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Photothermal-wave diffraction and interference in
condensed media: experimental evidence in aluminum
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Thermal-wave fields have been optically generated and measured, using spatially resolved scanning photopyroelec-

tric detection. Both single laser-beam diffraction profiles and thermal-wave patterns from two laser beams,

interfering coherently in a manner analogous to Young's optical-wave experiment, have been produced. The

diffraction and interference images have further been shown to be in excellent qualitative agreement with a Laplace

thermal-wave propagation formalism, which treats thermal-wave diffraction in the small-aperture approximation.
A mechanism for quantitative agreement was obtained after the finite size of the probing metal detector tip was

taken into account in mapping thermal-wave fields.

1. INTRODUCTION

The peculiar nature of thermal waves as spatially heavily
damped pseudowaves' is mathematically the result of a spe-
cific, Helmholtz wavelike form of the Fourier heat conduc-
tion equation. This equation holds instead of a proper
Helmholtz wave equation and predicts the propagation of
exponentially damped plane thermal waves in the bulk of a
condensed phase medium. In a general three-dimensional
(3-D) theoretical framework, such pseudowaves have been
shown2 to possess diffractive and interference characteris-
tics. A diffraction integral has been established in the ex-
perimentally justifiable limit of a small-aperture (SA) ap-
proximation, which permits analytical treatments of ther-
mal-wave fields generated by arbitrary aperture functions.
The field functions can thus be obtained as spatial convolu-
tions of the aperture function with the thermal-wave spatial
impulse response by using Laplace thermal-wave physics (in
analogy to Fourier optics). It is important to note that the
reason that a spatial Laplace transform formalism, rather
than a Fourier transform approach, is appropriate to ther-
mal-wave field propagation and diffraction is that the ther-
mal-wave vector (and wave number) is complex, rotated 45
deg with respect to proper (real) wave vectors in the complex
plane. This results in a diffraction integral in the SA ap-
proximation, which can be readily identified as a two-dimen-
sional spatial Laplace transform. 2

Recently a three-dimensional, spatial Fourier-transform-
based formalism of the heat conduction equation has been
used to obtain solutions for propagating thermal-wave fields
in thermally isotropic3 and anisotropic 4 solid media, gener-
ated by circularly symmetric optical sources, such as Gauss-
ian laser beams. That type of treatment results in a
straightforward solution for the thermal-wave fields in-
duced by the (assumed) circularly symmetric photothermal
aperture, through numerical integration of the Hankel
transform of the field across a cross-sectional plane perpen-
dicular to the direction of propagation. It does not, howev-
er, comprise a proper diffraction integral, which corresponds

to the particular pseudowave form of the Helmholtz-like
thermal-wave equation 2 and can conveniently give explicit
analytical expressions for the thermal-wave field functions
generated by arbitrary aperture functions. This important
feature, which eliminates the requirement for circularly
symmetric apertures, is vital to the description of composite
fields generated through spatially interfering sources2 from
which circular symmetry cannot be obtained. Nevertheless,
the Fourier-Bessel transformation-based approach has been
successful in yielding reasonable theoretical predictions for
narrow Gaussian source apertures corresponding to tightly
focused laser beams.

In this paper the theoretical prediction2 for the diffraction
field generated from a photothermal aperture function, as
well as the predictions2 for the interference fields resulting
from two photothermal apertures operating coherently (in
phase) or anticoherently (out of phase), has been tested
experimentally. The effects of the finite size of the thermal-
wave probe tip have also been treated theoretically, and the
resulting broadening of the field function has been shown to
be in good agreement with experimental spatial profiles of
the thermal-wave field. This treatment thus accounts for
observed quantitative discrepancies between theory and ex-
periment and identifies the probe tip size as an important
practical factor limiting resolution in imaging applications.

2. THEORETICAL BACKGROUND AND
NUMERICAL SIMULATIONS

Diffraction
The geometry of laser-beam-generated thermal-wave propa-
gation in 3-D space is shown in Fig. 1. Under the condition
of the SA approximation, a convenient representation of the
diffraction integral can be written that encompasses all field
locations on the observation plane, such that ro > p in Fig. 1,
where (ro, To) - (x, y) are observation plane variables and
(p, 4I1) - (t, n) are aperture plane variables. Experimental-
ly, when focused laser beams are used, the SA approximation
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Fig. 1. Photothermal-wave diffraction geometry.

is valid for essentially all field positions outside the symme-
try axis of the exciting laser beam. 2 The diffraction integral
then becomes

T(r0,z) = exp(i7r/4) (z) exp[-(1 - i)ksR]
T~ro, z)k= R K(r0 , z),

where

K(ro, z) 2LBfTo(p)exp[-(s/2r )p2 ]ji=5.

and

k(rO, z) = - r + kJ? + +2 + (F2F),
4 + 2(F1 2 + F2

2) a

where

F,(R, w) -=1 + 8(')
1' w2 2R

(8)

(9)

aAMPLITUDE (X 1 ) (ARB.UNITS)

2.000

(1)

(2)

In Eqs. (1) and (2) a circularly symmetric aperture function
has been assumed. T(ro, z) is the temperature field at field
location

2.000

(3)

To(p) is the optically generated photothermal source func-
tion on the aperture plane, assuming a high optical absorp-
tion coefficient and thus surface absorption only (e.g., visible
radiation incident upon a blackened metal surface-aperture
plane). In Eq. (1) Xt is the thermal wavelength at angular
modulation frequency w:

Xt(w) = 27r(a/w) 1 /2, (4a)

with a the sample thermal diffusivity. k is the thermal
diffusion coefficient:

2. ooOL
2 .000

Fig. 2. Theoretical simulation of thermal-wave diffraction field
generated by a w = 300-gm laser beam impinging upon the surface (z
= 0) of a semi-infinite aluminum sample (aAl = 0.82 cm 2/sec). The
temperature field is shown at z = 1.5 mm. Modulation frequency 20
Hz: a, amplitude; b, phase.

