on the
top surface. The detailed expressions for G(r, r') and
T,(r) for the planar geometry of interest here may be
found elsewhere.!™

Our algorithms are based on discrete representations
of the integral equations (1) and (2) obtained by using the
method of moments'® with a pulse basis and Dirac testing
functions. That is, region A is pixelated into an N,
X N, array of rectangular pixels, and the fields and the
object function are expanded in a series of flattop func-
tions (i.e., zero-order splines), indicating that these quan-
tities are constant over small pixels in region A. After
these expansions are placed into Egs. (1) and (2) and in-
tegration is performed with respect to r’, the variable r is
discretized in Eq. (2) by requiring equality of the left- and
right-hand sides for all points r; located at the center of
each pixel. Upon performance of this discretization pro-
cess, Egs. (1) and (2) become

yi = LZ(T))g + n;, (3)
T, =T, + GZ(g)T,. (4)

In Eq. (3) y; is the vector of observations along the array
for the ith experiment. If we regard g(r) as an N,
X N, pixelated image with the pixel value at row m and
column n given by the flattop expansion coefficient g, , ,
then [g];, the ith component of the vector g, is related to
the pixel values through the index mapping i = N, .(n
- 1+mforn=12.,N, and m =1,2,..,N,. A
similar construction holds for the internal field vector T;.
In Eq. (4) T; is the background field vector obtained from
point matching, &/ (x) is a diagonal matrix whose entries
are the elements of the vector x, and L; and G are the ma-
trices obtained by discretizing the integral kernels in Eqs.
(1) and (2). n; are taken to be mutually uncorrelated,
zero-mean, white Gaussian noise vectors. By solving for
T; in Eq. (4) and substituting the result into Eq. (3), we
relate the data to the object function through the nonlin-
ear model

y; = hi(g) + n;, %)

hi(g) = Lo (I - GZ(g)] 'T)g. (6)

Vol. 15, No. 6/June 1998/J. Opt. Soc. Am. A 1547

The TWST problem may now be stated as follows: Given
data from K scattering experiments defined by the physi-
cal model in Eq. (5), determine g, the vector of expansion
coefficients characterizing the object function.

There are two primary difficulties in recovering g from
y;. The first challenge is caused by the physics of
thermal-wave propagation. The strongly lossy nature of
the Helmholtz pseudowave equation underlying Eq. (5)
causes h; to act essentially as a spatial low-pass filter
when applied to g. The data contain predominantly
coarse-scale averages (i.e., low frequency) as information
about g. Finer-scale information is available primarily
in the areas close to the source and receiver locations
where the Green’s functions are singular.*%!'® Thus at-
tempts to reconstruct a uniform, fine-scale pixelated ver-
sion of the object function are prone to instabilities, re-
sulting in images that are typically characterized by
nonphysical, oscillatory artifacts. As described more
fully in Ref. 15, for linear inverse problems where h(g)
= Hg for a matrix H, such artifacts arise from noise-
induced amplification associated with the inversion of
small singular values of H. The corresponding singular
vectors typically possess an oscillatory structure. Such
difficulties also arise in the nonlinear case such as the
TWST problem considered here.

The second problem is computational. The nonlinear-
ity of h; implies that an iterative, “hill-climbing” ap-
proach must be used to generate the reconstruction. As
described in Section 4, such an approach requires the ex-
plicit inversion of I — GZ/(g) at each iteration, with g
equal to the current estimate of the object function. Be-
cause this matrix is both large and dense, this operation
represents a substantial computational burden.

3. WAVELET DOMAIN MODEL

We pursue a wavelet-based solution to the TWST problem
to address both the computational and stability problems.
The expansion of g in a wavelet basis provides a natural
mechanism for adapting the level of detail in the recon-
struction to the information content in the data, thereby
stabilizing the solution procedure.'’®® For example,
near the center of A, one may desire only a coarse-scale
estimate of g, with added detail near the edges, where the
sharply peaked nature of the Green’s functions near the
source and receiver locations provides the additional in-
formation. Also, the wavelet domain representations of
L; and G are sparse, thereby lowering the computational
costs associated with their manipulation. In the remain-
der of this section we provide an overview of the wavelet
transform and describe the scale-space representation of
the TWST problem. For simplicity, we limit most of the
discussion to the one-dimensional (1D) case. Extensions
to multiple dimensions are obtained through the use of
separable transforms.?

