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In this work, the optical and thermal properties of tissuelike materials are measured by using frequency-
domain infrared photothermal radiometry. This technique is better suited for quantitative multiparameter
optical measurements than the widely used pulsed-laser photothermal radiometry (PPTR) because of the
availability of two independent signal channels, amplitude and phase, and the superior signal-to-noise ratio
provided by synchronous lock-in detection. A rigorous three-dimensional (3-D) thermal-wave formulation
with a 3-D diffuse and coherent photon-density-wave source is applied to data from model phantoms. The
combined theoretical, experimental, and computational methodology shows good promise with regard to its
analytical ability to measure optical properties of turbid media uniquely, as compared with PPTR, which ex-
hibits uniqueness problems. From data sets obtained by using calibrated test phantoms, the reduced optical
scattering and absorption coefficients were found to be within 20% and 10%, respectively, of the values inde-
pendently derived by using Mie theory and spectrophotometric measurements. © 2001 Optical Society of
America

OCIS codes: 170.4580, 260.3060.
1. INTRODUCTION
Frequency-domain photothermal radiometry (FD-PTR) is
a growing technology for the nondestructive evaluation of
subsurface features in opaque materials.1,2 The tech-
nique is based on the modulated thermal infrared (black-
body or Planck-radiation) response of a medium, resulting
from radiation absorption and nonradiative energy con-
version, followed by temperature rise. The generated
signals carry subsurface information in the form of a tem-
perature depth integral. Pulsed-laser PTR (PPTR) has
been used in biomedical applications, especially with tur-
bid media such as tissue.3–6 In earlier studies,4,5 PPTR
was used as a method for determining optical properties
of turbid media by using a one-dimensional (1-D) optical
diffusion/thermal transfer formalism. However, the tem-
poral decay of the thermal pulse constitutes the single
signal channel available to PPTR. As a result, it was
noted that a numerical fit of the radiometric theory to the
data is unable to produce a unique triplet of measured
values (ma , ms8 , K), where ma is the optical absorption co-
efficient at the exciting wavelength; ms8 is the reduced
scattering coefficient: ms8 5 ms(1 2 g), where ms is the
scattering coefficient and g is the average cosine of the
scattering angle, which describes the scattering anisot-
ropy away from the forward direction; and K is a scaling
parameter representing a system calibration constant.5
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In this work, FD-PTR is introduced as an improved
method for determining the absorption and scattering co-
efficients of turbid samples with a three-dimensional
(3-D) photon diffusion model coupled to a 3-D thermal
wave model. While the photon field is probably not dif-
fuse everywhere in such low-to-intermediate-albedo
phantoms, it is not exclusively described as such: The in-
clusion of the collimated (coherent) photon density, with
its coefficients properly matched to the diffuse solution,
provides a reasonable accuracy improvement for this
troublesome intermediate-albedo regime. This, in turn,
improves the computational accuracy greatly. It is
shown that the availability of two independent signal
channels (amplitude and phase), along with a least-
squares multiparameter-fitting algorithm over the entire
frequency-scan range, provides sufficient information to
yield quantitative decoupled measurements of the coeffi-
cients ma , ms , g, and m̄IR . Here m̄IR is the mean value of
the infrared absorption/emission coefficient integrated
over the detection bandwidth of the infrared HgCdTe sen-
sor. The investigated samples were turbid phantoms.

2. THEORETICAL MODEL
The geometry of the system is shown in Fig. 1. The dif-
fuse photon density Cd(r, v) with an incident collimated
Gaussian laser beam satisfies the diffusion equation7,8
2001 Optical Society of America



Nicolaides et al. Vol. 18, No. 10 /October 2001 /J. Opt. Soc. Am. A 2549
¹2Cd~r; v! 2 meff
2 Cd~r; v! 5 23ms~m t

1 gma!I~r!exp~2m tz !,

(1a)

where the attenuation coefficient m t is defined as

m t 5 ma 1 ms . (1b)

