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Abstract. Laser-generated thermal wave diffraction theory is presented as a perturbative 
Born (or Rytav) approximation in a two-dimensional spatial domain for use with tomo- 
graphic image reconstruction methodologies. The ranges of validity of the pertinent two- 
dimensional spatial-frequencylthermal wavenumber domain complex plane contours are 
investigated in terms of  the existence af inverse spatial Laplace transforms in the mean- 
square sense. The spectral decomposition of the Laplace transforms according to a Laplace 
diffraction theorem is shown to involve regular complex-valued propagation functions, 
which represent the two-dimensional Laplace transform afa  scattering abject alongsemicir- 
culm arcs comprising the objcct’s thermal wavenumber domain. A discussion ofthe complex 
thermal-wave spatial frequency domain content is also presented, with a view to tomo- 
graphic recovery of the scattering abject field. 

1. Introduction 

The use of optically excited thermal waves in condensed phase materials as probes of 
subsurface features or defects has dramatically increased in recent years [I] .  Most 
applications to imaging typically involve two-dimensional scanning with a laser beam, 
and photothermal detection of projection images by a spatially integrating sensor, such 
as a piezoelectric transducer [2] or a pyroelectric transducer [3] placed below the 
sample under investigation. Other popular schemes involve local recording of projec- 
tional photothermal images including microphonic photoacoustic microscopy [4] and 
photothermal beam deflection imaging [5]. Total (or partial) spatial integration of the 
thermal-wave field is to be understood as a surface integral limited either by the active 
detector area (the case of back-surface piezoelectric or  pyroelectric detection), or by 
the magnitude of the thermal diffusion length in the neighbourhood of the optically 
excited surface (the case of microphonic detection [ 6 ] ) .  Spatial integration may further 
take the form of a line integral, such as the case of photothermal beam deflection, or 
Mirage effect, imaging along the length of the intersection between a broad pump 
source and a probe laser beam. All the above photothermal scanning and detection 
modes using a single exciting laser beam are incapable of providing depth imaging of 
sample cross-sections involving the subsurface location of defects. More sophisticated 
imaging methods based on thermal-wave interference from two coherently [7,8] or 
anticoherently intensity-modulated laser beams have succeeded in providing estimates 
of the depth of a defectlscatterer. These methods depend on the resolution of an 
infrared blackbody radiometric emission detector [7], or a thin metallic pin capacitively 
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coupled to a pyroelectric detector [9], to measure the local value of the thermal-wave 
field across the back-surface of a sample, i.e. in the transmission mode. A photothermal 
method based on the Mirage effect has been utilized to obtain depth information on 
the presence of defects by means of a tomographic-like procedure [lo], limited by the 
line-integral nature of the probe laser beam to point-by-point reconstruction of projec- 
tional images upon correlation of angular scans. This technique, however, cannot yield 
proper tomographic imaging of cross-sectional planes in materials, due to the line- 
integral nature of the probe beam. Recently, a new tomographic method, based on the 
detection of thermal waves by a thin-film pyroelectric detector [9] has been utilized 
to generate cross-sectional thermal-wave tomograms for the first time [ 111.  Reconstruc- 
tions of material cross-sections were obtained based on modification of algorithms, 
which were originally developed for X-ray tomograms. Such ray-like treatment of the 
highly dispersive, diffusive thermal-wave field can only be used as a crude approxima- 
tion; it was made apparent immediately [ l l ]  that, because of diffraction (and, perhaps, 
refraction), more accurate models of the thermal-wave propagation had to be con- 
sidered in order to achieve undistorted reconstructions and improved spatial resolution. 
There have been several theoretical models of thermal-wave propagation, based on 
wave mechanics in three dimensions in homogeneous [12,13] and anisotropic [I41 
media. For the consideration of the tomographic theory iri the present work, it was 
found most convenient to treat the photothermal wave propagation in terms of a spatial 
Laplace transform diffractive formalism derived from the highly damped nature of 
these pseudowaves [15]. 