Like the Fourier series, a wavelet series represents a
(square integrable) function as the superposition of a set
of orthonormal functions. Whereas the Fourier basis em-
ploys complex exponentials, the wavelet basis consists of
all dyadic dilations and shifts of a single wavelet function
Y(x), generally designed to be well localized in space.
Thus the wavelet expansion for a 1D function a(x) is
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where y; ,(x) = 272y (27x — k) is the wavelet function
at scale j and shift £ and the wavelet coefficient «; , is the
inner product of @ with #;,. Similar to the complex ex-
ponentials, the wavelet functions form an orthonormal
basis of the space of square integrable functions. In Fig.
2 we plot a number of the Daubechies four-tap wavelet
basis functions at different scales and positions. This fig-
ure illustrates that as j increases, the wavelet coefficients
represent the inner product of a(x) with increasingly
compressed basis functions and therefore convey local-
ized, fine-scale/high-frequency information about a near
the point 2 k.

For most problems we deal with truncated versions of
the infinite sums. To truncate the scale index, we intro-
duce the scaling function ¢(x), which represents the
coarse-scale information from j = —« to some arbitrary,
finite, coarse scale that we label j = 0. Because the ¢,
are orthonormal to one another, as well as to the wavelets
i 1(x), Eq. (7) becomes

%

a(x) = >, a0k¢0kx)+2 E

h=—o 0 k=—o

a; nl//] n(x (8)

where the scaling coefficients @, are the inner products
of ¢¢ r(x) with a(x) and we have assumed that a(x) is
scale limited to j = F,. Essentially, in this finite-scale
case, the scaling functions capture the low-frequency be-
havior (including dc) of a(x). The truncation of % re-
quired for considering functions defined on a bounded
subset of the real line is achieved either through a process
of periodization®! or by using special edge wavelets built
for multiscale expansion on an interval.?? Following our
previous work,'®!® here we use the edge wavelets ap-
proach as such an approach that avoids any wrapping ef-
fects caused by linking one end of the interval to the
other.

Like the Fourier case, there is an orthonormal discrete
wavelet transform (DWT) that takes a vector of coeffi-
cients representing a function at some fine scale F, into
the wavelet coefficients at all scales 0 <j < F, — 1
along with the coarse scale scaling coefficients, a ;.
The initial, fine-scale functions could be samples of the
function, expansion coefficients ar_ in a fine scale, scal-

0 0.5 1

Fig. 2. Plots of Daubechies four-tap wavelet basis functions:
Ya1(x) (solid curve), ¢y3(x) (dashed curve), i;15(x) (dotted—
dashed curve), 5 17(x) (dotted curve).
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ing function expansion of a(x), etc. Although we will be
concerned with both 1D and two-dimensional (2D) sig-
nals, we describe first the mechanics of the 1D DWT. We
define a, of dimension 2F4, to be the vector of fine-scale
coefficients and will denote this vector by a(M,), indicat-
ing that it is a representation of a at the finest scale M, .

Beginning with a(M,), a coarser approximation a(M,
— 1) is obtained by passing a(M,) through a low-pass, fi-
nite impulse response filter and decimating the filtered
output by a factor of 2. Thus a(M, — 1) is coarser than
a(M,) in that the filtering and downsampling procedure
has removed the high-frequency structure from the origi-
nal signal, and a(M, — 1) is half as long as a(M,). The
detail lost in moving from a(M,) to a(M, — 1) [denoted
a(M, — 1)] is extracted by a high-pass filtering and deci-
mation procedure. The filtering and decimation process
is applied successively to the coarsened versions of a, re-
sulting in a sequence of scaling coefficient and detail vec-
tors, a(m) and a(m), respectively, each of dimension 2™,
form =M, - 1,...,0.

Low- and high-pass filters, which are closely related to
the functions ¢(x) and #(x), can be constructed so that
we may build a unitary matrix W, relating the finest-
scale scaling coefficients to the coarsest scaling coeffi-
cients and all detail coefficients.?? We note that not all
wavelet transforms result in unitary DWT matrices. In
particular, so-called biorthogonal DWT’s possess a vari-
ety of advantages over their orthonormal counterparts?*
however, in this paper, we consider only the orthonormal
DWT. We subscript the wavelet transform operator as
W, to make explicit that it is the transform for a. We
will use different wavelet transforms for the different
variables.

The DWT of a 2D function is obtained by considering
the image a(m,n) as a matrix and applying one orthonor-
mal wavelet transform, W, ., to the columns and an-
other, W, ,, to the rows. If we define a as the physical-
space image—that is, [a],, , = a(m, n)—and & as the 2D
DWT of a, then the two are related according to

a=W

vy AW, . 9
Note that ain Eq. (9) may be regarded as a multiscale im-
age of a. The columns and the rows of & are indepen-
dently indexed by scale/shift indices for the x and y vari-
ables, respectively. Thus the elements of & represent
wavelet coefficients for discrete, separable, 2D basis func-
tions consisting of wavelets at scale/shift (j,, k,) in the
horizontal direction and (j,, k,) in the vertical direction
for all allowable combinations of these four indices. Ad-
ditionally, there are components of & corresponding to
coarse-scale, x-oriented scaling functions with vertical
wavelets, and vice versa. Finally, we note that Eq. (9) is
a linear transformation of a. Thus we define vectors a
and « obtained by stacking one column on top of another
from a and e, respectively, and it is easily shown that

a=W,a.
The matrix W, is the linear operator mapping elements of

a into elements of @ and represents the composition of
W,,.and W, ,. Asinthe 1D case, W, as defined above is
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unitary, so that a may be obtained from @ through mul-
tiplication by the transpose of W,: a= W, la = Wga.
Thus, when this column-stacking approach is followed,
the mechanics and the symbolic manipulation of multidi-
mensional wavelet transforms are identical to those in
the 1D case.

