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Abstract-A general calculation of the temperature and Drude reflectance coefficients, cR,!dTand dR/dN, 
at an optical interface, has been carried out as a means of predicting certain phenomena which may occur 
when the photo-modulated optical reflectance technique is employed. For instance, the effect of an 
inhomogeneous perturbation in the complex refractive index has been carefully examined. In addition, 
the value of AR/R has been calculated explicitly in terms of the complex refractive index at normal 
incidence, and the effect of a non-normal angle of incidence has been discussed. Finally, a simulation has 
been carried out for silicon in order to examine the various mechanisms which may affect the value of 
AR for crystalline and ion-implanted samples. Overall, this paper aims to present a detailed, consistent 
methodology for determining the Drude and temperature components of the photomodulated optical 
reflectance effect. 
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1. INTRODUCTION 

In recent years there has been considerable interest in 
the materials evaluation technique known as photo- 
modulated optical reflectance (PMOR) [I]. This tech- 
nique shows promise as a means of spatially imaging 
the near-surface thermal and opto-electronic prop- 
erties of solids, with special emphasis on semi- 
conductors. The basis for this method is as follows: 
When a solid is illuminated (pumped) with intensity- 
modulated light, its optical properties are periodically 
modulated by the absorption of the incident light; for 
instance, the variation of the complex refractive index 
results in a perturbation of the sample reflectance, 
which can be monitored with a second (probe) beam. 
As Opsal et al. [l] have pointed out, for the super- 
bandgap pumping of semiconductor samples, at 
probe wavelengths distant from any sample ‘critical 
points’ [2], the two main mechanisms responsible 
for the reflectance variation are the temperature and 
free carrier (Drude) effects; the electric field (Franz- 
Keldysh) effect [2] is expected to be significant only 
near sample critical points, and the band-filling effect 
[3] is only important near the fundamental gap. 
Under conditions where the temperature and Drude 
effects dominate, the following elementary expression 
can be written for AR, the variation in optical 
reflectance R : 

AR=gAN+gAl-, 

or 

AR = AR, + AR,, 

where N is the free carrier density, T is temperature, 
and R is a function of the complex refractive index, 
ri = n + ik, and the angle of incidence, 8. 

In order to determine AR we must evaluate AT and 

AN, the periodic temperature and free carrier density 
fluctuations, plus ZR/C?T and dR/dN, the temperature 
and Drude reflectance coefficients, respectively. The 
calculation of AT and AN is a well-established pro- 
cedure, and simply involves the solution of the heat 
and carrier diffusion equations. Likewise, 2RiCT 

has been measured for silicon [4] at quite a few 
wavelengths; also, as is well known, a theoretical 
expression can be obtained for dR/dN using the 
Drude model. 

The calculation of AR is complicated somewhat 
by the fact that the probe beam penetrates a finite 
distance into the sample, within which there are 
inhomogeneous AT and AN fields. This problem has 
already been addressed by Opsal et al. [I], but we will 
provide alternate relations which facilitate numerical 
analysis. We will also examine the general procedure 
for determining aR/dN and dR/dT, and for the 
first time, will graphically illustrate the effect of 
non-normal incidence. Finally, we will make use of 
the above-discussed results in order to examine the 
various mechanisms which can affect the value of AR 

for crystalline and ion-implanted silicon. 
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2. NON-UNIFORM PERTURBATION OF ii 

The non-uniform perturbation of the complex re- 
fractive index stems from the fact that AN and ATare 
functions of depth within the sample. In order to deal 
with this effect, it is convenient to express 5R/dN and 
aR/ZT in terms of other derivatives; doing so, we 
obtain for AR: 

AN 

I AT. c-4 
where c, and c? arc the real and imaginary parts of the 
complex dielectric constant (c^), respectively. Later. 
the Drude relation for C = i(N) will be examined, and 
the expression for di(?N will be obtained. In the 
literature, explicit relations arc often available for 
n(T) and k(T); therefore, it is useful to have relations 
for &,/dT and &,/CT in terms of SnidT and dk/dT: 

dn c’k dk c)n 

and 

c?k c’n dn dk 
----- 

at? CT&, ZTdt, 
-= 
ST dn dk ?n ?k 

(3a) 

(3b) 
----- 
at, i%? (‘(1 at, 

Ideally, when we evaluate eqn (2) we would like to 
consider the situation where the probe beam does not 
penetrate into the sample, in which case AN = AN,, 
and AT = AT,, (the surface values). In fact, the probe 
beam will penetrate a finite distance into the sample, 
in which case we should use (G = N or T): 

2 AC and 2 AC, 

which represent 

I 

2AG and ZAG 

integrated over the penetration distance of the probe 
beam. Aspnes and Frova [5] present a means of 
evaluating: 