Equation (1a) itself is the diffusion approximation to elec-
tromagnetic wave transport in turbid media, in the re-
gime of multiple scattering, such that l ! l ! L, where l
is the wavelength of light, l 5 1/m t is the mean free path
for photon scattering, and L is the thickness of the
medium.9 In this (macroscopic) approximation, the mul-
tiply scattered intensity is described by means of the fore-
going diffusion equation. At very low modulation fre-
quencies compared with the inverse of the diffuse-photon
absorption time constant ta 5 1/cma (c: speed of light in
the medium), the complex photon wave number becomes
real and is given by10

meff 5 A3mam tr, m tr [ ma 1 ms8 . (2)

Equation (1a) is the dc limit of the diffuse-photon-density-
wave equation, with synchronous time dependence of the
harmonically modulated photon-density field given as

Cd~r; v! 5 Cd~r!exp~ivt ! . (3)

With a modulated Gaussian beam incident normal to the
surface, the incident irradiance is

I~r! 5
P~1 2 R !

pW2 exp@2~2r2/W2! 1 ivt#, (4)

where P is the incident optical power, R is the specular
reflection coefficient, W is the beam 1/e2 diameter, and

Fig. 1. Schematic of a 3-D turbid medium excited optically by a
collimated Gaussian laser beam of spot size W.

C̃ t~l, z; v! 5 C̃c~l, z; v! 1 C̃d~l, z; v! 5
@F1 2 gF2 e

1 F1 2
1

D S m t 1 gma

m t 2 gms
D S ms

m t
2 2 b2D Gexp~2
r2 5 x2 1 y2. The boundary conditions for the diffusion
approximation are nontrivial, because near the bound-
aries of a turbid medium this approximation breaks down
as the distance to the boundary becomes on the order of a
photon mean free path. In this spatial regime, diffusive
transport crosses over to free propagation (ballistic pho-
tons). Much theoretical consideration has been given to
this so-called ‘‘skin layer.’’ 11,12 Nevertheless, in keeping
with the phenomenological character of the diffusion ap-
proximation, optical energy conservation principles at the
turbid medium interfaces [Fig. 1] lead to the following
boundary conditions13:

Cd~r, 0; c! 2 A
]

]z
Cd~r, z; v!U

z50

5 23msgAI~r !, (5a)

Cd~r, L; v! 1 A
]

]z
Cd~r, z; v!U

z5L

5 3msgAI~r !exp~2m tL !, (5b)

with

A [ 2DS 1 1 r21

1 2 r21
D , D 5

1

3m tr
, (6)

where r12 is the internal reflectance, defined as the ratio
of the upward-to-downward hemispherical diffuse optical
fluxes at the boundary.14 This definition of A (in the nor-
malized form A → A/2D) has been used by Groenhuis
et al.15 and subsequently by Farrell et al.,16 along with an
empirical relationship between r21 and the relative refrac-
tive index n21 . D is the optical diffusion coefficient. The
coherent photon density in the turbid medium17 must be
added to the diffuse-photon field7

Cc~r, z; v! 5 @P~1 2 R !/pW2#exp~22r2/W2 2 m tz !
(7)

to yield the total photon field inside the turbid medium:

C t~r, z; v! 5 Cd~r, z; v! 1 Cc~r, z; v!. (8)

Taking advantage of the cylindrical symmetry of the ex-
citing Gaussian laser beam, we use the Hankel transform
(l is the Hankel variable10) to simplify the algebraic ma-
nipulations:

C̃ t~l, z; v! 5 E
0

`

C t~r, z; v!J0~lr !r dr, (9)

where J0 is the Bessel function of the first kind of order
zero. The Hankel transform of the total photon field is

where Ĩ(l, v) is the Hankel transform of the (arbitrary)
radial optical source distribution I(r, v). In this expres-

