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Thermal-wave field diffraction has been treated as the extreme near-field approximation of a three-dimensional
superposition integral that includes the generating optical aperture function. This formalism is quite general and is
convenient for applications with many experimental diffracting apertures. Specific examples of useful photother-
mal excitation apertures have been treated explicitly. These include the spatial impulse function, a Gaussian laser
beam, a circular aperture, and an expression for the interference field generated by two Gaussian laser beams.

1, INTRODUCTION

Photothermal-wave interferometry has received a certain
degree of attention from the experimental community as a
method for depth analysis and nondestructive evaluation of
subsurface defects.!-3 Experimental data obtained by sev-
eral workers indicate that thermal-wave interference is pos-
sible and can be used to extract qualitative,? empirical,? or
quasi-quantitativel® material information. From the quan-
tiative-analysis point of view, there remains, however, the
need for putting photothermal-wave interferometry on a
rigorous theoretical foundation that would explain interfer-
ometric phenomena as a result of the diffractive nature of
photothermal waves. Besides the fact that such a theory is
of great mathematical interest on its own merit, owing to the
unusual, spatially damped nature of thermal waves, it
should also be of practical interest to experimentalists: In
the absence of rigorous theoretical guidance, they sometimes
find it necessary to introduce arbitrary algebraic factors into
their calculations in order to get the desirable fit to the data,
as examplified in the paper by Sodnik and Tiziani2 It

appears to the author that the lack of a proper theoretical -

basis for photothermal-wave diffraction analysis is related
to the controversial nature of thermal waves as heavily
damped pseudowaves (as discussed previously?) resulting

from a specific form of the heat conduction equation and not -

from a proper wave equation. An additional difficulty
stemming from this fact is that solutions to the thermal-
wave field function (i.e., the temperature) must be consid-
ered in the extreme near-field approximation,’ and thus the
well-known Fresnel and/or Fraunhofer diffraction theories
are not valid in this case.

In this paper the mathematical foundation for the pho-
tothermal-wave diffraction theory is developed. Under the
experimentally justifiable condition of a small-aperture
(SA) approximation, the diffraction integral is presented.
Special cases are examined in a framework that is analogous
to that of Fourier optics but is now valid for arbitrary aper-
ture functions in convolution with the thermal-wave trans-
fer function in what can be called, in analogy, Laplace ther-
mal-wave physics.
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2. PLANE THERMAL WAVES

On harmonic optical excitation of a material surface having
the functional form

I(x, t) = Ij(r)exp(—iwt), (1)

where I is the incident optical irradiance on the surface and
w = 2xf is the optical beam intensity modulation angular
frequency, the resulting thermal field in the material can be
described fully by the equation

V2T(x,y,2) + B2T(x, y,2) = 0, (2

where T is the temperature field wave function and % is the
complex thermal-wave number given by

E=(1+)(w/20)"2 (3)

In Eq. (3), « is the material thermal diffusivity. Equation
(2) is valid under conditions of spatially invariant thermal
conductivity. Owing to the complex nature of %, a more
useful quantity in thermal-wave field theory is & =|&|, where

k= (/)2 (4)
Equation (4) helps us to define a thermal wavelength
A = 2n(a/w)2. (5)

It must be pointed out that this definition of \,, which is
based on &, is slightly different from the conventional one,6
which is based on

ky(w) = k2, (6)

where &; is the thermal diffusion coefficient. Under these
conditions, a unit-amplitude thermal plane wave may be
constructed to describe the solution to the Helmholtz-like
wave Eq. (2):

T(r) = exp(ik, - r), (7
where

k, = explin/0)f = (%) hi+hj+hh).  ®
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In Eq. (8) the set (7, J, k) represents unit vectors in a Carte-
sian vector space. It is characteristic of the thermal-wave
Helmoltz Eq. (2) that the wave-vector field k. is rotated by
45° with respect to proper (real) wave vectors in the complex
plane.

The field wave function Eq. (7) may be written explicitly
as

T(x, y, z) = expli exp(in/4)k - r]
= exp[—exp(—ix/4)k(ax + agy + ag2)], (9)
where (o, a9, o) is the set of directional cosines, such that
a2+ ol + a2 = 1. (10)
Equation (9) can thus be written in the form
T(x, y,2) = To(x, y)exp[—exp(—in/4)(27/),)
X (1= a2 = a2)V%], (11)
where
To(x, y) = exp[—exp(—in/4)k(ayx + ayy)]. (12)

It is useful to define thermal-wave spatial frequencies f,

fys Iz by

fx = al/}\t’ ‘ fy = a2/kt’ fz = aS/}\t' (13)

Therefore, in terms of the spatial frequencies, a thermal-
wave transfer function can also be defined as

T(x,y,2)
H(f , =17 "7 4
wfy) To(x, y) 14

and written as

H(f,, f,) = exp{—exp(—im/4)@r/N\)[1 = NA(F2 + £,D]V%),
(15)

analogous to the well-known optical transfer function.”
Equation (15) indicates that the thermal-wave propagation
requirement amounts to inclusion of spatial frequencies in
the field spectrum up to A\, 2

fE+HAE<N (16)