We use the DWT to transform Egs. (3) and (4) from
physical space to scale space. Defining W, as the 2D
transform for g and W, for i = 1, 2,..., K as the 1D trans-
forms for y; yields

Wy, = [WLW,I[W, 7 (T)W;(W,g) + W;n;,
W.T, = WT, + [W,GW,I[W,~ () W/I(W,T)),
which, after we make the obvious definitions, become
n = MAG)y + v, (10)
0, = 6, + TA(y)6;, (11)

where, for example, A(y) is the standard-form'* wavelet
transform of Z/(g) and is a function of ¥, since A(y)
= W,Z(W;»)W;. From Egs. (10) and (11), the com-
plete model relating the transform of the object to those of

the data is
7= AAQL - TA(N] @)y + »;.
« -~ v (12)

Y;(v)

Finally, we aggregate the #; into a single data vector and
define the stacked system

n=Y(y + v, (13)

with ' = [} 7g] and Y(y) and v defined accord-
ingly. With Eq. (13) the TWST inverse problem to be
solved here is the recovery of y, the DWT of g, from the
measurements 7, a knowledge of Y, and the statistics of
V.

4. INVERSION ALGORITHM

In this paper the reconstruction of 9, denoted %, given the
data #, is defined to be the solution to the following non-
linear least-squares type of optimization problem:

Y = arg min 7 (y), (14)

Y

> 1 2 2 T
W= gln=YD® + M (9p(y), (15)

where |x]|, = xTAx, % is a diagonal weighting matrix
whose entries reflect the noise levels in the data, and
pT(y)p(y) is used to regularize the problem. The process
of minimizing the computational cost function 7 (y) forces
v to balance the effects of the two terms constituting 7.
The first term enforces fidelity to the data. That is, our
choice of ¥ should be such that when put through the
forward-scattering model Y, it comes close to reproducing
the data 7, where closeness is measured in the appropri-
ate norm. Thus a smaller cost is associated with recon-
structions that better explain the data that we have col-
lected.
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Were the first term in Eq. (15) the only portion of the
cost, the ill-posed nature of the TWST problem would re-
sult in a reconstruction with large-amplitude, high-
frequency components. To counter this effect, the regu-
larization term pTp is included. Generally, pTp is used to
constrain the reconstruction to have properties such as
small energy (i.e., small L, norm), minimal gradient
norm, or other smoothness-type characteristics.?> Hence
vectors corresponding to such oscillatory reconstructions
are less desirable and therefore incur a higher cost. Fi-
nally, \?, the regularization parameter, is specified to bal-
ance the relative impact of the two terms on the recon-
struction procedure. To summarize, the overall problem
is to find a vector ¥ that minimizes a cost function. This
function imposed higher cost (i.e., higher computational
penalty) for y, which fails to replicate the measured data
and which possesses unfavorable structure, such as oscil-
latory behavior.

We employ a form of the Levenberg—Marquardt algo-
rithm (LMA)?® for finding %. This iterative technique de-
fines a sequence of reconstructions %, whose costs as mea-
sured by Eq. (15) are steadily decreasing. As with all
gradient-descent-type optimization approaches, the LMA
converges to a local minimum of the cost function. De-
spite this restriction, in Section 5 we demonstrate that
the reconstructions obtained for realistic TWST problems
are quite accurate.

Starting from an initial guess %, the form of the LMA
used here is

a/nJrl = a/n + S, , (16)

s, = arg min % (¥, + s),

o2

L7 G227 ) + 022 (3) 2 ()]

a7

In Eq. (17) 7(%,) is the Jacobian matrix of Y evaluated at
the vector %,. To build the (j, £)th element of .7, the
Jjth component of Y is differentiated with respect to the
kth element of y. This scalar function will depend, in
general, on all components of y. The Jacobian is ob-
tained by evaluating each such derivative at the point y
= . Similarly, 4(%,) is the Jacobian of p evaluated at
%.. Finally, ois a regularization parameter whose value
is determined adaptively at each iteration of the algo-
rithm.

In the remainder of this section, we discuss the choice
of p, examine an approximation to the forward-scattering
model designed to reduce the complexity of the LMA in-
cluding the construction of .7, and overview the computa-
tional burden of this inversion approach.