2bL !#exp~2bz ! 1 @F2 2 gF1 exp~2bL !#exp@2b~L 2 z !#

~1 1 Ab!@1 2 g2 exp~22bL !#

! Ĩ~l, v!, (10a)
xp~

m tz



2550 J. Opt. Soc. Am. A/Vol. 18, No. 10 /October 2001 Nicolaides et al.
sion, the interfacial diffuse-photon transfer coefficient g
across the surface plane of the turbid medium has been
defined as

g [
1 2 Ab

1 1 Ab
, b2~l! [ l2 1 ~ma /D !. (10b)

Furthermore, the following definitions have been made:

F1 5 F3
1

D S 1 1 m tA

m t
2 2 b2 D S m t 1 gma

m t 2 gms
D 2

2g

m tr
G

3 msĨ~l, v!, (11a)

F2 5 F3
1

D S 1 2 m tA

m t
2 2 b2 D S m t 1 gma

m t 2 gms
D 1

2g

m tr
G

3 ms exp~2m tL ! Ĩ~l, v!. (11b)

In the absence of scattering particles in the medium, we
set ms 5 0. This yields F1 5 F2 5 0 in Eqs. (11) and
m t 5 ma in Eq. (1b). A thermal-wave source is now cre-
ated in the presence of the foregoing photon field
(diffuse 1 coherent), C t(r, z; v), at point r 5 (r, z) in
the isotropically scattering turbid medium, as a result of
nonradiative deexcitation of the medium following optical
absorption:17

Q~r, z; v! 5 hNRmaC t~r, z; v!, (12)

where Q is the thermal power density per unit volume of
the medium, hNRma is the probability of one-photon loss
nonradiatively per unit depth as a result of absorption,
and hNR is the nonradiative quantum efficiency of the
optical-to-thermal energy conversion (deexcitation) pro-
cess, which follows optical absorption. The thermal-
wave equation can be written by using Q(r, z; v) as the
source term17:

¹2T~r; v! 2 s t
2T~r; v! 5 2Q~r, z; v!/k, (13a)

with

s t 5 Aiv/a (13b)

being the complex thermal wave number. k is the ther-
mal conductivity, and a is the thermal diffusivity. Again,
we use the Hankel transform for convenience:

T̃~l, z; v! 5 E
0

`

T~r, z; v!J0~lr !r dr. (14)

After considerable algebraic manipulation, the final ex-
pression for the Hankel transform T(l, z; v) of the depth-
dependent thermal-wave field T(r, z; v) is17
T̃~l, z; v! 5 B1Fexp~2bz ! 1 F ktb 2 h

1 2 exp~22qL !
G

3 X 1

h 1 ktq
$exp@2~b 1 q !L#

2 exp~22qL !%exp~qz ! 1
1

h 2 ktq

3 $1 2 exp@2~b 1 q !L#%exp~2qz !CG
1 B2Fexp~bz ! 2 F ktb 1 h

1 2 exp~22qL !
G

3 X 1

h 1 ktq
$exp@2~q 2 b!L#

2 exp~22qL !%exp~qz ! 1
1

h 2 ktq

3 $1 2 exp@2~q 2 b!L#%exp~2qz !CG
1 B3Fexp~2m tz ! 1 F ktm t 2 h

1 2 exp~22qL !
G

3 X 1

h 1 ktq
$exp@2~m t 1 q !L#

2 exp~22qL !%exp~qz ! 1
1

h 2 ktq

3 $1 2 exp@2~m t 1 q !L#%exp~2qz !CG,
(15)

with the following definitions:

B1~l, v! 5
hNRma

kt~b2 2 q2!
b1~l, v!, (16a)

B2~l, v! 5 2
hNRma

kt~b2 2 q2!
b2~l, v!,

(16b)

B3~l, v! 5 2
hNRma

kt~m t
2 2 q2!

b3~l, v!,

(16c)

with
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b1~l, v! [
1

H~l, v!
@2F1 1 gF2 exp~2bL !#, (17a)

b2~l, v! [
1

H~l, v!
@F2

2 gF1 exp~2bL !#exp~2bL !, (17b)

b3~l, v! [ F1 2
ms

D~m t
2 2 b2!