3. THE THERMAL-WAVE DIFFRACTION
INTEGRAL

At this point in the development of the theory, the approach
deviates substantially from the standard Fourier integral
diffraction formulation. The fact that thermal waves are of
a heavily damped nature in the spatial parameter r forces us
to consider an alternative spatial Laplace integral formal-
ism, which physically represents Huygens’s principle with
exponentially damped thermal-wave propagation. If we de-
fine the two-dimensional complex spatial Laplace variables

s, =27 exp(—in/4)f,, (17a)
s, = 2 exp(—in/4)f,, (17b)

the complex amplitude of the thermal-wave field across the
xy plane at the surface (z = 0) can be written formally as®
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1 cyHim fegtiw
Ty, y) = —— J j A5y 8,)

T Jey—iw Jey—iw
X exp(s,x + s,y)ds,ds,, (18)

where ¢y, ¢y are appropriate real constants such that they can
ensure convergence of the integrand at infinity. Further-
more, T(x, ¥, z) can also be expressed in a similar form:

1 ¢y tie fegtio
T(x,y,2) = — —— f ] A5, 5,02)

47® c;—iw Jeg—iw
X exp(s,x +s,y)ds,ds,, (19)

where T'(x, y, z) must satisfy the Helmholtz-like wave Eq.
(2). Direct substitution of Eq. (19) into Eq. (2) yields the
simple differential equation

;—:ZA(sx, s,,2) + 121/ [L = N2 (2 + £,D]AG,,5,,2) =0
(20

with a solution given in terms of Eq. (15),
Alsy, 8,0 2) = Aglsy, s, )H(f 1 f), 21)

where A(s;, Sy, 0) = Ag(s, sy). Equation (19) is a statement
that A(sy, sy, 2) is the two-dimensional spatial Laplace trans-
form of T(x, v, z). The same relationship exists between
Ag(sy, sy) and To(x, y) according to Eq. (18). Therefore Eq.
(21) can be written as

A5, 5,,2) = H(f f,) L i jo " Ty, mexpl—(s,¢ + s,mldidn.

(22)

Substitution of Eq. (22) into the integrand of Eq. (19) results
in the following convolution integral for T'(x, y, 2):

Te,3,2) = | [ 1ot 066~ 6y - maidn, (20
o Jo
where the kernel G is given by

cotico
Gx—§y—m=- 4—;} expls,(x — §) + 5,0y —n)]

X expl—exp(—in/)kz[l — N2(£2 + £,)]V3ds,ds,.  (24)
The integrand

H(f,, f,) = expi—exp(—in/4)kz[1 = N2+ £,9]V3
is well behaved in the range |f,2 + f,2| < 1/A2

|H (., £, = eXp{— % [1=2\2(F2+ fy2)]1/2}. 25)
H(f., f,) is further bounded in t‘he fange lf2 + £,2 > 1/a
k
|H(f,, f,)| = exp{—- TZ N2+ - 1]1/2} =0

as f,, f, = =. (26)

Equation (25) and relation (26) thus show that the spatial-
frequency strip of convergence for the transfer function
H(f., fy) is == < (f% + ;)12 < «, and therefore H(f, f,) is
analytic everywhere, with a branch cut extending between
=12 M2+ £,2Y2< +1. Therefore wecansetc; =cz=0in
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Eq. (24) and obtain the inverse transform of H(f,, fy), name-
ly, G(x — §, v — ), which will be convergent for all values 0 <
[(x =2+ (y — 1)22 < ».2 The kernel, Eq. (24), can be
solved analytically after we make the variable transforma-
tionsl®

fe=pcosd, f,=psing, (27a)

x—{=rcosb, y—n=rsind. (27b)

In the new variables we obtain
wexp(—in/4) (x/2

G(rcosf,rsing) =i ] ] exp[—exp(—ir/4)
0 0

X kz(1 = N\20%)?|exp[2n exp(—in/4)pr cos(¢ — 6)]pdpde.
(28)

By using the representation (see Ref. 11, p. 958, entry
8.431.1)

Iz =+ (29)

™

[1 extdt
-1 (1 - )2

for the modified Bessel function of the first kind, zeroth
order, Eq. (28) can be written as

wexp(~ir/4)

Ge) = %f [ exp[—exp(—im/4)kz(1 — A 20) V2]

)
X Iy[27 exp(—in/4)prlpdp. (30)

It is interesting to note that the angular dependence has
dropped out of Eq. (30), leaving the kernel G as a circularly
symmetric function of the radius r only:

G(r cos b, r sin ) — G(r).