Specifically, 

dq 
ZAG+izAG= -i2K 

s 
x exp(i2Kz’) 

x (2 + &J AG(z') dz’, (4) 

where K = (2n/L)(n + ik), and z’ is the distance into 
the sample. Letting 4nkii. = z (the absorption co- 
efficient) and 4nn/l = 7, we can separate out the real 
and imaginary components of eqn (4): 

- 1 SC=2 5 e “‘AG(z’)[z cos(yz’) 
II 

e “‘AG(z’) 

and 

x [y cos(yz’) + z sin(rz’)] dz’. (5a) 

e-“‘AG(z’)[z sin(yz’) 

-‘i cos(yz’)] dz’ + 2 
5 

I 
e “‘AG(= ‘) 

0 

x [i’ sin(yz’) + I cos(;lz’)] dz’. (Sb) 

If AC equals a constant (homogeneous perturbation), 
then upon evaluation of eqns (5) we find, as expected: 

$AG=gAG and ~ EZAG=!?AG. 

In fact, since AC is generated by an optical beam, 
AG(z’) is actually obtained from a solution of the 
heat (G = T) or carrier (G = N) diffusion equation, 
and for one-dimensional diffusion is expected to be of 
the form: 

AG(z’) = 1 AC,, exp( - z,z’) , (6a) 
I / I 

where the Z, are the characteristic (temperature or 
carrier) decay parameters, and the ‘absolute value’ is 
taken because the AC,,, can be positive or negative. 
For samples that are homogeneous and essentially 
semi-infinite in extent, the r, are all greater than zero; 
for layered samples or samples of finite thickness, 
they can be positive or negative. 

Now, one often finds that one of the AC,,, is 
dominant in magnitude over the penetration distance 
of the probe beam; therefore, 

2 AC and 2 AC. 
AG(z’) z AC, exp( -I, z’), (6b) 
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where aI is the spatial decay parameter of the domi- mixing. On the other hand, if a, 9 y then Y2 > Y,, 
nant term in eqn (6a). If there are several terms of and the magnitudes of Y, and Y2 are both much less 
similar magnitude in eqn (6a), then all of these terms than one. 
should be used in eqns (5). Substituting eqn (6b) into Koeppen and Handler [6] have carried out an 
eqns (5), and evaluating the integrals we find: analysis whereby they expanded AC(z) of eqn (4) as 

a Taylor series about z = 0, and have examined under 
dq - 
‘CAG=3AG,Y,+;AG,‘Y,, (7a) 

what conditions AC(z) can be treated as a uniform 
perturbation. Our eqns (7) and (8) take this calcu- 
lation one step further, and quantify the degree of 

and mixing exactly for the case where the perturbation of 

7 
c^ is given by exponential terms, without the require- 

~AG=-$~AG,Y~+~AG~Y,. (7b) 
ment for a Taylor expansion approximation. 

Opsal et al. [ 11 have discussed certain implications 
of eqn (4) in order to explain some Drude PMOR 

where results for various silicon wafers. Their method for 
calculating the modulated reflectance yields the same 

y =%(a +aI)+y2 result as eqn (2), but it utilizes complex quantities, 
’ (a +z,)~+Y~’ while eqn (2) allows the calculation of the modulated 

reflectance directly and conveniently for numerical 
and simulations from optical parameter derivatives, with- 

out recourse to reductions of complex formulas. For 

Y2 = 75 instance, their relation for AR,/R was obtained from: 
(2 + aI I2 + y2 ’ 

@b) 

Y, and Y2 can be called ‘mixing’ coefficients for A(, (9a) 

and AC,; they can be used to quickly ascertain the 

q = Re[A$gm], 

degree of mixing from a knowledge of 7, a, and z,, 
if eqn (6b) is valid. If ^J $ (LY, z,) then Y, z I, and 

where R =Il?l, f? =[(I -ri)/(l +fi))‘. Re denotes 
“the real part of”, and: 

Yy, z 0. Under these conditions: - 
AN = -i2K 1 

% 
exp(i2Kz’)AN(z’) dz’. (9b) 

0 

Those authors further went on to discuss an interest- 
This limit, which is often attained experimentally, is 
theoretically convenient because the calculation of 

ing experimental limit: consider the case where n $ k 

or y $ a, and 2K 6 + I, where 6 is defined in the 
AR will only require a knowledge of the surface value 
of AC, rather than AG(z’). Now, the question arises: 

following manner: AN = AN, for z’ < 6, and AN = 0 
for z’ > 6. These conditions would be met when the 

how do Y, and Y2 vary as a function of LX,. for a 
material like germanium? For visible wavelengths 

probe beam is only weakly absorbed by the sample, 

(1. z 500 nm), the value of n for Ge is about 5; 
and l/6 is much greater than 7 (a thin, surface-layer 

therefore, 7 z 1.3 x IO* m-‘. Figure 1 shows curves 
perturbation). Under these conditions eqn (4) yields: 

for VI,,? vs CC,, for a = IO’m-‘; one can see that if 
a, 6 y then Y2 is approximately zero, and there is no 

and 

_I 

- 

AC,= +AG,$ tz~5AG,$ 

This result corresponds to the mixing of AC, and AC, 
discussed by Seraphin [7]. 