In this paper we present the theoretical basis for photothermal wave diffraction 
tomography in the limit of a perturbative first Born (or Rytov) approximation for 
laterally translationally invariant solids and defects in solids. Unlike the standard 
spatial Fourier transform approach familiar from optical image analysis [ 161, careful 
consideration of the parameter range and convergence of inversion integrals along 
appropriate contours associated with the complex spatial Laplace domain variables 
must be given. The pivotal role of the Dirac delta function as a closure relation towards 
obtaining analytical bounded inversions in the complex thermal-wave spatial frequency 
domain and its interpretation in terms of Cauchy principal value integral forms is 
investigated in formulating the forward propagation field problem. Spectral decomposi- 
tion of the Laplace variables in the complex plane of spatial frequencies is shown to 
lead to a Laplace diffraction theorem and spectral coverage criteria akin to those found 
in ultrasonic tomography [17]. 

2. Green’s function formulation of the forward thermal-wave diffractive tomographic 
problem 

On harmonic optical excitation of the boundary S enclosing some inhomogeneous 
region in space, R, and having the functional form 

I ( r ,  f)=I,(r)exp(-iwt) ( 1 )  

where I is the incident optical irradiance on S a n d  w = 2?rfis the optical beam intensity 
modulation angular frequency, the resulting photothermal wavefield in R can be 
described fully by the equation [ 181 

VK ( r )  . V T(r)  + K(r)V2T(r) + iwp(r)c(r) T(  r) = 0 (2) 
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where T ( r )  is the spatial part of the modulated temperature field, 

O(r ,  1 )  = T ( r )  exp(-iwt) (3) 

and K ( r ) ,  p ( r ) ,  c ( r )  are the coordinate-dependent thermal conductivity, density and 
specific heat of the matter in R at location r from a suitably chosen origin. Equation 
( 2 )  may he written in the form 

where 

= K ( r ) / p ( r ) c ( r )  ( 5 )  
is the local thermal diffusivity. In the case where the thermal conductivity of the matter 
in R does not vary drastically with position, so that the fractional change of K ( r )  in 
one local thermal wavelength (see below) is small, the right-hand-side of equation (4) 
may be neglected, which then yields the Helmholtz pseudowave equation [15] 

( v ’ + L ’ ( r ) ) ~ ( r ) = ~ .  (6)  

In equation ( 6 )  L ( r )  is the complex thermal wavenumber given by 

l ( r ; w ) = ( l + i ) ( w / Z a ( r ) ) ’ / ’ = k ( r ;  w)e’”/‘ (7) 

& ( r ;  w )  = 2 7 r ( a ( r ) / w ) ’ / ’ .  (8) 

with the local thermal wavelength defined as 

In what follows all quantities hearing a tilde are understood to have the complex 
dependence designated in equation (7), i.e. equal real and imaginary components in 
the first quadrant of the relevant variable. 

Letting the thermal diffusivity of the (assumed homogeneous) medium surrounding 
the object region R be a,,, equation (6) may be replaced by a modified Helmholtz 
pseudowave equation: 

( V ’ + L ; ) T ( r )  = - F ( r ) T ( r )  (9) 

where 

and 

k = ( l + i ) ( w / 2 a o ) 1 / z -  kne’“/4 (11) 

n ( r )  = ( q / a ( r ) ) ’ / ’ .  (12) 

and 

n ( r )  is a measure of the variation of the values of the thermal diffusivity in the scattering 
object R from that of the surrounding (reference) region R,. The ratio in equation 
(12) has been symbolized by n ( r )  deliberately, to suggest the analogy of this parameter 
to the effects of variations in the refractive index in conventional optical propagating 
fields. Upon separating out the thermal-wave field into incident and scattered com- 
ponents, 

T ( r )  = T i ( r ) +  T , ( r )  (13) 
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and using the free-space Green's function, one obtains [19] 

TA*)= IA, j F ( r d ~ ( r X d r I r J  d.4, r e  ( R ,  S ) .  (14) 