By using the well-known relations (see Ref. 11, p. 952, entry
8.406.1)

Iy(2) = Jyiz), —m<arglz) <=/2 (31)

and letting x = 27 exp(ix/4)p in Eq. (30), we obtain
G0) = = f " exp[—2( — i)Y, (rx)xdx.  (32)
0

This integral can be evaluated explicitly by use of the rela-
tion (see Ref. 12, p. 95, entry 52)

Qla, b) = L i exp[—a(t? — y)V3(£2 — y»)~V2J (bt)tdt

= exp[—iy(a® + b%)?](a® + b2)~12,

» argt? —yH) =7/2 ift<y. (33)
On taking dQ(a, b)/da we find that
J ) exp[—a(t? — y)?J,(bt)tde
o
. exp[—iy(a® + b)1?] 1
= 1+ . (34
e (a® + b?) iy(a® + b?)2 e

Leta=z,b=r,and y = —exp(in/4)k; Eqs. (32) and (34) yield
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_ exp(in/4) [ z \ exp[=(1 = Dk (w)Ry]
0= <R0> R,

exp(ir/4)

x[1+ R, } (35)

where ks(w) = (w/2a)Y/2, according to Eq. (6), and

Ro=(P+ A" =[x = 02+ =+ 272 (36)

Equation (35) does converge for all values 0 < Ry < =, in
agreement with the requirement for convergence of the in-
verse Laplace transform of H(f,, f,), above. Now, in princi-
ple, Eq. (35) can be inserted into Eq. (23) to give an expres-
sion for the thermal-wave diffraction integral in terms of the
photothermal aperture function To(x, ¥). It is important to
notice that the convolution integral

T(x,y,2) = To(x, y)**G(x, y, 2) (23

is the two-dimensional Laplace transform of Eq. (21), with
G(r) being the spatial impulse response of the photothermal
system. Furthermore, it can be shown rigorously in a man-
ner entirely analogous to optical diffraction theory” that Eq.
(23) with G(x — ¢§, ¥ — 1) given by Eq. (35) is identical to the
equation derived from Green’s theorem by using Dirichlet
boundary conditions on the aperture plane and

exp(kRy)  exp(ikR,)
RO RO '

G, O(x,xg) = (37

In Eq. (37), Ry and R, have been defined as in Eq. (36), and
they represent position vector magnitudes on either side of
the diffracting aperture plane. % was defined in Eq. (3).

This argument thus validates a posteriori the legitimacy
of handling the pseudowave Eq. (2) as a proper Helmholtz
wave equation with well-known Green'’s-function solutions.
This mathematical equivalence is not generally valid for
different classes of partial differential equations such as
hyperbolic (the wave equation) and parabolic (the heat-
diffusion equation) ones. In the spirit of this equivalence,
the factor (2/Rp) in Eq. (35) can be interpreted as the ther-
mal ray obliquity factor. In the case of thermal waves,
however, the paraxial, Fresnel, and Fraunhofer approxima-
tions are generally not valid because of the heavily damped
nature of the propagating field function T'(x, y,z). The field
function must be evaluated in some extreme near-field ap-
proximation,’ which is defined in Section 4. The wide-angle
diffraction approximation!? also exists and is a more restric-
tive form of the Fresnel approximation. Even this assump-
tion, however, holds only for points of observation suffi-
ciently far from the aperture plane. This condition is gener-
ally not valid for the thermal-wave field, and therefore the
wide-angle diffraction approximation must also be aban-
doned.

4. THERMAL-WAVE DIFFRACTION: SMALL-
APERTURE APPROXIMATION

In this section we discuss the extreme near-field approxima-
tion to the field integral
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Fig. 1. Photothermal-wave diffraction geometry.
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exp(ir/4)z j J exp[—(1 — D)k,R) R3/2 [ks(w) B
T(x,y,2)=—17 To(s, —_— > r . 45
(x y 2) 41}\1 o o o(i’ n) " ROZ 7o Jomin D) ( l)max (45)

exp(in/4)
X [1 + _kRo ]ds“dn (38)

in terms of the experimentally justifiable condition of a
small photothermal aperture. We define variables r; and ro
such that

Z+x9*=r2  (aperture plane) (39)

and

2 (40)

2+ y?=r, (observation plane).
The geometry of the field variables and position vectors is

shown in Fig. 1. In terms of ry, r1, Eq. (36) can be written as
Ry = [22 + (ry— )32 (41)

Experimentally, a large number of photothermal-wave in-
vestigations are done with focused (and even tightly fo-
cused) laser beams on material surfaces.!* Under these con-
ditions, the approximation will be valid for essentially all
field positions outside the symmetry axis of the exciting
laser beam. Expansion of the root in Eq. (41) gives, to first
order,

2
e 17N
~ —_ —_— 4
RoxR-—p 493 (432)
where
R=(x2+y2+ 292 = (r + 252 (43b)

The validity of this approximation depends on the magni-
tude of the next term in the expansion in relation to unity:
the condition is met if the minimum probe distance R is such

that
ky(w)r®(2ry — r1)%/8R3 < 1. (44)

Assuming that 2ry > ry, condition (44) gives a worst-case
requirement

If (1) max is known, relation (45) can be viewed as the condi-
tion determining the minimum probe distance so that rela-
tion (43a) will be a valid representation of the thermal-wave
field. If we use aluminum as a test material with o; = 0.82
cm?/sec, (r)max = 50 um, z = 1.5 mm, and (ro)min = 200 pm
and a laser-beam modulation frequency f = 100 Hz, we find
that (R%2/r¢) min = 0.625 cm/2 and [4(100 Hz)/21Y2 (r{)max =
0.016 cm'2. These worst-case calculations show that the SA
approximation (43a) is valid for a broad range of materials
and experimental conditions.