)]
Il

A. Edge-Preserving Wavelet Regularization

In our previous work,'®1® we have concentrated on the
use of wavelet domain regularizers with p(y) = Dy,
where the matrix D was diagonal, with

[D]ii = di = 27(axjx,i + ”‘y]ly,i)_ (18)

In Eq. (18) j,; and j,, are the horizontal and vertical
scale indices for the ith wavelet coefficient, and «, and «,
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are constants. For this regularization approach,
pT(%,)p(¥,) is a weighted two-norm of %, . This choice of
p enforces smoothness in the reconstruction and the func-
tions in much the same way as traditional Tikhonov-type
regularizers.’®>!®  One consequence of this choice is that
edges and other sharp discontinuities that may be of in-
terest in localizing defects or quantitatively characteriz-
ing their structure tend to be blurred in the final recon-
struction.

Recently, there has been considerable work performed
in the area of edge-preserving regularizers.?”2® The idea
is to construct a physical-space regularization scheme
that results in reconstructions whose discontinuities are
better preserved as compared with those from a Tikhonov
approach. One way of implementing this regularization
technique is to choose an expression for pTp that, instead
of being a weighted two-norm of the object, is a norm in a
function space containing edgy objects. Adding this as
the second term in Eq. (15) produces an object that lies in
such a space and therefore retains the desired edgelike
structure.

It is the case that, in addition to spanning the space of
square integrable functions, orthonormal wavelets are
also bases for these more exotic function spaces.'®* Here
we use the fact that the norm in such a space may be com-
puted in terms of the wavelet coefficients through
3.d;|ylP, with 1 < p < 2 and d; exactly the same as in
Eq. (18).

The use of p in this range to describe edge characteris-
tics is best examined with a 1D example. In Fig. 3 we
plot a 1D signal with two edges, along with the wavelet
coefficients of this signal over a collection of scales. The
original function is the topmost trace, and each box on the
subsequent traces represents a single wavelet coefficient
at a given scale. Finest-scale coefficients are closest to
the top of the picture. These sequences are basically zero
except for coefficients describing the behavior of the func-
tion near the edges of the step, where there are spikes.
Thus the wavelet sequences provide localized information
about the discontinuity structure (i.e., local smoothness)
of the underlying function. If we were attempting to re-
construct such a signal, the cost of the spikes as measured
by the regularization term ¥;d;|y;|? decreases as p drops
from 2 to 1. In other words, a p = 2 regularization
scheme seeks smooth reconstructions and thus penalizes
the presence of such spikes, thereby resulting in blurry
reconstruction. If we take p < 2, the cost of the spikes is
smaller and the reconstruction should more faithfully re-
produce the underlying edges.

With this motivation we make the following choice for

p(y:

p"(y) = [d%nlP?  dY yelP? NP,

which results in a diagonal .4 with

[ Gl = AV 2 U031, (20)

I(x) = sign(x)|x[P271, (21)

where [ 9,]; is the ith element of the vector ¥, .
As seen from the plot of /(x) in Fig. 4, the presence of a
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Fig. 3. Wavelet transform of a pulse function. The original
function is given by the top trace, and the wavelet coefficients at
a variety of scales are shown in the lower traces. Finer-scale in-
formation is conveyed in traces closer to the top. The wavelet
coefficients characterize the local discontinuity structure of the
function.
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Fig. 4. Plots of [(x) (dashed curve) and I(x) (solid curve) used to
implement wavelet domain edge-preserving regularization.

Both functions are identical for x > 0, but /(x) is better behaved
near the origin, thereby aiding in numerical implementation.

singularity at x = 0 will lead to numerical difficulties in
the implementation of this regularization scheme. For
the examples in Section 5, we replace [(x) with the func-
tion (x), defined as

X

l(x) = —————, (22)
®) €+ |x|27P?

where € is a small positive number governing the struc-
ture of I(x) forx ~ 0. For example, Fig. 4 shows that for
p = 1.2and e = 1073, [(x) is better behaved near the ori-
gin while still retaining the essential shape of [(x). Also,
1(x) possesses the same asymptotic structure as that of
I(x) for |x| > 0. Taken together, these facts indicate that
1(x) should perform comparably with /(x) in the LMA.

B. Approximate Physical Model

Two factors related to the forward-scattering model domi-
nate the computational complexity of the LMA. The first
component is the evaluation of Y(%,) as required by Eq.
(17). According to Eq. (12), this problem requires the in-
version of I — TA(%,). The quantity E,=[I
— T'A(%,)] ! has the interpretation as the wavelet trans-
form of the discretized resolvent associated with the
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second-kind integral equation (2), with g(r) equal to the
estimate of the object function at the nth iteration of the
LMA.