In equation (14) the integration is performed over the slice A" of the spatial object 
region R enclosed by the boundary line S ;  TJr) IS  assumed to be subject to any 
appropriate homogeneous Dirichlet or Neumann conditions at the source-coordinate 
boundary r;, and so is the G,(rlrO) on both r; and r' (observation-coordinate) 
boundaries. If the thermal-wave source point r,, and/or observation point r, are not 
infinitesimally close to the boundary S, then [19] 

G d r I r J =  G d - r d  (15) 
In the case of a weakly scattering field, IT ( r ) l< lK(r)l, the first Born approximation 
to the integral equation (14) can be written: 

T,( r )  = TB( r )  = IAoj F ( r " ) ~ ( r " ) G " ( r - r " ) d A ~ .  

Upon describing the propagating thermal-wave field in the functional form 

(16) 

T ( r )  =exp($(r)) $ ( r ) =  $,(r)+$Ar) (17) 
so that T,(r) =exp($,(r)), the scattered field can be formally expressed in the first 
Rytov approximation: 

Whether in the Born or in the Rytov representation, the validity of the above general 
three-dimensional considerations to two-dimensional slice theory for diffractive 
thermal-wave tomographic applications will be assumed to hold if the object space R 
does not vary rapidly (i.e. it is effectively translationally invariant) within a thermal 
wavelength in the direction perpendicular to the cross-sectional plane (or set of parallel 
planes) of interest. A similar assumption has been employed [20] to develop a two- 
dimensional wave theory for ultrasonic tomographic imaging of material cross-sections 
[21]. Under these conditions, we approach the photothermal-wave forward tomo- 
graphic problem in the two-dimensional geometry of figure 1, which corresponds to 
the pyroelectric detection scheme [9, 111. The experimental ability to scan both finite 
size source (laser) and detector (pin probe) apertures renders the geometry of figure 
1 qualitatively identical to that used for ultrasonic synthetic aperture diffraction 
tomography [21], as well as the one used for well-to-well imagingoffset vertical seismic 
profiling in geophysical diffraction tomography [22]. In the context of equation (9), 
the free-space thermal-wave Green's function in the two spatial dimensions ( x , y )  of 
figure 1 is given by 

Use can be made of a spatial Laplace transform formulation pertinent to the thermal- 
wave problem [15], 

(V2+  i;)G,( rlro) = -a( r - ro). (19) 

~ ~ ( ~ , I r ~ ) = ' Y ( G , ( . l r , ) ) = C a  I Go(rlro)exp(-&,r) d2r  (20) 

where ks is the complex spatial wave vector of the scattered thermal-wave field, 
(21) 

- - A  - e  ks = 27rfs = k,i + k, j  
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Figure 1. Geometry for synthetic aperture photothermal-wave diffraction tomography using 
scanning thin-film pypelectric detection. The sample thickness I is assumed uniform The 
sample surface lies at y = 0. For each position of the laser beam waist an line y = 0 
(transmitting aperture), the metal pin detector measures the thermal-wavefield characteris- 
tics iamplitude and phase) along the back surface y = I line. The thin-Aim pyroelectk 
transducer in contact with the sample at y = I is assumed to be of  negligible thickness 
compared tu I and thus entirely thermally thin at audio modulation frequencies. 

and is the complex scattered spatial-frequency vector. Upon transformation of 
equation (19) and use of the vanishing boundary condition for Go(r51ro), the formal 
solution for &, is 

Inversion of equation (22) requires defining appropriately converging contours in the 
complex spatial frequency domains (&, &): 

where the contours C, and C, remain to be determined. Before proceeding with this 
task, it is important to realize that the existence of the inverse equation (23) presupposes, 
and must be consistent with, the existence of a closure relation in the particular complex 
spatial thermal wavenumher (or frequency) space defined by variables with equal real 
and imaginary parts. This situation is quite different from the conventional definition 
of a contour for Laplace inversion integrals [23] where the path of integration is 
upward along a straight line Re($)= c=constant, and c is chosen so that the Laplace 
transform may be analytic to the right of this line. Generalized Laplace transform 
inversion contours are required, adapted to the speciflc properties of the thermal-wave 
complex Laplace variable vector Many such generalized Laplace inversion contours 
in one dimension have been previously considered and examined in some detail by 
Carslaw [24]. In thermal-wave physics the desired closure relation amounts to the 
proof of existence of the Dirac delta function in the complex spatial frequency domain, 
as shown in appendix 1. 
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Equations (22) and (23) yield 