For the rest of this paper the assumption of thermally
thick solids is adopted!:

1
k (0)Ry~——kR > 1, (46)
0 2
so that in Eq. (38)
1+ &R0/ (47)

kR,

The circular symmetry built into the diffraction integral
Eq. (38) points to polar coordinates as the most convenient
representation. In the limit of the SA approximation,

Ry~ R =% (e ym) + 5 (4 1), (48)
so that
: ~(1— kR
T(xr Ys Z) = exi(;;r/‘l) (%) exp[ R : ]
t

x f i j " (Tols, mexpl=[(1 — k2R + )
0 Jo
X expll(L = i)k/R](x¢ + yn)dgdn. (49)

In accordance with Egs. (39) and (40) we define the observa-
tion-plane variables
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x =rqcos ¥, (50)
¥y =rgsin ¥, (51)
and the aperture-plane variables

$=rycos ¥, (52)
n=r;sin ¥,. (53)

Further, we define the complex polar-plane Laplace variable

= , T
s=2r exp(—z1r/4)f,o, frn = }‘t_R, (54)
where f,, is a polar thermal-wave spatial frequency. Finally,
for purposes of conforming with convention regarding the
representation of Laplace transforms, we let (x, y) — (—x,
—y) in Eq. (49). This operation leaves the value of the
circularly symmetric integral unchanged. It simply moves
the two-dimensional complex spatial Laplace plane domain
to the third quadrant instead of the first quadrant. Using
these definitions, we can write, instead of Eq. (49),

- - exp(iw/4) 2z
T(x, y,2) = T(ry, ¥y, 2) T4, (R)
y exp[—(1 — {)k,R]

R K(r07 ‘I,()y Z), (55)

where R is given by Eq. (43b) and
K(rg, %o, 2) = fo i jo " (Totrys ¥r)expl=[(L = Dhy/2R]r %)
X exp[—sryr; cos(¥; — ¥o)r,dr,d¥,. (55
Assuming circularly symmetric aperture functions,
To(ry, W) = To(ry), (56)

and using Eq. (29) and relations (31), we find that
K(ro, \1/01 Z) = K(r()’ Z)

= % f: {To(rl)exp[-(s/2ro)r12]¥ Jolisryrdry.  (57)

Equation (57) is the Laplace-Bessel transform of the func-
tion within the braces (see Appendix A):

K(ry, z) = 2LB{To(rl)exp[—(s/Zro)rlz]ﬂ =gt (58)

5. EXAMPLES OF SMALL-APERTURE
DIFFRACTION PATTERNS

We consider next a few special cases of the thermal-wave
diffraction integral [relation (55)] that correspond to useful
experimental configurations with optical excitation of the
material surface (aperture plane, Fig. 1). These cases are
classified in terms of the functional form of the optically
generated photothermal source function Ty(r;). For many
spatial functions, solutions to the problem of relation (55)
and Eq. (58) are readily available in tables of two-dimen-
sional Hankel transforms to which the Laplace-Bessel inte-
gral bears close similarity.
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A. The Spatial Impulse: Ty(ry) = 8(r1)/wry

_'This is the simplest form of optical excitation and is relevant

in situations when a pump laser beam is focused tightly upon
the sample surface. Equation (58) readily gives

5("1)

7|'r1

K(rg, 2) = 2LB{ exp[—s/2r0)r12} =1 (59)

pP=s
The field function T [relation (55)] thus becomes

exp(in/4) (z’ exp[—(1 — i)k,R] )
i, ( ) R

T(ry, 2) = (60)

R

Equation (60) is, in fact, the spatial impulse response itself
and is identical to the function derivable from the exact
expression, Eq. (38) in the thermally thick limit, under im-
pulse excitation. Therefore, in the limit of infinitesimally
small photothermal sources, the SA approximation gives the
exact solution, as expected.