S m t 1 gma

m t 2 gms
D G Ĩ~l, v!,

(17c)

H~l, v! [ ~1 1 Ab!@1 2 g2 exp~22bL !#. (17d)

In Eq. (15), h is the interfacial heat transfer coefficient.
Depending on the value of h, the two limiting cases of Eq.
(15) for h 5 0 (adiabatic boundaries) and h → ` (diather-
mal or isothermal boundaries) are obtained immediately.
Usually, the adiabatic [homogeneous Neumann (flux)]
boundary conditions are adopted for simplicity, since the
temperature rise is too low in the interface region to in-
troduce convective heat losses and the surrounding me-
dium usually consists of a gas (air) with poor thermal
properties, resulting in a small thermal coupling coeffi-
cient (the ratio of the thermal effusivities of the two
media).10 Finally, the PTR signal can then be written
as17

S~r, v! 5 Cm̄IRE
0

L

T~r, z; v!exp~2m̄IRz !dz, (18)

where C is a constant independent of r, and m̄IR , the
mean infrared absorption/emission coefficient of the tur-
bid medium, is assumed to be independent of emission
wavelength. Majaron et al.18 have shown that tempera-
tures estimated from PPTR signals from turbid tissue can
be in error up to 30% if the proper spectral dependence of
m̄IR(l) is not taken into account. Nevertheless, in FD-
PTR an effective (mean) value of m̄IR can be extracted over
all material depths from a multiparameter fit of the en-
tire frequency-response curve (amplitude and phase) of
the turbid medium. It can be shown17 that the Hankel
transform of the PTR signal [Eq. (18)] may be written as

Ũ~l, v! 5 Cm̄IRE
0

L

T̃~l, z; v!exp~2m̄IRz !dz. (19)

Using Eq. (15), we finally obtain the complex Hankel
transform
Ũ~l, v! 5 Cm̄IRHB1F1 2 exp@2~b 1 m̄IR!L#

b 1 m̄IR

1 F ktb 2 h

1 2 exp~22qL !
G

3 X1 2 exp@2~m̄IR 2 q !L#

~h 1 ktq !~m̄IR 2 q !
$exp@2~b 1 q !L#

2 exp~22qL !% 1
1 2 exp@ 2 ~m̄IR 1 q !L#

~h 2 ktq !~m̄IR 1 q !

3 $1 2 exp@2~b 1 q !L#% CG
1 B2F1 2 exp@ 2 ~m̄IR 2 b!L#

m̄IR 2 b

2 F ktb 1 h

1 2 exp~22qL !
G

3 X1 2 exp@2~m̄IR 2 q !L#

~h 1 ktq !~m̄IR 2 q !
$exp@2~q 2 b!L#

2 exp~22qL !% 1
1 2 exp@2~m̄IR 1 q !L#

~h 2 ktq !~m̄IR 1 q !

3 $1 2 exp@ 2 ~q 2 b!L#% CG
1 B3F1 2 exp@2~m̄IR 1 m t!L#

m̄IR 1 m t

1 F ktm t 2 h

1 2 exp~22qL !
G

3 X1 2 exp@2~m̄IR 2 q !L#

~h 1 ktq !~m̄IR 2 q !
$exp@2~m t 1 q !L#

2 exp~22qL !% 1
1 2 exp@2~mIR 1 q !L#

~h 2 ktq !~m̄IR 1 q !

3 $1 2 exp@2~m t 1 q !L#% CGJ, (20)

q2~l, v! [ l2 1 s t
2~v!, (21)

where F1 and F2 are defined in Eqs. (11a) and (11b), re-
spectively, and g is defined in Eqs. (10b).