For the integration over kP let z = R ei'')tii/4' . This definition of a complex variable 
amounts to rotating the contour through an angle 7114 and guarantees convergence of 
the new contour, provided that the original unrotated contour exists in the mean-square 
sense [ 2 5 ] .  Detailed conditions for regular behaviour of the integral after the rotation 
are given by P6lya [26] .  From the exponent in equation (24): 

Re[(y-yo)z]=(y-yn)Rcos (25) 

Ify-y,>O,theny-y,=ly-y,/; choosingcos(O+r/4)<0,i.e. ~ / 4 < @ < 5 ~ / 4 , y i e l d s  
an integrand of exponential type and a convergent integral. If y -yo< 0, then - 3 ~ / 4 <  
0 < 7114 is the appropriate sector in the complex kP plane. Here we shall only consider 
the former condition since we are interested in the forward propagation of photothermal 
waves along the y-axis of figure 1 (in backward propagation thermal-wave fields become 
unbounded). We will thus define CP as shown in figure 2. Applying the theorem of 
residues to the integral 

l m k p  

*me'"" 

Figure 2. Contour C, for the integral (26). 
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we obtain 

The residue at i, = 6F' has been rejected using the Feynman contour shown in 
), as it makes I, increase without bound for figure 2 along the line (-a ei"l4, w 

large values of I ioI .  Then equation (24) becomes 

The contour C, may be easily determined upon consideration of exponential conver- 
gence. Let pm = R eiO and require 
I;- rD.rC \ D  2 0 - d  I..-., 111 - ~ 2 , 2 i Q \ 1 / 2 1 1  
1,111 ,..CLrr0,.. A 0 , A . b  so,.? YO,,' 1. L , ,, 
R t m  

Assuming only the case x-xo> 0, the common sector [cos(@+ r / 4 ) < 0 ] n  
[sin(@+ 71/4)> 01 = [ 7 1 / 4 ~ @ ~ 3 r / 4 ]  defines the extent of the validity of the integral 
(30). similar considerations for the case x-x,<O lead to a contour spanning the 
common sector [-.rr/4< 0 < 71/41, with results identical to equation (35) below. The 
contour C,, is shown in figure 3. Taking into account the vanishing of the integral over 
the Bromwich contour C,, as R + m and carrying out the integration along the line 

01 above the branch cut, we obtain 

N 
= 2 r i  Res (,& = zj) = 0 

j = o  

Figure 3. Contour C, for the integral (30). 
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where 

f(z)-exptd(lx-xolz-ly-yolJll;i,l. 
From equation (33) let 

Go(r-ro)= --e 
471 

(33) 

or 

In appendix 2 we have investigated the contour of validity for integral representation 
of Go(r-ro), and a convenient analytic expression for the integral (35). In the case 
of a semi-infinite, homogeneous two-dimensional domain R,, the thermal-wave field 
due to an aperture function ao(xo,yo)  is given by [15] 

T(x, Y) = jA, 4 ~ o , ~ o ) G o ( r - ~ o )  d&. (36) 

For a point-source excitation of strength To at the origin, use of equation (A2.16) yields 

Furthermore, in terms of Thomson functions [27] 

Xo(kor e'"/*)=ker(k,r)+i kei(k,r). 