In passing, the above example is interesting for the 
following reason. Since the magnitude of dc,/dN is 
much less than that of dc, /c?N for crystalline materials 
(see the next section), the effect of having y6 < 1 (or 
y e a,) is to reverse the sign of AR,, in addition to 

LOG(a, /m-l) significantly decreasing its amplitude. Similar trends 

Fig. I. Mixing coefficients (Y, and Yu,) vs a, for germanium may also be seen for the temperature effect, but since 
at a probe wavelength of 500 nm. The refractive index and a universal expression is not available for c^( T), every 

absorption coefficient are 5 and IO’m-‘, respectively. material must be treated individually. 
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Now that we have examined some of the effects 
which can result from an inhomogeneous ri-pertur- 
bation, let us review the development of a general 
relation for AR/R at normal incidence, in the absence 
of these effects. This is a useful exercise because it is 
possible to ignore mixing effects with many exper- 
imental configurations. 

3. CALCULATION OF AR/R AT NORMAL 

INCIDENCE (UNIFORM PERTURBATION) 

At normal incidence, 

(10) 

and T,, are the electron and hole relaxation times, w 
is the optical radial frequency, and L,, is the permit- 
tivity of free space. (Note: mks units are used 
throughout.) 

For crystalline materials, the carrier relaxation 
times arc generally long enough so that w 9 1,/r; in 
this limit we obtain: 

and 

(14b) 

Therefore. 

(7R = qn:-k’- I) 

?!I [(N + I )I + k?]’ ’ 
(I la) 

and 

c’R 8nk 
-= 
?k [(n + I ): + k?]’ 

Now. since ri = i”‘. WC obtain: 

k= 

[ 
p+‘y-fI “< 

2 I 
and 

[ 

(ff+f;)“‘+f, “( 
n= 

2 I 

Therefore. 

Sn ?k n 
-=-= 
&, ?cz 2(n2+k?)’ 

and 

(Ilb) 

(12a) 

c’n c’k k 
_= --= 
r’f, c’c, 2(n’+ k’) 

(12b) 

At this point. the temperature component of AR, 
AR,, can be easily evaluated, given n(T) and k(T); 

let us now concentrate on the carrier density effect. 
According to the Drude model [8,9]. 

I rf 
+-- 1 m,tI-tc0’r2 ’ 

(IW 
h 

and 

(l3b) 

where t, is the high frequency dielectric constant, m: 
and rnt are the electron and hole effective masses, T, 

Note that in the limit of w b I;T, the magnitude of 
?f, i?N is much greater than the magnitude of &,/?A’. 

In many experimental situations with semiconduc- 
tors in the visible;‘near-infrared region. k < n; in this 
case: 

R _ (n - I Y 
-(n+ 

For the Drudc effect. 

AR 
?R ?n ?f, 2e’ 

,GT-~~AN-,-- *AN, (15) 
I f,mo2n(n + I)’ 

where I!m = I/m: + I:m,+. Since w =Znc/i: 

.> 1 

AR,% - 
A-e- n-l 

~ AN. 
?&Zn(n + I)’ 

(16) 

Overall. we obtain: 

A& 
.> 3 

I.-e- 
-*_ 

R 27r2t0mc2n(n2 - I) 
AN. (17) 

This is the same relation obtained, in passing, by 
Opsal et al. [II-note the change to mks units. The 
above detailed derivation brings out explicitly the 
entire set of conditions under when eqn (17) is 
applicable: (i) WT p I; i.e. when probing semiconduc- 
tor materials with ‘high’ mobility (or T), at visible/ 
near-i.r. frequencies; (ii) k d n and (iii) spatial 
inhomogeneity effects are not important. 

In the next section a simulation will be carried out 
in order to examine various mechanisms which can 
affect the value of AR for crystalline and ion- 
implanted silicon; the PMOR technique has already 
been used to study these types of materials [I, IO, 111, 
but we feel that several key points remain to be made. 
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We will make use of the relations presented in this 01). relaxation time (7). and effective mass (m*)-an 

section, and in section 2. adequate assumption for this simulation. Finally, the 

pump and probe wavelengths match those of earlier 

4. AR FOR SILICON: CRYSTALLINE AND 
ION-IMPLANTED SAMPLES 

reports [ l,‘lO, I I, 13, l4];-the pump is at 488 nm 
(2.55 eV). and the probe is at 632.8 nm (I .96 eV). 