3. SAMPLE PREPARATION
The turbid phantoms for the photothermal measurements
were constructed by using a two-part epoxy resin as a
base (MY753 resin with XD716 hardener, Ciba-Geigy
Ltd), Sudan III dye as an absorber (S4131, Sigma Chemi-
cals), and amorphous silica microspheres as scatterers
(Monospher 1000M, Merck Ltd). Quantitative dilutions
of these three constituents yielded scattering and absorb-
ing phantoms with controlled optical coefficients as sum-
marized in Table 1. A high-absorption sample with no
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Table 1. Results of the Multiparameter Fit for Various Phantoms, Indicating Values Independently
Measured with a Spectrophotometer, Calculated with Mie Theory, and PTR Derived

Phantom
Number

ma (cm21) ms (cm21) ms8 (cm21) g
m̄IR (cm21)

DerivedMeas.a Derived Calc.b Derived Calc.b Derived Calc.b Derived

1 116 118 6 1 383 318 6 2 13.4 11.1 0.965 0.965 600 6 8
2 58 52 6 2 377 318 6 5 13.2 11.1 0.965 0.965c 265 6 4
3 31 29 6 4 383 318 6 32 13.4 11.1 0.965 0.965c 153 6 7
4 117 120 6 2 189 326 6 8 6.6 5.2 0.965 0.984 600 6 7
5 184 188 6 1 189 326 6 2 6.6 5.2 0.965 0.984d 1420 6 40
6 65 60 6 4 189 326 6 12 6.5 5.2 0.965 0.984d 233 6 7
7 236 258 6 2 0 0 0 420 6 6
8 459 490 6 2 0 0 0 460 6 6

a Measured with a spectrophotometer.
b Calculated by using Mie theory.
c g value assumed the same as that for phantom 1.
d g value assumed the same as that for phantom 4.
scatterers was also created for use in deriving the ther-
mal diffusivity for the entire sample set. The absorbing
properties were measured spectrophotometrically in a
clear dye/solidified epoxy cuvette. The scattering proper-
ties were calculated by using Mie theory19 with the fol-
lowing inputs: sphere diameter 5 1000 nm, wavelength
5 514 nm, refractive index of sphere 5 1.417, refractive
index of epoxy 5 1.57, and relative density of sphere to
epoxy 5 1.8.

To make the phantoms, we prepared concentrated ab-
sorber and scatterer stocks. The absorber stock solution
was made by dissolving 0.4 g of dye powder in 100-g
MY753 resin with the help of an ultrasonic bath agitator,
yielding a spectrophotometer measurement of the absorp-
tion coefficient equal to 710 cm21. The stock suspension
of microspheres (3% by volume) was made by mixing
them with the resin in a ball mill for approximately 6 h,
resulting in a reduced scattering coefficient of 24.5 cm21.
Suitable amounts of resin and hardener were then mixed
and combined with the resin stocks of absorber and scat-
terer. The mixtures were poured into 3.5-cm-diam petri
dishes to a depth of ;9 mm and were allowed to solidify
in a fume hood for 2 days at room temperature. Mea-
surements were performed on the top (exposed) surface.

4. EXPERIMENTAL SYSTEM
The experimental setup is shown in Fig. 2. A 514.5-nm-
wavelength cw Ar1 laser (Innova 100, Coherent Inc.) was
modulated by an external acousto-optic (A/O) modulator
(AOM-Isomet 1201E-1) at frequency f 5 v/2p, where v is
the angular modulation frequency. The laser beam was
then focused onto a sample to a 1/e2 spot radius of 0.48
mm at an incident angle of ;12° off normal and at a
power of 0.1 W. The blackbody radiation from the opti-
cally excited sample was collected, collimated, and fo-
cused by two paraboloidal mirrors onto a liquid-nitrogen-
cooled HgCdTe detector (EG&G Judson J15D12-M204-
S050U). The HgCdTe detector was a photoconductive
element with a typical responsivity of 13103 V/W, which
undergoes a change in resistance proportional to the in-
tensity of the incident infrared radiation. The detector
had an active square size area of 1 mm 3 1 mm and a
spectral bandwidth of 2–12 mm. Its performance im-
proves with decreasing temperature, so the detector was
operated at a cryogenic temperature of 77 K by using
liquid-nitrogen cooling. An antireflection-coated germa-
nium window with a transmission bandwidth of 2–14 mm
was mounted in front of the detector to block any visible
radiation from the laser. Before being sent to the digital
lock-in amplifier (Stanford Research Systems SR850), the
photothermal radiometric signal was amplified by a pre-
amplifier with a dc 1-MHz frequency bandwidth (EG&G
Judson PA-300), especially designed for operation with
the HgCdTe detector. The process of data acquisition,
storage, and frequency scanning was under computer con-
trol. With this experimental arrangement, a dynamic ex-
periment could be performed at one location on the
sample. The experiment generated depth-dependent in-
formation by scanning the laser-intensity modulation fre-
quency (a ‘‘frequency scan’’). Two independent channels
of information (amplitude and phase) were thus obtained.