Now, thermal-wave field amplitude and phase lag may be explicitly calculated: 

IT(x, y)I = ~ [ k e r 2 ( k , ~ ) + k e i ' ( k o ~ ) ] 1 ~ 2  477 (39) 

and 

$(x, y )  =-+tan-' 71 ( k e i ( k , m ) )  

4 k e r ( k o m )  ' 

At large distances from the origin, the asymptotic representation [27] for the Kelvin 
function gives 

and 

7 1 1  
$( r) = -+- k,r s J - 2  

as expected [19] for a diffractive propagating field of spherical symmetry generated 
by a point source. 
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3. Spatial-frequency domain object-field spectral decomposition 

For purposes of concreteness we shall adopt the Born approximation, equation (161, 
for the description of the thermal-wave scattered field in an inhomogeneous object 
domain R. The scattering wavevector is given by equation (21). A spectral correlation 
between & and the incident wavevector [I51 - - *  - *  

k = k,i + k y j  = 2?ri 

1; = j/Ato- j = x, y (44) 

(43) 

is possible. First we define the incident spatial frequencies/Laplace variables, given 
by D5I. 

with A,, representing the thermal wavelength in the incident object region R, surround- 
ing the scattering object: 

A,,= 27r (ao /w) '12 .  (45) 

Upon consideration of the Helmholtz-like incident field equation in the geometry of 
figure 1 

(46) 

we proceed with a Laplace transformation along the x-direction. The incident field 
can be represented by an integral over the relevant spatial frequencies [ 151, defined 
over a suitable inversion contour: 

(v2+ Li) T,( r )  = o 

Inserting equation (47) into equation (46) yields [15]: 

A ( ~ , Y )  = ~ t k ,  0) e x p ( - L o y J i X  

where 

pxG k x / k o .  (49) 

If, in addition, T , ( r )  is represented as a propagating plane thermal wave of unit 
amplitude 

K ( r )  = exp(iL. r )  (50) 

then the relationship between the two incident wavevector components can be trivially 
found from equation (46) to be 

L:+ e, = (51 )  

or, in terms of spatial frequencies, 

Jl+f;, = ATo2, (52) 

The inverse of equation (47) may be presented in terms of the bilateral spatial 
Laplace transform of Tdx ,  y): 

m 

A(ix,  y) = T,(x,  y)  e-'\'dx. (53) 
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The integral on the right-hand side is meaningful only due to the fact that the spatial 
frequency L changes sign when x changes sign (see equation (44)), thus maintaining 
the boundedness of the integral. If a different coordinate -x, is considered along the 
laser-scanned surface (see figure 1) then it can be easily shown that [21] 

1 
T,(x+x,, y )  =- A ( k , y ;  x,) dk, (54) 

~ ( I ; , , y ; x , ) = ~ ( L ~ , y ) e ' ~ "  ( 5 5 )  

2 r  fC, 
with 

consistent with the shift theorem of Laplace transformation. This generalized version 
of the theorem over an arbitrary contour C, is valid only for well-defined (convergent) 
contours and use of the Dirac delta distribution (A1.20). 

In order to identify a relationship between the spectral decompositions of the 
incident and scattered thermal wavefields, the coordinate-shifted Born approximation 
may be written (see equation (16)): 

Let the two-dimensional transform of the incident field in scattered field variables 
be t: 

fj(&; ~ X , ) = ~ Y ? ( ? ; ( ~ ~ +  fx,))= jAa Tj(ro+ ;x,) e&''ad2ro. (57) 

Inserting equation (54) in equation (57) and using the corollary to the theorem in 
appendix 1 we obtain 

$(is; &,I= AO(L,)*8(ks- l )  e'txrdkx ( 5 8 )  

where the two-dimensional Dirac delta distribution is definedlin terms of a product 
of distributions: 

k 
(59) 

A ~ ( L A =  ~ ( k ,  Y =o). (60) 

Further, let the two-dimensional transform of the Born function in scattered field 

(61) 

2 -  S ( K , -  k )  = '8(Lm - gr, Lp - &,) 3 8(Lm - Lx)8(& - Ly) 

and 

variables be fB: 
fB(&; fx,) = * 2 ( T B ( r ;  &,)I 

and also define 

fi(j?,) = ' 2 ( F ( r 0 ) ) .  