B. A Gaussian Laser-Beam Profile: TEM,, Mode
Let

To(ry) = exp(—r2/w?). (61)

Equation (61) describes a laser photothermal excitation of
unit amplitude and a beam waist of size w; then

K(rg,2) = Q(p)l,,=s, (62)

where

Q(p) = Lyplexp[~(s/2ry + w2)r,}
-z j " exp(=Br,2) Jy(ipr)rydry, (63)
0
with
=5 1,

B= 2r0 + w (64)

Now, we use the result (see Ref. 11, p. 716, entry 6.631)

- _a2 2
L exp(—ax?)dJy(Bx)xdx = ﬂﬂ—‘/‘—%MMl/z’o (f—a)’ (65)

where M5 is the Whittaker function defined by
Mij50(@) = 27 exp(~2/2),-, = ¢ exp(~q/2).  (66)

Therefore we obtain

=T 2
Qlp) = 1B exp(—p*/4B), (67)
so that .
K(ry,2) = # exp(—s?/4B). (68)

Substituting Eqs. (54) and (64) into Eq. (68) and separating
out real and imaginary parts, we obtain

- . (ker/R)2F2
_——— x _——
4(F2 + F )\ P 2(F? + Fy?)

[ kro/RYF, .
X exo{t[m + tan (Fz/F1) ’ (69)

K(ry, 2)
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where

ky(w)

5R (70)

Fy(R,w)=—+
w

and
ky(w)
2R .
Finally, when Eq. (69) is substituted into relation (55), we
obtain the full expression for the thermal-wave field, which

can be written out in terms of its experimentally convenient
components, amplitude and phase, as follows:

Fy(R) =

(71)

1Ty, 2)] = — i
re, 2)| =
0 16y2 RAF2 + F22)1/2

(k,/R)?F, '
e T2
X exp{ [ R+ 2F+ D) o :|} (72)

(kyro/R)?F,
2(F2 + F9)

and

V(rg,2) = — % + kR + + tan"}(Fy/F). (73)

C. A Circular Aperture of Uniform Irradiance: Ty(ry) =
cirg(ry/L) -

A circular aperture of uniform irradiance occurs in the case
of material irradiation with an optical field of uniform inten-
sity, such as a laser beam, passed through a beam expander
followed by a pinhole, or the light generated by a spectral
lamp producing a uniform spatial intensity. We assume a
surface temperature field of unit magnitude and aperture
radius L; then

Q(p) = 2Lplexp[—(s/2ry)r;?]circ(r,/L)}. (74)
Equation (74) can be written in the form
Q) =% [ expl=(ol2rortiorrdry. (15
Using Lommel’s functions U; and U, defined as!®
Uia,w) =a L ' cos[% a1- r2):|J0(wr)rdr, (76a)
Uplaw) = a Ll sin[% (1- rz)]Jo(wr)rdr, (76b)

we obtain the composite formula

jl exp(—iar?/2)dy(wr)rdr = % (U; + iUyexp(—ia/2). (77)
0

From Eqs. (75) and (77), after substituting x = ry/L and a =
—isL2/ry = —exp(iw/4)kRL?/R, and w = ipL, we obtain

Qlp) = - E'KP—(ZLM) (\:R)exp[—(1 — i)k,L?/2R]
X {U,[—exp(in/4)kL%/R, ipL] + iU,[~exp(i/4)kL*/R, ipL]}.
(78)

Use of Eq. (62), relation (55), and the properties of Lommel’s
functions,
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Ul(_a" w) = _Ul(a7 W), (79&)
Uy(—a, w) = Uy(a, w), (79b)

yields an expression for the photothermal-wave field under
uniform illumination of a circular aperture:

T(ry, 2) = ;—é (%)exp[—(l - i)ks(R + %)]

X {U,[exp(in/4)RL?/R, exp(in/4)kLry/R]
— iU,[exp(iw/4)RL*/R, exp(iw/4)kLry/R]}.  (80)

For computational purposes, Lomme)’s functions may be
expressed in terms of infinite series (see Ref. 17, p. 537, entry
1):

Uau) = 3 0 (2 . @D
m=0 '

In particular, we have
U, [exp(iw/4)kL?/R, exp(iw/4)kLry/R]

= Z (=1)™(L/r)*™* 1y, [exp(in/4)kLry/R]  (82)

m=0
and
U,[exp(in/4)kL*/R, exp(in/4)kLry/R]

= 2 (=1)™(L/ro)2™*2],,. .olexp(in/4)kLry/R], (83)

m=0

with the integral-order Bessel function defined by

. n+2m
J,1om lexp(in/4)RLry/R] = (kLrO) expli(n + 2m)x/4]

2R

hd (-1)? kLry\% ) :
X ;) ol + 2m + )] ( R ) exp(ipn/2). (84)

Now, Egs. (80)-(84) can be separated out into real and
imaginary components to yield the experimentally observ-
able amplitude and phase of the photothermal field.

The present diffraction theory makes possible the quanti-
tative evaluation of the photothermal-wave field at specific
infinitesimally small probe points within a material of inter-
est under arbitrary excitation apertures. Its experimental”
implementation, however, relies on probes of finite size,
which will have an integrating effect of the field values over
the probe area. 'These effects are currently under investiga-
tion in the light of criteria imposed by the Whittaker—Shan-
non sampling theorem.'®1? Appendix B shows the effects,
in the simplest possible limit, of an integrating detector of
infinite dimensions on the T'(x, y, 2) field generated by a
spatial photothermal impulse in terms of a complete loss of
resolution in radial directions.