Fig. 2. Frequency-domain photothermal radiometric instru-
mentation.
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5. EXPERIMENTAL RESULTS,
MULTIPARAMETER COMPUTATIONS, AND
DISCUSSION
Photothermal measurements were performed in the fre-
quency domain over the 10–1000-Hz range. The inverse
Hankel transform of Eq. (20) was used to fit the experi-
mental amplitude and phase data sets. The Hankel in-
tegral is an improper integral; i.e., its upper limit is infi-
nite. It is assumed, based on the physical quantity
represented by the complex integrand, that the integral
exists and approaches a finite value as the upper limit of
integration approaches infinity. The integration is calcu-
lated by using the improper integral routine qromo with
midpnt taken from Numerical Recipes in C.20 The
needed known parameters used as inputs were the 1/e2

beam radius W 5 0.48 mm, the thermal conductivity of
epoxy k 5 0.446 W/m K, and the semiempirical internal
reflection parameter, calculated3 to be r21 5 3.517. The
thermal diffusivity a and the effective (mean) infrared ab-
sorption coefficient m̄IR were determined with a least-
residual analysis of the data from the high-absorption-
only sample. The absorption coefficient for this reference
phantom was 710 cm21. The residuals are the sums over
the frequency scans of the theoretical fit minus experi-
mental data squared, where both amplitude and phase in-
formation is used. The resultant residual contour plot is
shown in Fig. 3, and the minimum determines a unique
solution pair (m̄IR 5 480 cm21, a 5 0.9 3 1027 m2/s) in
the region. The solution is determined by least-residual
search in the possible range of epoxy m̄IR and thermal dif-
fusivity values. The major advantage of using FD-PTR
as opposed to PPTR is that two channels of information
(amplitude and phase) exist for fitting the data, and thus
a unique two-parameter determination can be achieved.

The thermal diffusivity derived from the reference
sample was then used in the analysis of all the other
phantoms, and the summary of all the results is shown in
Table 1. The ‘‘measured values’’ for ma are based on the
spectrophotometer measurements. The ‘‘calculated val-

Fig. 3. Least-residual contour surface for reference medium
with high absorption and no scatters (stock b). A local minimum
marked by ‘‘3’’ yields the optimum (m̄IR 5 480 cm21, a 5 0.9
3 1027 m2/s) pair. This number indicates the best solution to
fit the experimental data in stock b.
ues’’ for ms8 are the results of Mie-theory calculations.
The ‘‘derived values’’ are the optimal fitted parameter sets
with the use of Eq. (20). The uncertainty for each fitting
parameter was found by evaluating an arbitrarily chosen
5% residual change on the theoretical fit. For the non-
scattering samples, phantoms 7 and 8, two-dimensional
contour plots (ma , m̄IR) were used to find the minimum so-
lutions of unique pairs of the optical absorption (ma) and
mean infrared absorption (m̄IR) coefficients. The results
are also shown in Table 1. It is observed that the mean
infrared absorption coefficient increases with increasing
optical absorption at 514 nm. This is possibly an artifact
of the constancy of mIR in Eq. (20), since higher ma would
result in collection of IR photons closer to the sample sur-
face, thus increasing the effective collection solid angle.
This would be attributed to an increase in the effective
m̄IR of the measurement during the multiparameter fit.
For the scattering samples, the fitted parameters were
(ma , m̄IR , ms , g): the optical absorption, the mean infra-
red absorption coefficient, the scattering coefficient, and
the average cosine of the scattering angle, respectively.
In tissue the value of g lies in the 0.6–0.98 range.21