Equations (56), (61) and (62) yield, in compact form, 

fB(ks; fx,) = *z [ (F( ro)T i ( r0+ ~^X,))**G,(~)I 

= *2( F ( r J  T,(r,+ k,))*( Go(r ) )  (63) 
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where the asterisks indicate two-dimensional spatial convolution. If we define the 
convolution function 

f x r ) =  F(kS)**Fj(ks; &,) (64) 

it is a straightforward matter to show that 

Now let 

h(k;  kJ = A,( Lx)F(k, - L) (66) 

and regard equation (65) as a Laplace transform in the variable x,. Inversion yields 
m . , .- =_ . r .-. , _? + . -i . 

h ( k ,  I(,) = H ( & ;  ix,) e dx, J -m 

(67) 

where the bilateral transform can be defined in the sense described earlier. From 
equations (63) and (64) a relation can be obtained between the transform of the Born 
field and H :  

(68) fe(&; ;x,) = (@(ks)**f;(ifs; ;x,))&(kslO) = fi(ks; ;x,)/(k;-&. 
Explicitly, from equations (61) and (68), 

assuming suitable integration contours. For the integration over k,  we are only 
in:e:es:ed in the va!.;es of :he scat:ered f;e!d a ! ~ ~ g  :he detectk:: y = ! in figi;:e 1. 
Consideration of the denominator of the integral over k,, 

with simple poles at ig'  determined by equation (27), gives a relation between the 
components of the scattered thermal-wavefield wavevector: 

k t t  k: = k: (71) 

or, in terms of the scattered spatial frequencies, 

f: + f g  = A;: =constant. (72) 

The appropriate ~~ ~ integration contour is that of figure 2, provided that the function f i  
is such that Jordan's lemma is satisfied [28]: 

Equation (74) helps reduce the field representation, equation (69), to 

TR(X, I ;  x,) = -- (75) 
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An important connection between the two-dimensional spatial Laplace transform 
of the Born field and that of the object (scattering) field F ( r J ,  equation (62), may 
now be derived in the form of a Laplace diffraction theorem as shown in appendix 3. 
The desired two-dimensional scattering object distribution F ( r ) ,  equation ( lo) ,  can, 
in principle, be reconstructed tomographically by its shifted thermal-wave spatial 
spectral decomposition F ( &  given by equation (A3.7): 

I3.E -.Ex,ft-'-jJ 
- _  - 4.rr e-'rI4 (-1 

A m  

The range of spatial frequencies contained in a tomographic scan in the geometry 
of figure 1 is determined by the spectral (energy) conservation laws of equation (52) 
and (721, which consistute a unique relationship between input (x, y )  and scattered 
(a, p )  spectra: 

(77) 
1 

f :+ f: = f + f g = A i 2  f j x w  1 = 2, ( U /  a 

In view of the form of equation (76) we define spatial frequency combinations [21] 

f" =f* -L (78a) 

(786) f,.-fb-'-f,= -(f{-f'J 2 1/2 - ( f { - fY /* .  
It is seen that fo= A,' is the maximum spatial frequency component contained in the 
spectral decomposition of the object function, i.e. I f a l s f o  and 1 f . l  <fo. Similar 
inequalities are satisfied by the dependent frequencies fi;' and f,. Now, equations 
(77) and (78) can be combined to yield the locus of values offu,fu: 

(fu+fr)2+(fu+f,,)2=fi= constant. (79) 

This equation shows that, for a given ( f , f , )  pair of incident frequencies determined 
by equation (44), all values of the spectral decomposition of the (scattering) object 
field lie on a circle of radius fo centred at the point (-L, -A) in the spectral (U, U )  
plane. Figure 4 shows the locus of centres of semicircles containing the range of ( fa, fs) 
values which are associated with a particular pair of (L,f,) values and are bounded 
by the relation f'+ fg =fi. The geometrical construction in figure 4 is entirely 
analogous to those utilized in ultrasonic diffraction tomography [17,20-22]. Assuming 
only positive spatial frequencies L, f ,  and fu, fo, it is easy to see that only the upper 
half-plane contains points corresponding to the scattered thermal-wavefield. These 
points are bounded by L,:(-fo, 0) along the -fu axis; by L,: (f", 0) along the +fu axis; 
and by L,:(O, fo) along the +fu direction. Thus, the spatial frequency content is 
circumscribed by the two hatched semicircular disks in figure 4. In the field of ultrasonic 
diffraction tomography the decomposition field of all (fa,&) pairs included in a 
scanned tomogram was given the name 'coverage' by Nahamoo et al [21]. This 
terminology can be easily adapted within the context of thermal-wave diffraction 
tomography. It is important to note that as the modulation frequency increases, so 
does the maximum R,-domain spatial frequencyfo(w) = A;', equation (77). This results 
in enlarged coverage ranges in the (fu,f,) space, with an expected resolution enhance- 
ment of the reconstructed image, Furthermore, any thermal wavelength decreases are 
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f" 