AMPLITUDE (X 10 ) (ARB.UNITS)

In Eq. (2) K(ro, z) stands for the two-dimensional spatial
Laplace-Bessel transform of the function within the braces,2

to be evaluated at p = s 2r exp(-i'r/4)fro, where fro is a polar
thermal-wave spatial frequency:

fro ro/XtR. (5)

For the TEMoo mode of a Gaussian laser beam, the aper-
ture profile of unit magnitude is given by

T 0(p) = exp(-p 2/W2), (6)

where w is the beam waist. Equations (1) and (2) then yield
the complex diffraction photothermal-wave temperature
field, which can be written in terms of its experimentally
relevant components, amplitude and phase, as follows2 :

IT(r,, z)l - 6 [R2(FF2 + F 2)1/2 +

X { [k R + (k,/R)2F2 ,.2 (7)
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Fig. 3. Same as in Fig. 2 but for modulation frequency 100 Hz.

Aperture
Plane

Incident V
Optical 

Field .
1:::.......

--- *..

R = (X2 + y2 + z2)1/2 = (r0
2 + z2)1/2.

kW = (/2)1/2. (4b)

..'.:..' ... I.:":v

A. Mandelis and K. F. Leung

::::::.: :-:.:R Z.

:: 

V.1-'-1-'1-_'-13/.

// NZ



A. Mandelis and K. F. Leung188 J. Opt. Soc. Am. A/Vol. 8, No. 1/January 1991

and

(10)= kS(w)
-2()~ 2R 

Figures 2 and 3 show numerical results obtained using Eqs.
(7) and (8) with an assumed exciting Gaussian laser beam of
w = 300 /Am located at the origin (D = = 0). The simula-
tions of Figs. 2 and 3 assume an aluminum medium with
thermal diffusivity5 of 0.82 cm2/sec and laser-beam irradi-
ance modulation frequencies of 20 and 100 Hz, respectively.
These frequencies were chosen to satisfy the thermally thick
limit

6

k,(w)R >> 1 (11)

on the observation plane z = 1.5 mm. This consideration is
important, for it is in this limit that Eq. (1) is strictly valid.2

The thermally thin case6 may also be easily handled after
Eq. (2) is slightly modified by multiplying the expression
To(p) within the braces by the factor2

1 + exp(ir/4) 1 + (ro P (12)

A comparison of Figs. 2 and 3 shows a steeper decay of the
diffraction amplitude in the radial direction at 100 Hz, an
expected feature leading to the enhancement of spatial reso-
lution. 7'8 The resolution increase, however, is accompanied
by a decrease in the absolute magnitude of the field function,
in agreement with previous reports.3 6 The phase profiles
are broader than the respective amplitudes and indicate
increasing lags with increasing radial distance from the
source, as expected. 7 The net phase lag at a given coordi-
nate point is always greater in the 100-Hz case (Fig. 3b) and
is also in agreement with the photothermal origin of the field
function.9

Figure 4 indicates that the effect of the exciting laser-
beam waist size is quite small in the 30- to 800 -Mm range.
This result, in turn, indicates that the resolution of the
diffraction field is only weakly dependent on the laser-beam
size in the above range and is a guide to the design of the
optical part of the experimental setup.

2d
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Fig. 5. Photothermal-wave interference geometry on the aperture
plane (D, n).

Interference
The geometry of thermal-wave interference fields generated
by two laser beams incident upon a material surface, a dis-
tance 2d from each other along the q axis of the aperture
plane, is shown in Fig. 5. Because circular symmetry is
broken when two photothermal sources are considered, a
Cartesian coordinate representation (x, y, z) of the superpo-
sition thermal-wave field becomes necessary,2 thus forcing
one to abandon the simpler polar coordinate formulation (ro,
z). Under these conditions the diffraction integral, Eq. (1),
may be written in Cartesian coordinates 2 :

T(x, yz) =exp(iir/4) (z) exp[-(l - i)kR]Q( )
4ix, kR R Qxyz)

(13)

where

Q(x, y, z) 2LjT 0(r, n)exp[-(sxP2 /2x)]exp[-(sy 2/2Y]I.

(14)

In Eqs. (13) and (14) Q(x, y, z) is the two-dimensional spatial
Laplace transform of T&(r, q) to be evaluated at sx = 27r
exp(-i7r/4)f, and sy = 27r exp(-i7r/4)fy, where fX and fy are
Cartesian spatial frequencies:
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Fig. 4. Theoretical simulation of the normalized thermal-wave dif-
fraction field of Fig. 2 generated with laser-beam spot sizes a, w = 30
gm and b, w = 800 gm.

x -xR' tY-- AR- (15)

Assuming that two exciting laser beams of unit irradiance
have Gaussian TEMoo profiles of equal spatial spot sizes (w,
= w ), and also assuming in-phase operation (construc-
tive interference indicated by the +) or out-of-phase opera-
tion (destructive interference indicated by the -), we obtain
source functions (see Fig. 5):

T0 +(, w) = expf-[D2 + (-

: expl-[J2 + (77 + d)2]/w2 . (16)

Now insertion of Eq. (16) into Eq. (14) yields complex
expressions 2 for the temperature field in either case of pho-
tothermal-wave interference. These expressions can also be
reduced to convenient amplitude and phase components as
follows

2
:

([,47-d)
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IT("(x, y, z)I =
165R 2(F,2 + F22)1/2 exp[-(ksR + d'/w')]

(17)

and

[Nj- {[Re W(z1)]2 + [Im W(z1 )12 112, (18)

with

IN2(-I f[Re W(z2) + Re W(Z3) 2

+ [Im W(z2) + Im W(z3)]211/ 2. (19)