Starting with the g 5 0.965 value for the first scattering
sample (phantom 1), which was calculated by using Mie
theory,19 a 3-D contour plot as shown in Fig. 4(a) resulted
in the minimum triplet solution of parameters ma , m̄IR ,
and ms . The 3-D contour is shown for three m̄IR values of

Fig. 4. 3-D contour plot for phantom 1: (a) g 5 0.965 and (b)
g 5 0.984. The minimum set of values obtained for g 5 0.965 is
(ma 5 118 cm21, m̄IR 5 600 cm21, ms 5 318 cm21) and for g
5 0.984 is (ma 5 118 cm21, m̄IR 5 600 cm21, ms 5 303 cm21).
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400, 600, and 800 cm21, and although graphically difficult
to see, the minimum is obtained at m̄IR 5 600 cm21. To
further generalize the optimization method, we repeated
the procedure for creating the 3-D contour for several
higher and lower g values. Figure 4(b) shows a 3-D con-
tour for another (arbitrary) g 5 0.984. Calculating
minima for several g values including the ones shown in
Fig. 4, we found that the absolute triplet minimum is ob-
tained for g 5 0.965 within the domain of (ma , ms) values
indicated in Fig. 4(a). The best fit to the PTR amplitude
and phase of phantom 1 data corresponding to this triplet
is shown in Fig. 5. The same g value as that for phantom
1 was then used for the samples with the same scattering
coefficient, phantoms 2 and 3, and 3-D contours were con-
structed, with the results presented in Table 1. It is
again observed that as ma increases, the effective mean
m̄IR increases within this group of samples with similar
scattering properties. For phantoms with different scat-
tering coefficients, 3-D contours similar to those in Fig. 4
with several g values were again constructed. In the
same manner, the 3-D contour plot was used to determine
the minimum solution parameter set (ma , ms , m̄IR).
From comparison of several g values, it was found that
the absolute minimum within the domain of (ma , ms) val-
ues now occurs for g 5 0.984. The contours for the Mie-
theoretical value g 5 0.965, which were used as a start-
ing point for the search, and those obtained for the
derived absolute minimum value g 5 0.984 are shown in
Figs. 6(a) and 6(b), respectively. The best fit to the data
corresponding to this triplet for phantom 4 is shown in

Fig. 5. Amplitude and phase fits for phantom 1 from the mini-
mum solution obtained by the 3-D contour in Fig. 4(a).
Fig. 7. The g value thus determined from phantom 4 was
then kept constant for the set of samples with the same
scattering coefficient, and further 3-D contours were con-
structed, with the results reported in Table 1.

Just as in the case of the scattering group of phantoms
1–3, it is observed that, within the group of scattering
samples 4–6, the effective mean infrared absorption coef-
ficient exhibits changes similar to those of the absorption
coefficient at 514 nm. The m̄IR coefficients for the
absorption-only samples 7 and 8 also decrease with de-
creasing ma , although their variation is considerably less
than that of the scattering samples. This suggests that
scattering affects more strongly the value of the effective
m̄IR , as is expected, since it may control the optical pen-
etration depth and the lateral loss of photons outside the
(very narrow) solid angle subtended by the active HgCdTe
detector element. Furthermore, among the scattering
samples, as ms decreases, the average cosine of the scat-
tering angle, g, increases. This trend is also expected,
since lower ms results in a more forward-scattered photon
distribution with a smaller scattering angle u and, there-
fore, a larger mean cosine of the scattering function.21