In the next two subsections, the Drude and 
When a crystalline silicon substrate is ion- 

implanted, a surface layer is formed which is high in 
structural disorder [ 121. As the ion dose is increased, 
the implant layer becomes increasingly amorphous; in 
fact, a heavily-implanted layer is expected to have 
thermal and electronic properties which are similar to 
those of a deposited amorphous layer. In this simu- 
lation, a heavily-implanted layer will be examined 
which is effectively amorphous. A layer which is 
implanted to a moderate degree, and which is not 
completely amorphous, would be expected to yield a 
behaviour intermediate to those of the crystalline 
and heavily-implanted systems. Since the PMOR 
technique has been applied to the characterization of 
implanted materials 113. 141. it would be useful to 
examine how the value of AR is expected to vary as 
the implantation dose is increased. There will lx some 
uncertainty in the temperature component due to the 
fact that them is no available information regardtng 
the value of ~.c,:?T and Sc,:?T for Implanted or 
amorphous materials. 

In order to calculate AR with mixing effects 
included. one must obtain the depth-profiles of AN 
and AT for the given excitation conditions. Although 
calculational difficulty is reduced considerably when 
the carrier and heat diffusion equations are solved in 
the one-dlmensional limit. in order to reflect current 
experimental practice we have solved these equations 
in the three-dimensional limit [IS], which is necessary 
when tightly-focussed Gaussian laser beams are used 
to excite a sample. Since our calculations involved 
a numerical Hankel transform, mixing effects could 
not be determined analytically; these effects were 
quantified as follows. For a given set of simulation 
parameters, AC (G = N. T) was calculated numeri- 
cally and then plotted as a function of 2, over the 
penetration distance of the probing beam. In most 
cases, the AC(z) profile was well-approximated by a 
single exponential term. such as given by eqn (6b); the 
decay parameter. z,, could then be obtained from 
the graphical representation of AC(:). and used to 
determine the mixing coefficients. 

Calculations were carried out at two modulation 
frequencies. IO’ and 106Hz; furthermore, the pump 
beam was chosen to have a lie beam waist diameter 
of I pm. which reflects the diffraction-hmited spot 
size of a visible beam. The crystalline sample was 
modelled as a semi-infinite slab, while the implanted 
sample was considered to be a thin layer on a 
semi-infinite substrate. 

Now, let us denote AR for the crystalline and 
implanted/amorphous materials as AR, and AR,, 
respectively. Also, assume that electrons and holes 
have the same average order-of-magnitude mobility 

temperature components of AR will be examined 
separately. 

4.1. The Drude component of AR 

In order to determine dc’/;N, one must know the 
carrier mobility so that the scattering relaxation time 
can be calculated. The crystalline Si is assumed to 
have a mobility of 0.08 m* V-’ s ‘, an average value 
for electrons and holes in a high-quality substrate 
[l6]. The implanted layer is effectively amorphous 
(unannealed) and has a thickness of 0.3 pm; 
Christofides CI al. [I21 have performed various elec- 
tronic measurements on such a layer (arsenic implant, 
dose = 8 x 10IJ cm -‘. energy = I20 keV) and found 
the Hall mobility to be around IO ’ rn?V s-‘. This 
value corresponds well with the electron extended- 
state mobility reported for a-Si : H in a review by 
Dresner [ 171. 

In order to obtain the carrier density profiles in 
the two silicon samples, one must know the carrier 
diffusion coefficients. carrier lifetimes, and interface 
recombination velocities. The carrier diffusion co- 
cfficicnts (D) can be obtained from the carrier mobil- 
ities via the Einstein relation [16]; for the crystalline 
material, D 5 2 x IO-’ m’ s-l, and for the implanted 
material. D s 2.6 x IO lrn’s-‘. With regard to the 
carrier lifetimes, for the implanted/amorphous 
sample the recombination time is replaced by the 
trapping time, which provides an indication as to how 
long it takes the free, photo-generated carriers to 
be trapped in localized bandedge defect states. In 
general. it is much mom difficult to model carrier 
diffusion in defect materials owing to the complex 
nature of the localized ‘bandgap’ states. Now, for the 
crystalline material. the carrier lifetime can be as 
high as IO- ‘s [16]. while in the implanted material 
IO-‘* s is a typical value 1181. Finally, we will assume 
that all surface/interface recombination velocities 
are zero. since this parameter can vary over a con- 
siderable range depending upon sample preparation 
methods. 