In Eqs. (18) and (19) the complex function definitions were
made:

W(z) exp(z 2)erfc(z),

Zj- =zjlexp(ij), i = 1,2,3,

(20)

(21)

with

izi = kIxI
R(F1 2 + F22)1/4

also

01 = I tan1 '(F2/F1 ) - r;
2 ~~4

(F3
2

+ F4
2
)
1
/2

2(F, 2
+ F22)1/4

02 = 1/2 tan-'(F2/F) - tan'(F 4 /F3),

where we have defined

F3(x, y, z; d) kY 2d
R w

F4(x, yz) = k y

Finally,
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Fig. 6. Theoretical simulations of thermal-wave interference field generated by two in-phase modulated laser beams of equal irradiances
impinging upon the surface (z = 0) of a semi-infinite aluminum sample. Beam waists are 300 /Am each, and the temperature field is shown at z =
1.5 mm: a, 2d = 0.0 mm, f = 18 Hz, amplitude; b, phase of a; c, 2d = 1.8 mm, f = 18 Hz, amplitude; d, phase of c; e, 2d = 1.8 mm, f = 100 Hz,
amplitude; f, phase of e.
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(F5
2 + F4

2)1/2

IZ31 = 2(F 2 + F2
2)1/4'

(27)

03 = /2 tan-'(F 2/Fl) - tan-(F4 /F5 ), (28)

where

k~y 2d
F,(x, , z; d ) -+ 2 (29)

R w2

The phase of the interference thermal-wave field can then
be written as

q(fi)(x, y, z) =- + kSR + tan'1(F2/F1) + 01 + 02 W
4

(30)

where

JIM W(zj)_
01 tanF Re W(zl) (31)

and

[Im W(z 2) Im W(z3)1
=tan-LRe W(z2) 4 Re W(z3) J (32)

For computational purposes, series expressions for
Re W(zj) and Im W(zj) can be found readily in Appendix A.

Figure 6 shows a series of simulations of the constructive
interference field generated by a two-laser geometry as in
Fig. 5. The spatial structure of thermal-wave field ampli-
tudes and of the associated phases is depicted at a depth of
1.5 mm from the surface. In Figs. 6a and 6b the two optical
beams are exactly superposed on each other (d = 0 in Fig. 5).
Both beams are modulated in phase at f = 18 Hz. As a result
the interference pattern shown is very similar to the single-
beam diffraction pattern of Fig. 2 in both amplitude and
phase channels. The maximum amplitude of the interfer-
ence pattern (Fig. 6a) is, in fact, twice as large as that of the
diffraction pattern from a single laser source at 18 Hz, as
expected from the additive nature of the components in
IN2(+)l for d = 0 [Eq. (19)] and physically from the indistin-
guishability between two superimposed unit-irradiance la-

AMPLITUDE (X 10' ) (ARB.UNITS)
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Fig. 7. Theoretical simulations of thermal-wave interference field
000 generated by two out-of-phase modulated laser beams of equal

irradiances impinging upon the surface (z = 0) of the semi-infinite
aluminum sample of Fig. 6. The beam waists are 300 jm each, and
the temperature field is shown at z = 1.5 mm and f = 18 Hz: a, 2d =
0.0 mm, amplitude; b, 2d = 0.6 mm, amplitude; c, phase of b; d, 2d =
1.8 mm, amplitude; e, phase of d.
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ser sources modulated in phase and a single laser source at
twice the irradiance. If the in-phase laser sources are sepa-
rated by 2d = 1.8 mm, then Figs. 6c and 6d show the interfer-
ence patterns as two maxima of equal magnitude along the
line joining the intersection points of the laser beams with
the surface (line OP in Fig. 5). An increase in the modula-
tion frequency (Fig. 6e) enhances the resolution and accen-
tuates the thermal-wave field maxima, as expected. The
amplitude maxima in Figs. 6c and 6e are located at positions
different from those of the exciting optical apertures, a char-
acteristic of the superposition nature of the interferometric
thermal-wave field. This phenomenon is entirely analogous
to the positions of constructive interference fringes in
Young's well-known optical interferometric experiment. It
should also be noticed that the maximum amplitudes of the
constructive interference fields in Fig. 6 decrease with in-
creased separation. This is expected, since, in the limit of
large separations (compared with the thermal diffusion
length), the interaction between the two thermal-wave fields
will become negligible. The interference field will then ap-
pear as two independent lobes such as the one shown in Fig.
2a. This trend is corroborated by the phase interferograms
of Figs. 6b, 6d, and 6f. Two phase-lag minima appear in the
locations of the exciting laser beams in Figs. 6d and 6f at the
same level; this is indicative of the essential decoupling of
the two thermal-wave fields even at a separation distance of
1.8 mm, which is, however, large compared with the thermal
diffusion length at 18 Hz in aluminum.

Figure 7 presents theoretical simulations of ITH)(x, y, z)I
and (-)(x, y, z) in a geometry completely analogous to that
of Fig. 6 but for out-of-phase laser-beam modulation. In
Fig. 7a the spatial superposition of the two laser beams (2d =
0) results in the complete annihilation of the two interfering
thermal-wave fields in the limit of total destructive interfer-
ence. Similarly, the phase shift is undefined everywhere, as
is the case with a zero-field phase. Numerically this appears
as a 0/0 operation. This observation was first made experi-
mentally in a nonscanned (i.e., spatially stationary) mode by
Lehto et al.,10 using an out-of-phase alternating beam meth-
od in photothermal microscopic studies of plasma-sprayed
tungsten carbide coatings on stainless-steel plates. As the
two sources are separated out, a finite interference field
appears with a minimum (zero value) halfway between the
sources, Fig. 7b. The amplitude maxima are located beyond
the actual positions of the two laser sources for the same
superposition reasons as those discussed above for the con-
structive interference patterns of Figs. 6c and 6e. The ther-
mal-wave field phase (Fig. 7c) shows a steep steplike struc-
ture halfway between the laser sources with a shift A of
-175°, i.e., of the order of r. This is indicative of the
domination of the phase field by the phase of each source in
the immediate neighborhood of the source. Figure 7c is
useful as a visual measure of the spatial extent of the influ-
ence of each laser source at locations where the other source
starts making a contribution. Similar observations can be
made about the field generated by using a larger beam sepa-
ration (Figs. 7d and 7e). A comparison of the relative ampli-
tudes of the destructively interfering fields (Figs. 7a, 7b, and
7d) reveals a monotonic increase with increased separation,
unlike the constructive interference field amplitude trends
of Figs. 6a and 6c (monotonic decrease with increased sepa-
-ation). This results from the decreasing effects of interfer-