6. PHOTOTHERMAL-WAVE
INTERFEROMETRY

In this section we present the theory of photothermal-wave
interferometry based on the diffraction formalism devel-
oped in Sections 3 and 4 in the SA approximation. As an
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n
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\/
-n

Fig. 2. Photothermal-wave interference geometry on the aperture
plane (¢, #).

experimental geometry we use the photothermal effects pro-
duced by two Gaussian laser beams impinging upon a mate-
rial surface in or out of phase with respect to intensity modu-
lation. This geometry is shown in Fig. 2 and has the addi-
tional virtue that it essentially represents published
experimental configurations as well.12 The theoretical de-
scription of two diffracting apertures producing interfering
thermal-wave patterns requires a shift of the origin of the
polar coordinate system. This operation unfortunately de-
stroys the circular symmetry on which the Laplace-Bessel
transform formulation is based. Therefore it is necessary to
revert to Cartesian coordinates [approximation (48) and Eq.
(49)]. The Laplace variables s, and s, are given by Egs.
(17a) and (17b) with spatial frequencies defined by

=* =2 .,
fx"' )\tR, fy >\tR (85)
With these definitions, Eq. (49) can be written as

: ~(L =)k
T, 3, 2) = 2/ (;_2) expl ! oAl
t

X Lm Lm [To(5, Mexp(=P - £)]exp[—(s,{ + s,n)]dsdn, (86)

where the double integral was translated to the third quad-
rant in the complex Laplace plane for proper convergence:
(x,5) = (=x, =y). In Eq. (86) we defined P = P, + P,i,
where

P,=(1-ik/2R=5s/2x, P,=(1-i)k/2R= 8,/2y,
(87a)
and
£= 6+, (87h)
so that the thermal-wave field can be expressed as a two-
dimensional complex Laplace transform (see Appendix A):
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T(x,y,2) = exp(im/4) (z) exp[—(1 - i)k,R]

T4, \R R

X 2L[T0(§-7 ﬂ)eXp(—P . 5)]3":27,- exP(_iW/‘i);x' (88)

sy=27 exp(—i7r/4),y

Since the geometry of Fig. 2 is a generalization of the
single-aperture geometry, we consider first the Cartesian
representation of the photothermal-wave field of a TEMj,
Gaussian laser-beam profile of unit amplitude:

To($, m) = exp[—(2 + nD)/w?). (89)
Now, let
Q(s,, 5,) = *L[Ty(§, n)exp(—P - £)]
= *Liexp[~(P,$* + Pyn®) — (&> + n)/w?})  (90)
= Liexp[—(P, + w™?)¢*}L{exp[— (P, + w™2)n¥}.
(91)
The relation (see Ref. 22, p. 146, entry 24)
Llexp(—u?/8a)] = 222 exp(as?) D_, (2a2s) (92)

can be used, where D_; is a parabolic cylinder function of
order —1, given by (see Ref. 11, p. 1067, entry 9.254.1)

D_,(2) = (g)llzexp(zzm)erfc(z/\/§). 99)

Equations (92) and (93), when adapted to Eq. (91), yield

2
5,) = s z|
Q(Sx sy) 4[(Px + w—Z)(Py + w—2)]1/2 [4(Px + w—2)

5.2
Z| —=——1|, (94)
4P, +w™?)
where we have defined

Z(x) = e* erfcyx. (95)
Finally, Eqs. (88) and (94) determine the field:
exp(—in/4)kz

4y27R? (520 5)

T(x, ¥, 2) = ;=% exP(‘iﬂ'/‘*){,. (96)

5,=2m exp(-—hr/tl)fy

Now, turning our attention to the photothermal field gen-
erated by the geometry of Fig. 2, we assume that two laser
beams are incident upon the surface, with a center-to-center
distance 2d along the n axis of the aperture plane. Both
beams are of equal intensity and thus generate photother-
mal wave fields of equal (unit) amplitudes in the sample.

Assuming equal spatial spot sizes (w; = wg = w) and in-
phase operation, we obtain the photothermal-field equiva-
lent of the well-known optical-field Young experiment. Un-
der these conditions

To™M(§, 1) = expl—[{2 + (7 — d)?/w?
+ exp{—[{® + (1 + ) /w?. (97)
Therefore
Qy(s,, s,) = Liexp[—(P, + w™) ]| Liexp[-P,s* ~ (3 — d)’w?))
+ Liexp[~P,n* — (3 + d)*/w?]}). (98)
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Expanding the exponents of the n-dependent transforms
gives the relations

Liexp{—P,n* — (n — d)*/w’]}
= exp(—d*/w)Liexp[— (P, + w )0’y

Liexp[—P,n* = (n + d)*/w’]}
= exp(—d2uw?)Liexpl—(B, + w7l o (99)

By combining Egs. (98) and (99) and using Eq. (91), we
obtain a simple relation between Q(sy, s,) and Qa(sy, sy):.