Using the above-quoted values for the carrier 
mobility. the free-carrier scattering relaxation times. 
T. can be calculated using the following relation [ 161: 

,,!!!C 
e ’ (18) 

where e is the electronic charge. Letting m* = 0.2 m, 

1161. where m, is the free-electron mass, and 
T, z rh = r. we can now calculate T for the two 
materials: 

5,=9.11 x 10-‘4s and TV=: 1.14x 10-‘5s. 
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Rewriting eqn (13) and differentiating with respect to 
N, we obtain: 

l?c ‘=- T2 

dN rl- 
1 +02T2’ 

and 

dc, T 
-= 
dN rl O( 1 + t02T2) ’ 

(IN 

(19b) 

where rt = 2e2/c,m+. At 632.8 nm, o = 3 x lOI 
rad SC’; using the values of T shown above, we can 
evaluate eqns (19) for the two materials: 

[&,@N], = - 1.1 x 1O-3’ r) 

[dc,/dN],=4.1 x 10-34q, 

[dc,/dN], = - 1.0 x IO-” rt 

[&,/dN], = 3.0 x IO-32 r/. 

Note that for both samples 1 dt, /2N ( is greater than 
]&,/QN]. 

Now, a, was obtained at IO’ and IO6 Hz for 
the crystalline and implanted samples, using the 
graphical method and the parameters detailed earlier 
in this section. The absorption coefficient for the 
pump beam, ag, is given in Table I, along with the 
optical parameters (a, k, 7 and n) of the two samples 
at the probe wavelength; note that for the im- 
planted/amorphous sample, the values in Table I are 

those for a-Si, taken from Ley [20]. Figure 2 shows 
the natural logarithm of the carrier density modu- 
lation vs distance into the crystalline sample; these 
data are adequately described by a straight line 
(z, = 8.0 x IO’m -I), but note that the slope goes to 
zero at the surface (z = 0) because the boundary 
condition requires that the carrier density gradient 
be zero there. Figure 3 shows a similar graph for 
the implanted sample (z, = 7.6 x IO’ m I). Since the 
carrier density profiles were found to be identical at 
IO-’ and IO6 Hz, we will no longer refer to modulation 
frequency in our discussion of the Drude mechanism. 

Using the Z, data quoted above, Table I, and 
eqns (8). values for Y,.2 can be calculated for the two 
samples: 

[YIIN.C = 1.0 ['u,l,.c = 0.0 * 

[Yv,lFi.* = 0.52 [Y2].+ = 0.44. 

Table 1. Dielectric parameters for various silicon samples. 
Wavelengths-pump: 488 nm; probe: 632.8 nm 

Crystalline Implanted/amorphous 
116. 191 PO1 

zg Cm-‘) 2x 106 3x IO’ 
x (m-r) 4.5 x 105 10’ 

(1-t) 
0.023 0.50 

7 7.7 x 10’ 7.9 x IO’ 
” 3.9 4.0 

0 1 2 3 
Distance imo slmplc (pm) 

Fig. 2. Ln(AN/m J, vs distance into sample @m). over 
penetration distance of probe heam (;. = 632.8 nm), for 
crystalline silicon. The photon rate is one per second. 

I, = 8.0 x 10s m-‘. See text for simulation parameters. 

Now, using eqns (7) we obtain: 

[G]N,r = - I.1 x lO-3’ r/AN,,, 

[A.LJ~,~=~.I x IO yqAN,,,, 

[Glr+ = -3.9 x lO-32 VAN,, 

[GIN,, = 6.0 x IO-j2 r/AN,,,. 

Overall, using eqn (2) we get: 

AR,,, = - 1.4 x IO 33 ttAN,,, 

and 

AR N.r = -1.6 x IO “uANo,.. 

Note that eqn (15) gives a value of - I .4 x 10 ” 
VAN,, for AR,. We can draw the following con- 
clusions from the above results: eqn (I 5) appears to 
provide an accurate approximation for evaluating 
ARN for the crystalline silicon, but may be off by an 
order of magnitude for the ion-implanted silicon, 
given the parameters of this particular simulation. 
For the crystalline sample, carrier diffusion tends to 

18 , I 

16- 

‘; 

5 14- 

5 
12- 

10 

0.00 
I I I 

0.05 0.10 0.15 

Dislance imo sample (pm) 

0.20 

Fig. 3. Ln(AN/m-I) vs distance into sample &m), over 
penetration distance of probe beam (j. = 632.8 nm). for 
implanted silicon. The photon rate is one per second. 

x, = 7.6 x IO’m-r. See text for simulation parameters. 
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minimize the refractive index inhomogeneity, and 
thus, any mixing effects (see eqns (7)). 