The second computationally intensive task is the con-
struction of 7(%,). To obtain an expression for .7(%,),
we note first that this matrix is built by stacking .7;(,),
the Jacobian matrices for the K scattering experiments.
For an arbitrary vy, 7;(y) is?®

Zi(v) = AAGG) + AT - TA(]'TA), (23)

with 6, = [I — TA(9)]7'6,. The construction of .7;
clearly requires a number of matrix multiplications and,
like the evaluation of Y;, the inversion of I — T'A(y). Al-
though the matrix—matrix multiplications can be compu-
tationally intensive, the relevant matrices are sparse,
thereby reducing the time overhead of this task (see Sub-
section 4.C). Thus our primary concern here is to de-
velop a method that avoids the need to invert
I — T'A(y) explicitly, as such an approach aids both in
evaluating Y and in building the Jacobian.

The method that we propose is based on the observa-
tion that at the beginning of stage n + 1 of the LMA, we
require that

By =[I-TA%, )]t = [I- TA%, +5,)]77,

where the second equality follows from Eq. (16) and
where s, is typically a small correction to 3,. Using the
fact that A is a linear operator, we obtain

EnJrl = [I - FA(:)\/n + sn)]71

= [I - TA(%,) — TA(s,)] Y, (29)
= E,[I - TA(s,)E,17%, (25)
~ g, + E,TA(s,)E,, (26)

where relation (26) follows from Eq. (24) under the as-
sumption that I'A(s,)E,, is small relative to I. This as-
sumption of smallness is quite valid for the TWST ex-
amples considered in Section 5. Indeed, the matrix two-
norm of I'A(s,)E, was almost always less than 0.03 and
was usually substantially smaller. Thus, relative to I,
whose norm is 1, I'A(s,) E,, can really be viewed as a per-
turbation, so that the linearization is well justified.

As an approximation to E, ., relation (26) possesses
some interesting and useful properties. First, we note
that, unlike the Born approximation, this is not a linear-
ization of the physics about the current estimate of the
object function. Indeed, although relation (26) is linear
in the increment s, , the presence of the two =, in the sec-
ond term makes it nonlinear in 3, . Second, because the
left-hand side of Eq. (24) is, by definition, =, ,;, our ap-
proximation provides a recursive method for updating the
resolvent from one iteration of the LMA to the next. Spe-
cifically, we have

EnJrl = En + EnFA(Sn)En, (27)

which states that the new resolvent is equal to the old re-
solvent plus an increment that is a function of both E,
and s, , the update to the reconstruction at iteration n.
Finally, we note that despite the use of this lineariza-
tion in computing the Jacobian, we are still employing a
nonlinear inverse scattering approach to the recovery of
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the contrast function. Because we are using a full wave
scattering model (i.e., no Born or Rytov approximation)
along with the edge-preserving regularization, Eqs. (14)
and (15) represent a nonlinear least-squares optimization
problem. Any solution to such a problem, including the
variant of the LMA discussed in this section, must be a
nonlinear function of the data. Indeed, it is clearly the
case that 9, is some function of the data, and the fact that
=, is nonlinear in the elements of 3, already ensures
that, even with the approximation to the Jacobian, the
overall reconstruction must be a nonlinear function of #.
Hence the reconstruction approach falls in the class of
nonlinear inverse scattering algorithms.

C. Computational Considerations
Each iteration of the LMA defined by Eqs. (16) and (17)
requires first the construction of Y(%,), .7(%,), and
%(%,) and then the solution of a sequence of least-
squares-type problems to determine s,. According to
Eq. (20), determining .4(9) requires roughly 2N floating-
point operations. Although the need to solve the least-
squares problems can be intensive, we have previously
developed techniques based on our wavelet representa-
tion for g for reducing the computational overhead of this
task.’® As discussed in Subsection 4.B, the computa-
tional costs of the remaining tasks, evaluating Y and
building .7, are dominated by the need to compute E,, .
By using Eq. (27), we replace the matrix inversion by
three matrix—matrix products. The primary reduction in
computational complexity comes from the fact that these
matrices are sparse by construction [e.g., A(%,)]'® or can
be made so with little loss (e.g., I and E,,) by truncating
small elements. Although it is not necessarily the case
that products of sparse matrices are themselves sparse,
we ensure sparsity and therefore low complexity by
implementing Eq. (27) as

E,+1 = truncs (B, + truncs(E,Itrunc;[A(%,)E, 1),
(28)

where, for a matrix M, truncs(M) is the sparse approxi-
mation to M by means of the method in Ref. 30 with a
threshold 8. Under this truncation scheme, we set to
zero all elements of the m X n matrix M whose absolute
values are less than (&/n)|M|.,.