Qy(s,, s,) = exp(—d*/w?[Q(s,, s, — 2d*/w?)
+ Q(s,, s, + 2d*/w?)]. (100)
Q(sx, sy) is given explicitly by Eq. (94), while Eq. (100)
represents a form of the shift property of the two-dimension-
al Laplace transform.8 Finally, we can write the complex

thermal-wave field expression for the two constructively in-
terfering photothermal sources as follows:

exp(—in/4)k.z exp{—[(1 — D)k,R + d?/w?]}
16y2R? Fy—iF,

o Y i
T o, - iFy

x|z [(Fzy ~ %) ~ iFZyT

F1 _lF2

F+d 'Fz
+Z|:(2y wZ) zgy]

F, - iF,

T (x,y,2) =

’ (101)

where Fi(R, w) and Fo(R) are given by Eqgs. (70) and (71),
respectively.

The conditions for thermal-wave destructive interference
can be generated with out-of-phase operation of the laser
beams, in which case

T (5, m) = expl=[s* + (n — d)?)/w?}
- exp{~[* + (n + )W (102)
This aperture function results in the interference pattern
exp(—ir/4)k,z exp{—[(1 — D)k,R + d*/w?]}
16y2R? F, - iF,

7 =i (ky/R)%x?
XA T o F = iFy)

(2]

'Fl - iFZ

d 0 2
_z [(ng + ;)—2> - LFZy:I

F, - iF,

Tz, y,2) =

(103)

Note that [T™(x, ¥, 2; @)|max = TNx, y, 2;0) and [TO(x, y,
2, D]min = TNz, , 2; 0) = 0, as expected.
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_Separating out real and imaginary parts in Egs. (101) and
(103) gives a convenient representation leading to amplitude
and phase field components as follows:

k.2 exp[—(kR + dz/ﬁ;g)]

TH(x,y,2) =
Y 16y2RAF 2 + FA)?

X exp{i[ksR - % + tan‘l(FZ/Fl)]}

X exp(z,})erfc(z;)[exp(z,?)erfe(z,)

+ exp(z;?)erfe(zy)], (104)
where
21 = lz;lexp(if),
with
ko 1, T
|24l = W’ 0y = Etan (Fy/Fy) — T
(105)
also
25 = |2,lexp(if,),
with
= (F2 + F A2 ,
2(F,% + FHY

02 = 1/2 tan_l(Fz/Fl) - tan_l(F4/F3), (106)

where we defined

k
F3(x,y, z; d)E%y_i)_i" (107)
ksy
F4(x7 Y, Z) = R ¢ (108)

Finally, we obtain

23 = |z,| exp(ifsy),

with
I l (F52 + F42)1/2
2o = ———————»
3 2( F12 + F22)1/4
05 = Yy tan~ (F,/F;) — tan™(F,/F5), (109)
where
_ky od
Fy(x,y,2;d) = 7T = (110)
If we set
Wi(x) = Z(x2) = exp(x®)erfc(x), (111)
then the amplitude of the field is found to be
k2N IN,|® 2
T, 3, 2)| = ——o L2 exp[— (ksR + d—)]
16J2RY(F* + F22)1/ 2 w
(112)
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where
IN,| = {[Re W(2))]? + [Im W(z,)]%2 (113a)

and

IN,|® ={[Re W(z,) + Re W(z,)]?

+ [Im W(z,) + Im W(z,)]3Y2  (113b)

The phase of the field can then be written as

T (x, y, 2) = — % + kR + tan”Y(F/F)) + ¢, + 9,

(114)

where

Im W(z,)
= -1
¢, = tan [——Re W(zl)] (115a)
and
Im W(z,) & Im W(z,)
(#) = tqn—1 2 3.

¢ = tan [Re W(z,) £ Re W(z3)] (115b)

For computational purposes, series expressions for
Re W(z;) and Im W(z;) can be found readily in the appendix
of Ref. 20 and thus are not repeated here.

7. CONCLUSIONS

In this paper we have developed a photothermal-wave dif-
fraction formalism describing the temperature field depen-
dence on arbitrary diffracting aperture geometries. Special
cases of experimental importance were then examined in
detail, including source geometries leading to constructive or
destructive thermal-wave interference. It is expected that
the present theory will help to quantify experimental obser-
vations encountered in photothermal-wave imaging and in-
terferometry.