As a final means of examining the variation of 
ARN, AN, was calculated for the two samples; we 
obtained: 

and ?k/aT have been measured for crystalline silicon: 
anjaT z 6 x 1o-4 [4], and akjaT * 1.5 x IO-’ [21]. 
Evaluating eqn (3) for the optical parameters listed in 
Table 1, we obtain: 

[ac,jaq,= 4.7 x 10 ) [ac,/aq,= 1.2 x 10-3, 
AN,., = 2.2 x 108 I0 and AN,,, = 3.3 x IO’&, 

[c?c~/S~~ =4.6 X lo-3 [d+/aT],= 1.8 X Io-3. 

where Z, is the number of photons per second in the 
beam. Overall, using q = 3.17 x lo4 mks units, we 
obtain for AR,: 

Note that an/c-‘T and SkIaT were assumed to be 
sample independent. 

AR .= -9.8 x IO-*' I t&L 0 

and AR,,. = - 1.7 x IO-*‘&. (20) 

The above values for AR, indicate that the very short 
trapping time and dielectric constant mixing in the 
heavily-implanted silicon reduce the magnitude of 
AR, to a level about 58 times below that for the 
crystalline sample. 

Carrier effects in the implanted~amo~hous 
material are complicated by the fact that although 
non-equilibrium carriers are quickly trapped in local- 
ized bandedge tail-states ( < IO-” s), they can persist 
in the localized states for quite a long time before 
recombining. During this time the trapped carriers 
can be emitted into the extended band states, and 
re-captured, many times. if the carriers present in the 
localized states perturb the sample dielectric constant, 
there may be a significant non-Drude carrier-related 
reflectance modulation mechanism in implanted/ 
amorphous silicon. For instance, bandfilling or elec- 
tric-field effects (see Intr~uction) may be significant 
in this case. 

In order to obtain temperature depth-profiles, one 
must have a knowledge of both the electronic and 
thermal properties of the samples. The electronic 
properties of the sample and the excitation conditions 
were given in section 4.1; the thermal properties of the 
two samples are as follows. For the crystalline silicon 
[22], the thermal diffusivity is ,!f, = 9.2 x lo-’ m2 s-l, 
and the thermal conductivity is k, = 148 W m- ‘K-‘. 
Assuming that the implanted layer has thermal prop- 
erties similar to those of amorphous silicon, we 
obtain k, = 2 W rn-$ K-’ 1231; also, if the implanted 
layer has the same specific heat and density as the 
crystalline sample, we obtain a thermal diffusivity of: 
/&= 1.2 x 10-6m’s. ‘. 

Using the method outlined in Ref. 15, the tempera- 
ture profiles were obtained for the two samples at 10’ 
and IO6 Hz. Figure 4 shows the AT profile for the 
crystalline material at 106 Hz (a, = 7.2 x 10’ m-l); 
the curve at IO’ Hz was within a few per cent of being 
identical. Figure 5 shows the AT profile for the 
implanted sample at IO6 Hz. In this case AT is not 
very well-described by an exponential term; keeping 
this reservation in mind, fitting a straight line to the 
data of Fig. 5 yields a, = 5.3 x 106m-‘. 

The above simulation has been performed in order 
to illustrate how the various terms which are used 
to evaluate AR, (Drude effect) are expected to vary 
for two types of technologically important silicon. 
Obviousiy, an accurate knowledge of the various 
optical and transport parameters is required if the 
value of AR, is to be predicted with any confidence 
for a given sample. The simulation has brought out 
the following facts. First, due to the usual increase in 
the absorption coefficient and the decrease in the 
carrier diffusion length as the amount of disorder is 
increased, the effects ofinhomogeneity are greatest in 
disordered materials. Second, increasing the amount 
of disorder tends to push the magnitude of ZRjaN 
downward. Finally, AN is reduced in defect-rich 
material due to the short trapping time, reducing 
AR,. 

We can now evaluate the Y for the two samples. 
Using the parameters of Table 1 and the values of 
X, quoted above, we obtain: Y, = 1, and y12 = 0 
(crystalline sample), and Y, = 0.99, and Iv, = 0.06 
(implanted sample). In other words, mixing effects 
can be neglected for the thermal component of the 

Now that the Drude component of AR has been 
examined, iet us determine how the temperature 
component is expected to vary for the two silicon 
samples. 