ence with increasing source separation. Increased separa-
tion tends to cancel the destructive interference between the
two thermal waves and to restore the two amplitudes toward
the values representing the amplitude from each source
alone, i.e., decoupled from the field generated by the other,
out-of-phase, source.

3. EXPERIMENT AND RESULTS

The details of the instrumentation and experimental scheme
for thermal-wave diffraction detection have been presented
elsewhere." A black-box type of description of the appara-
tus is shown in Fig. 8. The exciting beams were supplied
from a Hughes Aircraft He-Ne laser delivering -10 mW of
power at 632.8 nm. The detector element was a 28-,am-thick
polyvinylidene fluoride (PVDF) pyroelectric film with an
upper (grounded) electrode made of standard Pennwalt Al-
Ni layers (200-A Ni covered with 600-A Al).' 2 The lower
surface of the PVDF film was not electroded and was in
contact with a brass pin of 0.8-mm circular tip diameter. In
this arrangement the tip was able to monitor local charge
changes on the PVDF surface that resulted from the photo-
pyroelectric (P2E) effect."",13 Conventional pyroelectric de-
tection of thermal waves used in a scanned, spatially inte-
grated detection mode was reported by Luukkala' 4 and by
Petts and Wikramasinghe.' 5 A cylindrical aluminum sam-
ple (diameter D = 1 cm, thickness L = 1.5 mm) was mounted
upon the upper flat surface of the PVDF PE detector, and
intimate contact was ensured. At the lowest modulation
frequency (f = 18 Hz) of our experiments, the thermal diffu-
sion length in aluminum was5

,4M = 18 Hz) = [k8(18 Hz)]-l = 1.2 mm << D (33)

so that the sample could be adequately approximated by a

Fig. 8. Schematic diagram of apparatus used for photothermal-
wave diffraction detection: A, He-Ne laser; B, mechanical chopper;
C, lens; D, aluminum sample; E, PVDF film; F, metal shield; G,
brass tip; H, preamplifier; J lock-in analyzer; K, quadrature of
signal to channel 1 of analog-to-digital converter; L, in-phase of
signal to channel 0 of analog-to-digital converter; M, PDP/11 micro-
computer.
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(1 b exp(-2k2 L) 0.97 X exp(-2.5) = 7.96 X 10-2,

(34)

where

b kPvDF\IAi/kA1 aPVDF

is an interfacial thermal-wave reflection coefficient, with5

kAl = 2.008 X 102 W/m K, aA1 = 8.2 X 10-5 m2/sec, kPVDF =

0.13 W/m K, aPVDF = 5.4 X 10-8 m2/sec.' 2 From the good
agreement between the theoretical results for semi-infinite-
ly thick solids and the experimental results on finite-thick-

44D
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Fig. 9. Schematic diagrams of optical circuit used for photother-
mal-wave interference detection. Circuit replaces parts A-C of Fig.
8. B.S.'s, beam splitters; L's, lenses; M's, mirrors; D's, aluminum
samples; B's, mechanical choppers; A, in-phase modulation; B, out-
of-phase modulation.
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Fig. 10. Normalized experimental thermal-wave diffraction pro-
files along the (meridian) plane defined by the scanning laser beam
and the probe pin. The patterns were generated with a beam waist/
aperture of (a) 0.8 mm and (b) 0.03 mm. Modulation frequency f =
20 Hz.

AMPLITUDE (X IO-' ) V.

radially semi-infinite aluminum solid. Furthermore, the
condition Ms(t)max < L ensured operation in the thermally
thick regime, according to relation (11). In principle, the
contributions to the signal from reflected (interfering) ther-
mal waves at the back surface of the sample must be taken
into consideration in interpreting the results. 3 This is also
the essence of the thermal-wave interference effect de-
scribed earlier by Bennett and Patty.' 6 That effect is quite
different in nature from the present interferometry; it refers
to a one-dimensional depth interference manifested in the
modulation-frequency dependence of the thermal-wave sig-
nal. That interference, albeit correctly defined for a spatial-
ly integrating detection geometry, cannot lead to the spatial-
ly resolved interference phenomena reported here. For
backdetection (i.e., transmission-mode) thermal-wave tech-
niques, heavily damped thermal-wave fields may be ob-
served at thicknesses approximately five times the thermal
diffusion length.' 7 In the present geometry a contribution
from twice-reflected thermal waves might be expected at f =
18 Hz modulation, corresponding to one reflection at the
sample's back surface followed by one more reflection at the
front surface. The magnitude of such an added contribu-
tion to the thermal-wave field generated from the first trans-
mission at the back would be decreased by a factor' 8

a

0. 
-2 .

bP11ASF (X 10 ) DE(.

-1 .1

-2.'