APPENDIX A: POLAR-COORDINATE
REPRESENTATION OF TWO-DIMENSIONAL
SPATIAL LAPLACE TRANSFORM (LAPLACE-
BESSEL. TRANSFORM)

Let G(ss, 5y) = f§ So &(x, y)exp[—(s.x + s,y)]dxdy be the
two-dimensional spatial Laplace transform of g(x, y).2 Us-
ing polar coordinates,

x =rcosf, y=rsind,
8, = p cos ¢, s, = psin g, (A1)
- ‘and assuming circular symmetry for the function g,

g(x;y) _)g(r: 0) =gR(r)y (A2)

yields

_ [ 1exp(-—rpt)
G(p, 9) = G(p) = L gr(r)rdr L mdt

-z L " gy (or)rdr. (A3)
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Finally, use of relations (31) (see also Ref. 11, p. 952, entry
8.406.2) gives the circularly symmetric Laplace-Bessel
transform,

G =1 f " gn(y(Eiprrdr, (A4)
0

with (+i) used if —7 < arg(p) < «/2 and with (—i) used if /2
<arg(p) <. Symbolically one may write

*Lglgr(] = G(p). (A5)

Note that G(p) is defined as one fourth of the polar Fourier—
Bessel (or Hankel) transform.2! This is so because only one
quarter of the plane is pertinent to the two-dimensional
Laplace transformation: 0 < ¢ < /2.

APPENDIX B: PHOTOTHERMAL-FIELD
INTEGRATION EFFECTS CAUSED BY A
DETECTOR OF INFINITE APERTURE

For simplicity we will assume that the diffraction field is
generated by a photothermal source of the spatially impul-
sive type; then, according to Eq. (60),

exp(in/4)z7 exp[~(1 — i)kR] .
4iX, R2

T(r ) = [ ®1)
A detector of active area A placed in contact with the sample
at a depth z = 2(, which may indicate the thickness of the
sample, will produce an integrated signal of the form

Stetetor = L f T(r, 2)dA. (B2)
If we let A — «, then Eqs. (B1) and (B2) yield
Sdetector(20) = w I(zy), (B3)
where
© -1 —; 21/2
g [ SR

j“’ exp{—(1 — D)kyzo[l + (ro/zo)z]lm}

=1
2 0 1+(r0/20)2

)

r Odr 0°

(B4)

This integral can be evaluated explicitly by using the rela-
tion (see Ref. 12, p. 83, entry 30)

" x ¥expliz(L+xHYY | w2\ (1 w
L o = (2) r( : V>H, @),

Im(z) >0, Re(v) < 1/2, (B5)
with
H,,m(z) =d,(2) +iY,(2)
= L [J_,(z) = J,(2)exp(—iv7)]. (B6)
i sin(ywr)

J,and Y, are Bessel and Neumann functions, respectively, of
order ». If welet v = —1/2, then relations (B5) give
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® . 2y1/2 1/2
qw = [ AL v - (3" e,

BT7)

where, from Eq. (B6) and properties of the Bessel function,
it can be shown that

2 \1/2 .
H_i (=) = (;) e, (B8)
Thus we conclude that
Q) ==~ (B9)

Now, by integrating Eq. (B9) and taking Eq. (B7) into ac-
count, we obtain

[ @ty = [ | explivea + 210y

_ . ° xdx , /21
=i L oy {expliv(1 + yH14,7).  (B10)

We must note that y is a complex argument of the form y; +
iys with y5 > 0. Under this condition, we have

lim exp[iy(1 + 22)Y?] =0, (B11)
yz—bw
and Eq. (B10) gives
® . 2y1/2 © iy
] E’ill[‘_?(l_"'zx)_]xdx = _[ e__dy. (B12)
0 1+x z Y

On setting x = ro/zg in Eq. (B4), we obtain

© —(1 - Dk2(1+ 2\1/2
I(zp) = j exp[~(1 i) 322( %) ]xdx
0 1+x

and, according to Eq. (B12) (see also Ref. 22, p. 134, entry 6),

© iy
I(zg) = — J e—dy = —Ei[i(1 + D)k,z]
(1+Dkzy Y

= E,[(1 — D)k zy). (B13)

Equation (B13) is a convenient representation of the ex-
ponential integral function (see Ref. 23, p. 229, entry 5.1.11).
For computational purposes the following series expansion
is useful:

E(z)=-y—Inz— ZLT;II)?Z—: larg(z)l <m,
n=1 :

~ = 0.5772156649 (Euler’s constant). (B14)

The detector signal will thus have the form

/4 .
Sasscore) = Z2 (2B [0 - Dbz, (BLD)
For large values of &z, i.e., for thermally thick solids consis-
tent with assumption (46), the asymptotic expansion of E;
prevails?3:
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e—Z
EI(Z) ~ -z—: (B16)
and the detector signal can be simplified to

Suetector(@o > k™) = —— exp[~(1 — i)kyzg),  (B17)

42

or, if we take the real part,

- 1
Sgetector(Zo > ks 1) & :15 exp(—kyzg)cos(kzy).  (B18)

Relation (B18) is, in fact, the one-dimensional solution to
the thermal-wave problem. It is valid for a semi-infinite
solid4 and gives the value of the harmonic temperature field
at depth zp. Inphysical terms, this argument shows that, far
from the sample surface, the average thermal-wave field
reduces to one-dimensional behavior with a total loss of
transverse resolution.
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