-388 

0 
1 

1 2 3 
Distance into sample (pm) 

4.2. The temperature component of AR 

The first step in determining AR, is to evaluate 
eqn (3) for ac,idT and ac,faT. The values for at@T 

Fig. 4. Ln(AT/K) vs distance into sample @m), over 
penetration distance of probe beam (A = 632.8nm). for 
crystalline silicon. The photon rate is one per second. The 
modulation frequency is 106Hr. r, = 7.2 x IO’m-‘. See text 

for other simulation parameters. 

1067 



1068 ROBERT E. WAGNER and ANDREAS MANDELIS 

-320.b, 0.20 

Distance into sample @tm) 

Fig. 5. Ln(AT/K) vs distance into sample (pm), over 
penetration distance of probe heam (2 = 632.8 nm), for 
implanted silicon. The photon rate is one per second. The 
modulation frequency is IO6 Hz. t(, = 5.3 x IO6 m-‘. See text 

for other simulation parameters. 

signal. Therefore, [A& x [A&, for i = 1,2, for both 
samples. Now, using eqns (7) we obtain: 

- 
[AC,],., = 4.7 x 1O-3 AT,,, 

[A&, = 1.2 x 1O-3 AT,,,, 

- 
[As,]r,, = 4.6 x 1O-3 AT,., 

[%& = 1.8 x 1O-3 AT,,, 

Overall, using eqn (2) we get: 

AR, = 5.9 x 10-j AT,. 

Going farther, AT, was evaluated for the samples 
using the electronic and thermal transport parameters 
quoted in this section; the modulation frequency was 
lo6 Hz, and the pump beam waist (l/e) was 1 pm 
(almost identical values were obtained at 10’ Hz). For 
the crystalline sample we found AT, = 4.3 x lo-l6 I,,, 
and the implanted sample yielded a value which was 
100 times larger. Let us now concentrate on the 
crystalline sample, since its thermal and optical prop- 
erties are well known. Using the above value of AT,, 
we obtain: 

AR =26~10-~‘1. r,c ’ 0 

Now, consider a pump beam which provides 
20 mW of absorbed optical power to the sample, and 
is focussed to a beam waist diameter of 1 pm; this 
corresponds to a photon rate (I,) of 4.9 x lOI pho- 
tons s-i. In this case we obtain the following values 
for AR, for the crystalline sample: 

ARN = -3.0 x 1O-4 AR,= 1.3 x 10-3, 

where ARN was evaluated via eqn (20). It appears that 
the magnitudes of AR, and ART are quite similar for 
crystalline silicon, in agreement with the results of 

Opsal et al. [l]. Note that in order to determine the 
total AR, one must remember that AR, and AR, 
are added like vectors, because AN and AT have 
both a magnitude, and a phase lag relative to the 
periodically modulated pump beam. 

Several observations can be made regarding the 
temperature component of the modulation signal 
calculated in this simulation. First, the value of AT, 
may be two orders of magnitude greater in the 
heavily-implanted silicon, due to the small value of 
the thermal conductivity in that material. Since we do 
not know the value of aR/aT for the implanted 
sample, it is difficult to predict the actual magnitude 
of AR, in the implanted sample. 

With regard to the relative magnitude of AR, 
and ART, it appears that under most exci- 
tation/probing conditions (visible light) for crys- 
talline silicon, 1 AR,1 > (AR, I. For implanted silicon, 
it appears that [AR,) should increase with dose, due 
to the increase in AT,, although the variation in 
dR/aTwith dose (at 632.8 nm) is unknown at present. 
For the Drude component in the implanted silicon, 
one would expect this component to be less important 
than in the crystalline sample. It should be noted that 
this simulation is limited considerably by a lack of 
knowledge regarding the actual physical processes 
occurring in the implanted silicon. Several material 
parameters are not well known, and the actual reflec- 
tance modulation mechanisms may be somewhat 
different than for crystalline silicon. 

Now, as a final calculation let us examine whether 
the presence of an oblique incidence probe beam is of 
any consequence in determining the value of AR. 

5. MODULATED REFLECTANCE AT 
OBLIQUE ANGLES OF INCIDENCE 

In 1967, Fischer and Seraphin [24] presented a set 
of relations which allow one to calculate AR/R at 
oblique angles of incidence. Although they discussed 
various effects induced by an oblique-incidence probe 
beam, they never showed how aR/aG (G = N, T) is 
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Fig. 6. Reflectivity for s- and p-polarized light (Ri: dotted 
line, R,: solid line) vs angle of incidence, for an am/silicon 
interface. The photon energy is 2.4eV; C, = 17.76 and 

t2 = 0.508. 
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Angle of Incidence (deg.) 