For the examples in Section 5, the use of Eq. (28) re-
sults in sparse approximations to the Jacobian, which
translates into substantial computational savings. To
obtain an accurate initial estimate of the Jacobian, the
first iteration of the LMA is executed with no approxima-
tion. That is, we construct .7; directly according to Eq.
(23). Thus the operation counts and execution times for
this iteration may be compared with those of subsequent
iterations, where Eq. (28) is used to build .7;. For the ex-
amples in Section 5, on average, when computed accord-
ing to Eq. (28), E, is between 8% and 12% full across all
iterations of the algorithm. This level of sparsity,
coupled with the savings afforded by the linearization
process, translates into a factor-of-3—4 savings relative to
direct use of Eq. (23), in terms of both the number of float-
ing point-operations and the time to run each iteration of
the algorithm.
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5. EXAMPLES OF THERMAL-WAVE
TOMOGRAPHIC IMAGING

To illustrate the inversion algorithm developed in the pre-
vious sections, we consider the imaging of single and mul-
tiple defects in a 3-mm X 3-mm block of aluminum
(thermal diffusivity of 0.82 cm?s™!). Depending on the
example, the reconstructions are based on the individual
or joint processing of backpropagation and transmission
data collected for one or more locations of the modulated
heating laser equally spaced across the top of the material
sample. A given transmission or backpropagation data
set consists of measurements of noisy scattered fields ob-
tained at 32 equally spaced points along either the top or
the bottom of the material. For all cases the top of the
sample is taken to be the line x = 0, and the bottom is at
x = 3mm. The angular modulation frequency of the la-
ser for all experiments is taken to be 8 Hz. Finally, the
signal-to-noise ratio (SNR) in decibels (dB) for the ith ex-
periment is defined as

|h(g)|3
N.g?2 "~

i1

SNRL =10 loglo

where ql-2 is the variance of the ith noise process, N; is
the number of data points in the ith data vector,
and h'(g) = [hi(g) hj(g) hX(g)l, with hy(g)
given by Eq. (6).

For purposes of inversion, we seek a reconstruction of g
on a 16 X 16 grid. A Haar wavelet?* is used to trans-
form both the data vectors and g. The parameter A2 in
Eq. (15) is 10, and @, = @, = 1 in the regularization
method. The value of 6 used to truncate the operators is
0.01. These quantities were chosen by trial and error.
The quality of the reconstructions was relatively insensi-
tive to the choices for a,, @,, and 8. Choosing the cor-
rect value for the regularization parameter \? can be a
delicate procedure. For the TWST examples presented
here, values between 1 and 100 tended to produce similar
results. We leave for future efforts the development of a
more automated procedure for selecting this parameter.

To verify the utility of the edge-preserving regulariza-
tion method, we examine reconstructions obtained with
bothp = 2 and p = 1.2 in Eq. (22). The p = 2 case cor-
responds to the wavelet domain smoothness regulariza-
tion previously employed,’®!® and the p = 1.2 selection
will be shown to result in more accurately recovered
edges. For the p = 2 reconstructions, the LMA is initial-
ized with %, = 0. For the p = 1.2 case, we first run the
LMA with p = 2 for three iterations and then switch to
p = 1.2 for the remainder of the reconstruction process.
This strategy avoids instabilities associated with the
sharp transition of the p = 1.2 regularization function
that can arise when the LMA is seeded with the zero vec-
tor. Finally, by starting the LMA at zero, the first itera-
tion of the algorithm is mathematically equivalent to re-
construction under the Born approximation with the p
= 2 wavelet domain regularizer. Thus we can compare
the reconstructions for the nonlinear algorithm with
those obtained when a Born model with wavelet regular-
ization is used to process the data.

The first example that we consider is the reconstruc-
tion of a square air hole centered near the top of the
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sample. The object function for this case is shown in Fig.
5(a) and consists of a square hole of amplitude*®
(ap/aq) — 1~ 3. The SNR for all experiments is 50
dB. The reconstruction obtained under the Born ap-
proximation is displayed in Fig. 5(b). For this case the
Born approximation yields coarse-scale localization of the
defect. That is, the reconstruction is nonzero over a re-
gion of space that includes the area of the true defect.
However, the amplitude of the reconstruction is at best a
third of the true amplitude, and the shape of the recon-
structed defect is in fact larger than that of the true struc-
ture. The execution time for the Born algorithm on a
Sparc 20 was approximately 11 min, with much of this
time devoted to the search for the optimal regularization
parameter o in Eq. (17). To summarize, the Born recon-
struction provides relatively fast access to an image that
provides a rough idea of the location of the defect with
little information regarding the amplitude.