-3.
-2.
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2.000-2.000

Fig. 11. Experimental diffraction patterns generated by a w =300-
,um laser beam and a 1.5-mm-thick aluminum sample. Modulation
frequency 20 Hz: a, amplitude; b, phase. Compare with the theo-
retical prediction patterns of Fig. 2.
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1.5001.500

1.500
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X(mm) Y(mni) X(mm)

2.250 1L. 00 1.950-1.500

Fig. 12. Experimental constructive interference patterns generated by a geometry identical to that resulting in the theoretical patterns of Fig.
6. Modulation frequency 18 Hz; beam waists 300 um; a, 2d = 0.6-mm amplitude; b, phase of a; c, 2d = 1.2-mm amplitude; d, phase of c; e, 2d =2.4-mm-amplitude; f, phase of e. Compare with trends in Fig. 6.

ness aluminum shown below, it was concluded a posteriori
that such a reflected thermal-wave contribution to our spa-
tial diffraction and interference signals was essentially negli-
gible and that the experimental scans could be adequately
described by the semi-infinite thickness model of Section 2
above. The fact that the aluminum sample used in this
study was much thicker than the PVDF detector ensured19

that the transducer would operate as a thermometer, pro-
ducing a pyroelectric charge proportional to the PVDF
thickness-averaged local temperature in the pyroelectric ele-
ment, which is essentially equal to the local temperature
change at the sample-transducer interface. Therefore the
P2 E signals thus obtained were found to be proportional to
the local values of the thermal-wave field at the probe pin
position over the plane of the sample's back surface.

Figure 9 shows modifications made to parts B and C of Fig.
8 for dual laser-beam incidence on sample D and in-phase
(Fig. 9A) and out-of-phase (Fig. 9B) irradiance modulation.
Figure 9A is a variant of an equivalent experimental method

for local in-phase thermal-wave field sampling illustrated by
Busse and Renk. 20 In their experiment a Golay detector was
used to monitor local backsurface infrared radiation emis-
sion resulting from in-phase modulation of two laser beams
heating the front surface of the sample. In the present
experiments the metallic pin (Fig. 8) was used in lieu of the
infrared sensor. In all cases a 10-mW He-Ne laser beam was
used to excite thermal waves in the aluminum sample. The
beam splitter of Fig. 9 was a variable-absorbance neutral-
density filter, mounted upon a micrometer stage to produce
two laser beams of approximately equal irradiance at the
sample surface. The optical absorption coefficient of the
aluminum sample surface was further increased by a thin
film of black paint on the surface, which minimized reflec-
tions and yielded maximum photothermal signals. Scan-
ning of the laser beam(s) was performed with the probe pin
remaining stationary and in contact with the unelectroded
PVDF film surface at the center of the exposed film area.

Figure 10 shows experimental diffraction profiles with the

A. Mandelis and K. F. Leung
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aperture size (laser-beam waist) as a parameter. The sizes
were chosen to be 0.03 and 0.8 mm to permit a direct compar-
ison with the simulations of Fig. 4. General qualitative
agreement of both sets of profiles is observed, with the ex-
perimental diffraction profile of the 0.8-mm aperture being
slightly more broadened than that of the 0.03-mm aperture.
This trend is in agreement with the theoretical prediction of
little sensitivity to the aperture size in the range w << R,
covering both aperture values in Figs. 4 and 10.

Figure 11 shows entire thermal-wave diffraction patterns
(amplitude and phase) generated when a 0.3-mm laser-beam
is scanned on the aluminum sample surface. The experi-
mental parameters chosen were identical to those chosen for
the theoretical simulations of Fig. 2, and thus a direct com-
parison is possible. The qualitative agreement (overall spa-
tial distribution profiles-morphologies of amplitude and
phase images) between Figs. 2 and 11 is excellent and shows

that the semi-finite solid approximation assumed in the
theoretical formulation2 is essentially adequate for analyz-
ing diffraction results from our 1.5-mm-thick sample.

Figure 12 shows experimental results of constructive in-
terference patterns in the geometry of Figs. 5 and 9A. For
this experiment the 2d = 0.0-mm and 2d = 0.6-mm interfer-
ence fields were obtained by a slight tilt of mirror M3 to,
render the two beams coincident or nearly so. No signifi-
cant disturbance of the (measured) Gaussian profile of the
beams results from this operation. The amplitude sequence
in Figs. 12a, 12c, and 12e shows a monotonic maximum
amplitude decrease with increasing separation, as predicted
and discussed in conjunction with Fig. 6. Both amplitude
and phase shapes display trends with increasing separation
qualitatively similar to those of Fig. 6, with the individual
source contributions to the thermal-wave interference pat-
tern becoming resolvable at a minimum distance of 1.8 + 0.2

eAMPLITUDE {X 10' V.

a2.6i

8. 00

ANiPLITUDE IX

C
PHASE X 02 )

/} 8. 000

8.000

8.000

;> 8.000

I 9
PHASE (X 02 ) DEC.

-1.8878 '8 o
-1.800 ~ ~ ~ ~ ~ ~ ~ ~~~~.0

06.50
0.00 Y(mm)
X(mm) [

1.800 .00

8.000 Fig. 13. Experimental destructive interference patterns generated
by a geometry identical to the one resulting in the theoretical pat-
terns of Fig. 7. Modulation frequency 18 Hz; beam waists 300 ,m; a,
2d = 0.0-mm amplitude (no measurable phase in the lock-in could
be obtained); b, 2d = 0.6-mm amplitude; c, phase of b; d, 2d = 1.8-
mm amplitude; e, phase of d; f, 2d = 2.4-mm amplitude; g, phase of f.
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mm. The interference pattern at zero laser-beam distance
is of magnitude larger than that of Fig. 12a, as expected, and
is similar to that of Figs. 2a and 2b. Therefore it is not
shown in the sequence of Fig. 12.