From the results of Table 1, it is seen that the optical
absorption coefficients ma of all phantoms are estimated
quite accurately by means of PTR multiparameter fits.
All derived values, however, for the reduced scattering co-
efficients ms8 are lower than the ones calculated by using
Mie theory. This is depicted graphically in Fig. 8, where

Fig. 6. 3-D contour plot for phantom 4: (a) g 5 0.965 and (b)
g 5 0.984. The minimum set of values obtained for g 5 0.965 is
(ma 5 116 cm21, m̄IR 5 600 cm21, ms 5 351 cm21) and for g
5 0.984 is (ma 5 120 cm21, m̄IR 5 600 cm21, ms 5 326 cm21).
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the percent deviations from the actual values for both ab-
sorption and reduced scattering coefficients are shown.
A possible cause of the larger scattering coefficient dis-
crepancy is the use of Mie theory to independently calcu-
late the scattering coefficient. From Fig. 8, it can be seen
that the deviation in reduced scattering coefficient de-
creases somewhat as the measured scattering coefficient
increases. Unfortunately, there appear to be no litera-
ture data for ms with which one may compare the present
derived values, because earlier 1-D models3–6 of the

Fig. 7. Amplitude and phase fits for phantom 4 from the mini-
mum solution obtained by the 3-D contour in Fig. 4(b).

Fig. 8. Percent deviation (from independently derived values) of
ma and ms8 as determined from the 3-D FD-PTR analysis.
diffuse-photon density in turbid media involved the re-
duced scattering coefficient ms8 and not its constituent pa-
rameters ms and g separately. Overall, the theoretical
model used in this work17 seems to be sufficient for deter-
mining the optical properties of turbid samples in the ex-
amined (ma , ms8) range. The results are underdeter-
mined by 20% for ms8 and have variations up to 10% for
ma . The larger apparent discrepancy between calculated
and derived ms values for phantoms 4–6 in Table 1 cannot
be easily accounted for in physical terms. It is believed
that it originates in the (unfortunately nonmeasurable)
computational uncertainty in the g values, which produce
the absolute minima in Figs. 4 and 6, g
5 min@ g(ma , ms)#. Owing to the structure if the defining
equation ms 5 ms8/(1 2 g), for a derived value of ms and
for g values near unity, e.g., for g 5 0.984, a 1% variation
in g causes ms variations up to 65%. Therefore the actual
standard deviation in the derived ms values in Table 1 can
be much higher than the apparent standard deviations if
a small nonzero uncertainty is allowed for the value of g.

6. CONCLUSIONS
A complete FD-PTR theoretical, experimental, and com-
putational multiparameter methodology for measuring
optical properties of turbid media has been introduced. A
new theoretical FD-PTR signal model based on a 3-D ex-
pression of the total (diffuse 1 coherent) photon density
field at very low modulation frequencies (with respect to
optical transport rates) has been used. The model ac-
counts rigorously for full 3-D optical diffusion as a volume
source to a 3-D thermal-wave model. Complete ampli-
tude and phase scans were obtained for all test phantoms
as functions of frequency. The theoretical expressions
were utilized in the quantitative analysis of the experi-
mental data. The enhanced signal-to-noise ratio of the
FD-PTR lock-in amplifier demodulated signals, compared
with PPTR transients, and the availability of two infor-
mation channels (amplitude and phase), instead of a
single-channel transient decay, are distinct advantages of
FD-PTR.22 The methodology shows good promise with
regard to its analytical ability to measure triplets of
(ma , m̄IR , ms8) values of turbid media uniquely, as com-
pared with its pulsed counterpart, which exhibits unique-
ness problems, thus requiring the use of independent
measurements.5 In the data sets examined in this work,
the PTR-derived optical reduced scattering and absorp-
tion coefficients were found to be within 20% and 10%, re-
spectively, of the values independently derived by using
Mie theory and spectrophotometric measurements.
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