The final results of the p = 2 and the p = 1.2 LMA are
shown in Figs. 5(c) and 5(d) respectively. In Fig. 5(e) the
value of ||, — v|s is plotted for both regularization
schemes as a function of iteration. It is evident that both
regularization schemes produce reconstructions that are
better localized with more accurate amplitude informa-
tion than those from the Born inversion. The p = 1.2
case is slightly better than the p = 2 reconstruction from
both a quantitative and a qualitative perspective. Quan-
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Here we compare reconstructions obtained by using (b) only
backpropagation data, (c) only transmission data, and (d) a com-
bination of both in the nonlinear inversion algorithm. The laser
source position is along the line x = 0.

titatively, the error in the p = 1.2 estimate is somewhat
lower than that of the p = 2 case after ten iterations.
This improvement is due to the fact that the p = 2 case
overestimates the amplitudes in a couple of pixels,
whereas the amplitude of the p = 1.2 version is quite ac-
curate. Visually, as we expect, the edges on the p
= 1.2 reconstruction are sharper, and the overall recon-
struction looks much more like a box than a smoothed
blob, as is the case in Fig. 5(c). The price paid for the in-
crease in the accuracy of both reconstructions relative to
the Born case is primarily computational. The process-
ing time for both LMA reconstructions of this 16 X 16
grid of pixels is of the order of 2 h, again with the use of a
Sparc 20.

In Fig. 6 the utility of jointly processing both transmis-
sion and backpropagation data is illustrated. In all cases
we use the same object as before and the p = 1.2 regular-
ization. The final reconstruction obtained with the use of
only backpropagation data is displayed in Fig. 6(b). Here
we see that the object is relatively well localized and that
the edges are nicely captured; however, the reconstruc-
tion of the rear portion of the defect is clearly inferior to
that obtained when both transmission and backpropaga-
tion data are employed [Fig. 6(d)]. Indeed, this result is
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not unexpected, given that the rear of the defect is effec-
tively shadowed for the backpropagation case.

The transmission-only reconstruction is shown in Fig.
6(c). This image is significantly more blurred than the
two others, despite the use of edge-preserving regulariza-
tion. The longer propagation distances from sources to
receivers basically remove from the data nearly all of the
fine-scale information about the object function, resulting
in a severely degraded reconstruction. The results of us-
ing both transmission and backpropagation data are seen
in Fig. 6(d). This reconstruction combines the best fea-
tures of the previous two. The object and its edges are
well localized as in the backpropagation reconstruction,
and the use of the transmission data aids in improving
the resolution of the back side of the defect. These ad-
vantages are seen as well in the error curves of Fig. 6(e).
The transmission-only inversion is clearly inferior to both
of the others. Although the backpropagation produces
lower-error reconstructions in the opening iterations, the
joint inversion is ultimately superior.

The second example that we consider is the reconstruc-
tion of a square hole located near the bottom of the mate-
rial sample at a SNR of 50 dB. As seen in Fig. 7, the
structure of this defect is identical to that of the previous
example, except for the location. In Figs. 7(b)-7(e) we
again plot the Born reconstructions, the final estimates
obtained with the p = 2 and p = 1.2 regularizations, and
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the error as a function of iteration. As in the previous
case, the Born estimate provides a rough localization of
the underlying defect with limited quantitative accuracy.
For both regularization schemes, the final reconstructions
improve significantly on the Born inversion. The final
results for the p = 1.2 case are, however, better than the
p = 2 estimate in capturing the sharp edges in the defect
and in providing a flattop to the estimated object function.

In Fig. 8 we display the inversion results for the case of
a smaller defect located in the middle of the region. Un-
like the previous two examples, where the hole was
4 X 4 pixels in size, for this problem we consider a
2 X 2 case. The Born reconstruction shows only a small-
amplitude, poorly localized disturbance in the top half of
the medium. The final estimates for both the p = 2.0
and p = 1.2 cases clearly indicate the presence of the hole
in approximately the correct location; however, the accu-
racy of the localization is degraded here relative to that
seen in the previous examples. Although the extent of
the object in the x direction is well captured, Figs. 8(c)
and 8(d) both show an object spread in y over approxi-
mately 4, rather than 2, pixels. The amplitudes of these
reconstructions are approximately 1.2, as opposed to 3.0,
which is the amplitude of the true defect. Although the
error of the final p = 1.2 estimate is larger than that of
the p = 2.0 case, we see that, as in the previous ex-
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amples, the p = 1.2 estimate is somewhat better in pre-
serving the blocky nature of the true structure.

The results in Fig. 8 demonstrate the well-known diffi-
culty associated with the imaging of small defects near
the middle of the material sample. In Ref. 13 we pro-
vided quantitative results describing the loss in accuracy
suffered by attempts to recover fine-scale information in
regions far from the sources and the receivers. The work
here does point to some interesting and perhaps useful
methods for improving the resolution in this area. From
an experimental perspective, it would clearly be helpful to
obtain data from more angles than just transmission and
backscatter. Additionally, the incorporation of data from
higher-frequency experiments might aid in the resolution
of these smaller structures. Just as the current algo-
rithm can handle data from both transmission and back-
scatter experiments, it is an easy matter to process data
jointly from multiple frequencies.