Figure 13 is a sequence of experimental thermal-wave
destructive interference patterns in the geometry of Figs. 5
and 9. The amplitude sequence (Figs. 13a, 13b, 13d, and
13f) shows clear evidence of complete field annihilation (de-
structive interference) with spatially overlapping sources
(Fig. 13a), becoming less effective with increasing beam sep-
aration distance. This is in excellent qualitative agreement
with the theoretical sequence of Fig. 7. The agreement
extends to field maximum amplitude increases with increas-
ing separation, a minimum halfway between the two beams,
amplitude peaks somewhat beyond the actual laser-beam
positions, and a steplike structure of the associated phases,
Figs. 13c, 13e, 13g, of AX -kr.

4. QUANTITATIVE ASPECTS AND DISCUSSION

The good qualitative agreement between the theoretical
simulations of Section 2 and the experimental results of
Section 3 demonstrates that photothermal waves exhibit
strong wavelike behavior both in diffraction through a gen-
erating small aperture and in interference when two coher-
ent or anticoherent thermal-wave fields are brought within
interaction distance. A closer look at the field profiles,
however, reveals that there is little quantitative agreement
between experiment and theory. The typical situation may
be observed, in its simplest form, in the broadening of the
experimental diffraction profiles of Fig. 10 compared with
the (supposedly identical) theoretical ones of Fig. 4. Similar
broadening effects may be seen in all experimental features
of diffraction or interference and cannot be explained by our
simple theoretical model.2 The cause of this discrepancy
has been sought in the finite size of the brass probe tip,
which was used to collect all data. On the contrary, all
theoretical simulations assumed an infinitesimal size probe,
providing thermal-wave field values at particular coordinate
points along the cross-sectional (x, y) observation plane (Fig.
1) in the sample. The diffraction field amplitude [Eq. (7)]
was chosen as a suitable expression for study of the integrat-
ing effects of the probe pin size. In the case of our 1.5-mm-
thick Al sample at f = 18-Hz modulation frequency and w =
3 0 0-Am optical aperture, the following simplifications occur:

k,(w) ~~~! 28 cm-
2R max 2z

and

11w 2 = 1.1 X 103 cm-2 ,

so that

-2> k,(18 Hz)F, Aw) _W > 2R =F 2(R).

(35)

(36)

(37)

In view of relation (37), Eq. (7) may be simplified:

IT(r0, z)I 1, exp{-k 8 R[1 + ( 2 )2 (Ro)2D

Now, since ks/2RImax A 28 cm- 2, w2 9 X 10-4 cm 2, and roiR
< 1, we may write(s kW2 2 2

1 r2
2R ) 6r-) <6.35 X 10-4 << 1 (for aluminum). (39)

Under these conditions, relation (38) may be written as

I ~r, ) s- exp(-k8 R)IT(r0,z)V tC R 

where C is a constant independent of R:

k zw 2

C= 16
16~_

(40)

(41)

The geometry of a finite-sized tip of radius rl is shown in Fig.
14. The variable r indicates the position of a coordinate
point on the surface of the pin detector, a distance rl from
the pin symmetry axis 0'. The average value of the thermal-
wave field over the pin cross-sectional area is

(T(ro, z; r)) = - | d IT(r0 , z)lrdr,

where (Fig. 14)

rmax(O) = (r0
2 + r1

2 - 2r0 r1 cos 0)1/2

and

A = A |ma rdr = r2
O rO

(42)

(43)

(44)

is the cross-sectional area of the pin. Use of Eq. (3) and
relation (40), with a change of variables, and the constancy
of z along the (x, y) plane yield