Fig. 7. ?RjdN (s-polarized: dotted line, p-polarized: solid 
line) vs angle of incidence, for an air/silicon interface. See 

Fig. 6 for sample parameters. 

expected to vary, for p- and s-polarized beams, over 
the full range of angles from 0 to 90deg. We have 
calculated aR/dG by our own method, and have 
obdined results comparable to those predicted by 
eqns (2)-(6) of Ref. 24. We will illustrate this behav- 
ior by examining the angular dependence of dRi?N; 
dR/dT would yield a similar behavior. 

Now, Fig. 6 shows R, and R, vs 0 for an air/silicon 
interface (hr = 2.4 eV; L, = 17.76, or = 0.508). The 
p-polarized light shows the familiar Brewster angle 
(0,) phenomenon where R, z 0 near 76 deg. 

Figure 7 shows ZR,/CN and dR,/dN vs 0 for the 
same air/silicon interface. For s-polarized light, 
dR,/ZN decreases in magnitude as 0 is increased; for 
the p-polarized light, ZR,,!iN is initially negative and 
then becomes positive for 0 > 0,. 

Finally, Fig. 8 depicts (I/R) CRjt?N for s- and 
p-polarized light. Note that for p-polarized light, 
a large magnitude is obtained near 0, due to the 
vanishing of R,. 

The following conclusions can be drawn from 
Figs 6-8. ZR/dN is fairly insensitive to 8 for 
8 < 50 deg. For 0 > 60 deg. ~R,/dN is more sensitive 
to changes in 0 than dR,idN. Also, for both s- 
and p-polarized light, dRi?N is largest at normal 

0 30 60 90 
Angle of Incidence (deg.) 

Fig. 8. (l/R) dRldN (s-polarized: dotted line, p-polarized: 
solid line) vs angle of incidence, for an air/silicon interface. 

See Fig. 6 for sample parameters. 

incidence, although dR,/c?N is also large near 
0 = 90 deg (experimentally impractical). Overall, 
there are no real experimental benefits to be obtained 

by choosing 0 > 50 deg. 

6. CONCLUSIONS 

With regard to the non-uniform perturbation of ri, - - 
generalized explicit expressions for AC, and AC, have 
been obtained, for general carrier and temperature 
profiles. A pair of mixing coefficients, ‘P, and !P,, 
have been defined, which characterize the degree to 
which AC, and At, are interchanged; these mixing 
coefficients effectively illustrate how inhomogeneity 
effects vary as the unperturbed optical parameters of 
the sample and the spatial profile of the dielectric 
constant perturbation are varied. Our treatment of 
this problem is consistent with that of Aspnes and 
Frova [S]. 

A detailed calculation of AR/R at normal inci- 
dence, for arbitrary n and k, has also been given. In 
addition, the behavior of AR/R as a function of 
incidence angle was examined, and AR was found to 
be largest at normal incidence, with no dramatic 
variations for incidence below 50deg. 

Finally, a simulation was carried out in order to 
examine the value of AR for crystalline and heavily- 
implanted/amorphous silicon; the simulation par- 
ameters were chosen to reflect current experimental 
practice. When carrier diffusion effects were taken 
into account the value of AR, for the crystalline 
sample was found to be accurately given by the 
approximate relation eqn (15). The carrier density 
gradient in the crystalline sample was found to be 
decreased by diffusion into the bulk, decreasing the 
inhomogeneity in AN. When the carrier diffusion 
equation was solved for the implanted sample. a 
larger carrier density gradient was obtained. resulting 
in a significant mixing of AC, and A(.?; thus, eqn (15) 
was found to be inadequate for the implanted sample. 
Also, the smaller value of AN, in the implanted 
sample relative to the crystalline sample resulted in a 
smaller value for AR,. With regard to the tempera- 
ture component, the value of AR, was found to be 
considerably larger in the implanted sample, but the 
sample variation in dR;dT was not included. 

It should be easiest to interpret experimental data 
for high-quality crystalline samples. while samples 
with disordcrcd bulk or surface regions may be more 
difficult to model, owing to inhomogeneity effects and 
complex carrier diffusion and recombination dynam- 
ics. This work has shown that the Drude component 
of AR is expected to be very sensitive to changes 
in the electronic transport properties of a material, 
while the temperature component is sensitive to both 
the electronic and thermal transport properties. Both 
components of AR can vary considerably when a 
crystalline sample is ion-implanted. 

Overall, for the first time in one paper, we discuss 
all of the issues regarding the evaluation of AR, and 
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AR, for a semiconductor material, short of presenting 
an exhaustive set of solutions for the three-dimen- 
sional diffusion equations; this particular aspect of 
the problem will be dealt with in a future paper. The 
detailed and consistent methodology presented in this 
work, along with the complete set of mathematical 
relationships required to calculate the modulated 
reflectance. should minimize the amount of effort 
required for future theoretical modelling. 
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