In terms of processing, the results in Figs. 8(c) and 8(d),
although not as accurate as those in the previous ex-
amples, still provide much information about the location
of the defect. These images could be used to generate an
accurate initial guess for a more object-based processing
approach such as that of Ref. 31. In that work, rather
than looking for a pixelated representation of the region,
we seek to extract information about the location, the
shape, and the amplitude of rectangular defects in the
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iteration for a two-defect problem. The laser source position is
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medium. By using the data to determine this relatively
parsimonious set of parameters describing the defect, we
can achieve high accuracy even for objects in the middle
of the region.

As a final test, we demonstrate the performance of our
approach in resolving adjacent subsurface defects on an
example with two square defects located near the center
of the material [shown in Fig. 9(a)]. As seen in Fig. 9(b),
the Born inversion basically indicates that there is some
gross disturbance located near the center of the region.
Although the top anomaly (i.e., the structure nearer to
the line x = 0) is slightly better captured than the bottom
one, in neither case is the amplitude well represented.

Figures 9(c) and 9(d) show that the nonlinear inversion
routine is quite capable of resolving both structures and
in providing quantitatively accurate contrast information.
As was seen in the previous two examples, the p = 2 re-
construction is smoother than that of the p = 1.2 case
and is slightly less accurate in terms of the amplitudes of
the defects. For the p=1.2 reconstruction, the back de-
fect is quite well localized in space and has a close-to-flat
contrast. The front structure is well defined in its y
variation, with less accuracy in x. The amplitude of this
reconstruction is again quite flat, with sharp, well-defined
edges. The defects are well resolved in both the p = 2
and p = 1.2 reconstructions. Quantitatively, the error in
the p = 1.2 estimate is lower than that of the p = 2 case
after seven iterations.

6. CONCLUSIONS AND FUTURE WORK

We have presented a new approach to image formation
from scattered thermal waves based on the use of nonlin-
ear inverse scattering methods and wavelet domain tech-
niques. We build our inversion routine on the full wave-
field physics developed by Mandelis in Refs. 4 and 5,
resulting in a highly nonlinear relationship between the
data on which a reconstruction is to be based and the de-
sired image of the object function. The reconstruction
problem was formulated as a solution to a nonlinear least-
squares-type optimization problem in the wavelet trans-
form domain. We chose to work in a multiscale setting
for a number of reasons. First, the matrices constituting
the physical model are sparse in this domain, thereby
lowering the computational cost of generating a recon-
struction. Second, we were able to use a new class of
edge-preserving regularization methods that are easily
specified and implemented in the wavelet transform do-
main. Finally, the computational burden was further re-
duced by employing the methods of Ref. 13 for rapidly
solving nonlinear inverse scattering problems in a multi-
scale domain.

The Levenberg—Marquardt algorithm (LMA) formed
the basis for the inversion procedure. This approach pro-
vided a natural mechanism for the joint processing of
data from an arbitrary number of scattering experiments.
Rather than forming separate images for each source—
receiver array combination and then averaging the re-
sults, we were able to produce a single image that was op-
timal across all data sets. Although the LMA is
guaranteed to converge only to a local minimum of the
cost function, our numerical experiments demonstrate
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that the reconstructions are still quite accurate for real-
istic thermal-wave slice tomography (TWST) experimen-
tal configurations. Still, one area of future work might
be to explore the development of efficient methods de-
signed to produce a reconstructed contrast function the
cost of which is globally minimum.

A key component of this inversion technique was
shown to be the explicit inversion of the resolvent for the
forward-scattering model at each iteration of the algo-
rithm. This matrix was required for the calculation of
the Jacobian and played a central role in evaluating the
data misfit at every stage of the reconstruction. We in-
troduced a new approximation to this resolvent that re-
placed the need to explicitly invert a generally large ma-
trix with only the requirement of multiplying a sequence
of three matrices. The complexity of even this operation
was further reduced by means of our wavelet approach,
where the sparse-matrix structure could be exploited. A
more rigorous analysis of the conditions under which the
linearization is valid represents an interesting area of
further investigation.

The algorithm was demonstrated for imaging defects in
the bulk structure of an aluminum sample by using
TWST. Inversions were considered in which synthetic
transmission and backpropagation scattering data were
both input to the algorithm. Our results indicated that
the use of the nonlinear approach produces reconstruc-
tions that are significantly more accurate than those from
a Born-based inversion in terms of both localizing the de-
fects and obtaining quantitative contrast information.
Additionally, relative to traditional Tikhonov-type regu-
larizers, the edge-based regularization scheme produced
reconstructions that better represented the blocklike na-
ture of the defects. Although it was still difficult to re-
construct accurately small structures located far from the
top and bottom edges, we feel that future efforts in the ar-
eas of multifrequency inversion and the development of
more object-based inversion procedures should greatly
improve this situation.
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