(T(r0, z; rl)) = - dOJ exp(-kR 0 ) dR 

YO ---- ------ I I

o~~~~~~~~~~~

- ~~~~~~~I 

0I

(45)

G

Xo X

Fig. 14. Cross-sectional geometry of a sample probed with a cylin-
drical pin of radius r positioned at distance r from the, origin. In
the configuration of Fig. 8, the tip G is facing and is in contact with

(38) the unelectroded PVDF surface.
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where

Rmax() - (r0
2 + r1

2 + z2 - 2r1r0 cos 0)1/2. (46)

Equation (45) may be written in terms of the exponential
integral function (Ref. 21, p. 228, entry 5.1.1)

(T(ro, z; rl)) = A [J El(k1 R)dO - J El[ksRmax(0)]d0l

(47)

For computational purposes the following series expansion
may be used for small values of the argument (Ref. 21, p. 228,
entry 5.1.11):

1.000-

0.915-

0.830-

0.715

0.660

< 0.575

N .43

El(x) = -y - nx - (-1) xn
nn! 

n=1

I arg(x)I < r,

y = 0.5772156649 (Euler's constant). (48)

Appendix B gives the details of the mathematical develop-
ment based on Eq. (47), which leads to the analytical form
for the pin-surface-averaged thermal-wave diffraction field
amplitude [Eq. (B26)].

Computer calculations and comparisons of the expression
for (T(ro, z; rl) ) with the experimental data of curve (b) of
Fig. 10 were performed by allowing the probe tip radius r, to

SCANNING POSITION (mm)

W

cI-

.C

N

0

0.i

O.;

0.,

0.!

0.

0.:

0.

2. u2000 -1. 600 -1.200 -0.800 -0.400 0.000 0.400 0.800 1.200 1. 600 2.000

SCANNING POSITION (mm)

Fig. 15. a, Effect of finite-sized metal pin probe on the normalized thermal-wave diffraction profile of Fig. 10: triangles, experimental profile;
circles, best fit of Eq. (B26) to the experimental profile using aA1 = 0.98 cm2/sec and (rl)eff = 3.5 mm; squares, normalized theoretical profile [ex-
pression (40)]. Modulation frequency: 20 Hz. b, Same as a but with f = 100 Hz.
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vary in order to obtain the best fit. The results are shown in
Fig. 15a for 20-Hz diffraction data. Also shown in Fig. 15a is
the theoretical curve for IT(ro, z)I [relation (40)] normalized
to unity at the maximum. It can be seen that the best fit to
the 20-Hz data is obtained with an effective probe tip radius
(rl)eff = 3.5 mm and aluminum thermal diffusivity5 0.82 cm2 /
sec. Figure 15b shows the best fit of Eq. (B26) to the experi-
mental diffraction profile at 100 Hz. Again, the value of aA1

was set to 0.82 cm 2/sec, and the fit yielded the same (rl)eff =
3.5 mm, an excellent degree of self-consistency with the
value obtained from the fit to the 20-Hz data. In view of the
fact that several aluminum thermal diffusivity values have
been tabulated2 2 at room temperature, showing considerable
spread, fits of Eq. (B26) to the experimental curves were
further performed, keeping ri at its actual geometrical value
of 0.8 mm and varying aAj by +20% of its previously assumed
value.5 No good fit to the data was possible, indicating that
realistic variations of aA1 could not explain the difference
between experimental and theoretical [relation (40)] pro-
files. It thus appears that a theoretical fit to the data of our
photothermally induced diffraction field in aluminum is
possible, the finite size of the probe pin being the only pa-
rameter to which the experimental profile broadening in
Figs. 10 and 15 appears to be sensitive enough to give good
agreement between experimental and theoretical line
shapes. At this time the large discrepancy between (rl)actual
and (rl)eff is not well understood; however, it is tentatively
attributed to the contributions of stray capacitive coupling
of the (exposed) vertical pin walls to the P2E signals in the
form of extraneous electric field lines terminating on lateral
regions of the unelectroded PVDF film surface. Such excess
capacitive formation has been shown to increase the effec-
tive contact area between the PVDF detector and the con-
tacting probe pin"1 both experimentally7 and theoretically. 23

This mechanism would increase the effective pin size and is

ids. A mechanism for quantitative agreement was possible
only when the finite size of the probing metal tip wad proper-
ly taken into account as a spatial field-integrating filter. A
remaining pin-size discrepancy with the theory is likely due
to 3-D capacitive effects at the pin-PVDF film interface.

APPENDIX A: SERIES EXPANSION
REPRESENTATIONS OF THE FUNCTION W(ZJ
= exp(Z2)erfc(Z) IN THE COMPLEX DOMAIN

The complex variable Z may be written in the polar form

Z = OZle 0. (Al)

Further, the complementary error function of a complex
argument may be defined in terms of real and imaginary
parts:

erfc(Z) Re[erfc(Z)] + i Im[erfc(Z)]. (A2)

In order to evaluate W(Z) anywhere in the complex plane,
it is convenient to consider four sectors because of conver-
gence requirements for erfc(Z) (Ref. 24):

In the sectors -1/47r 0 1/47r and 3/47r S 0 S 5/47r, the erfc(Z)
converges. Separating out real and imaginary parts of W(Z)
yields

Re[W(Z)] = exp(Z12 cos 20)(cos(IZ12 sin 20)Re[erfc(Z)]

- sin(1Z1 2 sin 20)Im[erfc(Z)]j (A3)

and

Im[W(Z)] = exp(Z 2 cos 20)fsin(1Z12 sin 20)Re[erfc(Z)]

+ cos(IZI2 sin 20)Im[erfc(Z)]},

where the following representations may be used24:

(A4)

1 - (2/a/_) (1) I cos[(2n + 1)0]

n0 ~n!(2n + 1)Re[erfc(Z)] = n=O

(2/C)exp(-IZI2 cos 20) (I)n (2n - 1)!! cos[Z 2 sin 20 + (2n + 1)0]
n 2n+ 1Z1 2n+1

(Taylor)

I (A5)
(asymptotic)

f' a E lzi2n+ sin[(2n +
-(2/Vp) Z n!(2n + 1)

-(2/)exp(-IZ12 cos 20)n (-l)n
n=O

(Taylor)

(2n - 1)!! sin[1Z1 2 sin 20 + (2n + 1)01
2n+llZl 2n+l

, (A6)
(asymptotic)

currently under further investigation for a quantitative ex-
planation of the observed discrepancy.

5. CONCLUSIONS
In this paper qualitative and quantitative aspects of optical-
ly induced thermal-wave field diffraction and interference
have been investigated. Good overall qualitative agreement
was found between photopyroelectric experimental scans
from a thermally thick homogeneous aluminum sample of
finite thickness and previously developed photothermal dif-
fraction and interference theory valid for semi-infinite sol-

where

-147- < 0 S 1/47r,
3/47r 0 S %/47r.

In the sectors /4 7r S 0 S 3/47r and %7r 0 < 7/47r, the erfc(Z)
diverges. In these sectors, however, the function W(Z) itself
converges, so that the following expressions may be used:

Re[W(Z)] = Re[exp(Z2 )erfc(Z)]

and

(A7)

Im[W(Z)] = Im[exp(Z2)erfc(Z)],

Im[erfc(Z)] =
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where2 4

Re[exp(Z2)erfc Z] =

Im[exp(Z2)erfc Z] =

exp(dZl 2 cos 20)cos(IZ 2 sin 20) - (2/) > 2 IZ ' cos[(2n + 1)0]
n= (2n + 1)!!

(1/Ir) Z (_l)n (2n - 1)!! cos[(2n + 1)0]
n0 ~~2nIzl2n+l

exp(1Z12 cos 20)sin(IZ12 sin 20) - (21C7) > 2nIZI2n~' sin[(2n + 1)0]
-0 (2n + 1)!!I-(1I~) ~ -1)~(2n - 1)!!sin[(2n + 1)0]

n0 ~~2nIzI2n+l

where

'/47r < 4 r, %47r S/ 47r.

Computationally, the point IZI = 3.9 was found24 to be a good
transition point from the Taylor to the asymptotic expan-
sion, even though the exact value varies slightly for different
0's throughout the complex plane.

APPENDIX B: SERIES EXPANSION
REPRESENTATION OF THE PIN-SURFACE-
AVERAGED THERMAL-WAVE DIFFRACTION
FIELD AMPLITUDE

The photothermal Gaussian aperture function

TOM = exp(- 2 /w2) (B1)

has been shown to lead to the (approximate) diffraction
thermal-wave field of relation (40), which is valid for an
aluminum semi-infinite sample excited with a w = 0.3-mm
laser beam at f = 18 Hz:

IT(ro, z) exp(-k R) (B2)

so that the average field sensed by a cylindrical metal pin
detector is given by Eq. (47):

(T(ro, z; rj)) = A [Il(ro, z) - I2(r0, z; rl)],

where we have defined

(B3)

I,(ro, z) =_ El(ksR)dO = 27rE,(ksR) (B4)

and
27

I2(ro, z; r)- El[ksRmax(O)]dO

= 2 J El(k8Vro2 + r1
2 + z2 - 2rlr0 cos 0)dO.

so that, on setting y = ksRmax(0)X, we obtain

I2(r0, z; rl) = dx Qx,

where

Q(x) 2 J exp[-ksxRmax(0)]dO.

(B7)

(B8)

From the definition of Rmax(0) [Eq. (46)], it can be shown
that

1 RmaxdRmaxdO = rl sin 
r0r1 sin 0

(B9)

With further manipulation of Eqs. (B8) and (B9) we find
that

Q(x) = 4 j0 a [(a 2 - P2)Q(2 - b2)11/2'

where

a k,[(ro + rl)2 + z2]112

and

b - k,[(ro - r) 2 + z2]112.

Now let r = a sin q; Eq. (B10) becomes

J/2 exp(-xa sin q)sin qdq

Q q= (sin 2 q - sin2 q0 )1/2

where

q sin 1l(b/a).

Equations (B7) and (B12) yield

(B10)

(Blla)

(Bllb)

(B12)

(B13)

12(r0, z; r1) = 4 | 2 sin qdq f exp(-xa sin q) d
Jq0 (sin2 q - sin2 q0) l x

(B14)

(B5) so that a variable change to y = xa sin q finally gives the form

The integral I2(ro, z; rl) may be transformed by using the
definition of the exponential integral function

12(r0, z; rl) = 4
I/2 El(a sin q)sin qdq

Jq0 (sin 2 q - sin2 q0) 
(B15)

El[kRma(0)] =kJ Y
i m a x J~ksRmax(O) -

(B6) Expanding the function El(a sin q) according to Eq. (48) for
small values of the argument gives the series representation

(Taylor)

(A9)
(asymptotic)

(Taylor)

(A10)
(asymptotic)
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I2(ro, z; r1) = -4[2 + ( 2

+ ' (1)na! Jnb/a) 

n=1

where we have defined

Jnba - | (n2 sinn+l qdqJnYblaI m (sin 2 q - sin 2
q0 )"1

2
'

where the functions E and K are complete elliptic integrals
given in series representations by Ref. 25, p. 905, entries
8.113.1 and 8.114.1:

(B16)

(B24)

(B17)

(2m -1)!!J2 X2m-}

and

In order to obtain explicit expressions for the integrals Jn(b/
a), the following relationship (a simplified version of Ref. 25,
p. 169, entry 2.585) may be utilized:

sn+1 =n-2 2)dx- A Asin x cosx +(n -1)(1+ k)
A nk 2

X sinn x dx-(n-2) sin X dx],
A f' A

where

A- (1-k
2

sin
2

x)
1

/2.

Equation (B17) may also be written in the form

a f/ 2 sinn+1 qdq

b fq0 [(a/b)2 sin2 q - 1]11/2

n 2 3, (B18)

(B19)

K(x) _ {1 + E1 |(2;lm *)!!12 2m

L 2mm! X 

(B25)

All higher Jn functions may be evaluated explicitly by using
Eqs. (B23) and the recursion relation in Eq. (B22). Collect-
ing terms, Eqs. (B3), (B4), (B16), (B22), and (B23) give the
following analytical expression for the thermal-wave diffrac-
tion field amplitude averaged over the detection pin size:

(T(ro, z; r)) =2(In(2k a ) + kfl

2a E[1-(b/a) 2
]1/

2
} 1 (k)

2
+ a [1 + (b/a)

2
]

4 8

(B20)
- nn!(-1 [(kR) - - anJn(b/a)]). (B26)

For Eq. (B18) to be applicable to the integral in Eq. (B20), a
modification must be made according to a transformation
given by Gradshteyn and Ryzhik in Ref. 25, p. 175: A -
iV=A2. Substitution into Eq. (B18) gives the desired rela-
tion:

J sinn~1 qdq

J (k2 sin2 q - 1)1/2 =nk2 [ (k2 sin2
q - 1)1/2 sin'- 2 q cosq

+ (n- 1 )( 1 2) sin2 q -)/2 (n -2)

sinn-3 qdq1

X I (k2 sin 2q 1)I2' n 3 (B21)

Equations (B20) and (B21) may now provide a useful recur-
sion formula for Jn:

Jn(b/a) =-1(n - 1)[1 + (b/a)2 ]Jn- 2(b/a)
n

- (n - 2)(b/a)2Jn- 4 (b/a)j, n 2 5. (B22)

The first few Jn integrals may be evaluated directly by using
results found in Ref. 25, Sec. 2.548, pp. 162-175:

J1(b/a) = EI[1 - (b/a)2 ]1/21,

J2 (b/a) = 4 [1 + (b/a)2 ],4

(B23a)

(B23b)

J3 (b/a) = /3(2[1 + (b/a)2]EI[l -(b/a)2/2

- (b/a) 2KI[1 - (b/a)2 ]/21), (B23c)

and

J4 (b/a) = 4 {4 [1 + (b/a)2 ]2
- (b/a)2}, (B23d)
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