' " . - ' O '  L,.  i - fa - f r , f r j  
1,: l fo-~,- fy l  
L,: i-f",fo-q 

expected to lead to a behaviour similar to X-ray propagating fields [17], i.e. a closer 
resemblance to straight line/ray-optic transmission of thermal waves with substantial 
UccIsaSc 111 LllC rrrlp"'L'l"LS U1 UIILIIICLIVII.  DULL, L d y - l l h G  "GII2l"I"UL I,'%, " G C I I  UI>LU>SCU 

by Burt [29,30] within the framework of conventional photothermal detection, and 
has also been of limited experimental success tomographically, as reported elsewhere 
[Il l .  In the present context, equation (77) indicates that a modulation frequency 
increase results in an increase in the arc radius of the scattered field domain in figure 
4. This trend is expected to reduce diffraction via the concomitant increase in thermal 
wavexntnber kc,, wi!h an enhancetnent of ray=!ike propaga:ion a! higher freq-encies. 
True ray-optic behaviour could be expected in the limit of infinite modulation 
frequency, corresponding to zero wavelength and infinite wavenumber. Experimental 
support of this discussion in terms of diminishing distortions with increasing frequency 
in reconstructed tomograms using ray-optic algorithms has already been observed [ 111. 
Appropriate reconstruction methodologies for the scheme of equation (76)  and figure 

-I^^-^^^^ :.. .L^ : __^_. ^^^^ ..cA:.x--"L"- CI..^L _^.. ,:L" L-L-..: L,." I.--- A:"".."--> 

A using numerical Lap!ace transforms will he de& with i n  a future puh!ication: 

4. Conclusions 

The mathematical foundations of thermal-wave diffraction tomography have been 
presented in terms of a two-dimensional spatial Laplace transform formalism based 
on pseudowave propagation satisfying a diffusive Helmholtz-like equation. The theory 
led to a Laplace diffraction theorem, linking the transform of the Born approximation 
(related to the experimentally measured scattered field) to that of the scattering object, 
over the (primary) scattered and incident complex spatial thermal-wave frequencies. 
A compact visualization of the magnitude locus of the spectral decomposition of the 
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scattering object was also presented and shown to be equivalent to that describing 
propagating wavefields satisfying the proper Helmholtz equation. The present work 
may be used as the basis for diffractive tomographic reconstructions of the scattering 
object field via the Laplace diffraction theorem, which offers a powerful method by 
linking the tomographic image of a cross-sectional scattering object to the two- 
dimensional Laplace transform inversion of the experimentally measurable thermal- 
wave signal, modified by the transform of the (experimentally easily determinable) 
incident aperture. The most severe shortcoming of the present theory impacting experi- 
mental situations is expected to be the Born (or Rytov) assumption of weakly scattering 
fields, needed to validate equations (16) and (18). Extensive discussions of these 
approximations have been presented elsewhere [17,20,21]. 
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Appendix 1 

Theorem. In the complex thermal wavenumber domain the Dirac delta function is 
defined as the limit of the complex distribution 

&/4, (where P stands for the Cauchy principal value), along the line (-me 
connected by a Bromwich contour in the half-plane - ? r / 4 S O S 3 ~ / 4 .  

Roo$ Consider the integral 

(A1.2) 

where f ( k )  is any analytical function of the complex variable k. Letting, in polar 
coordinates, k = R e'", the contour for converging behaviour of J ( o )  can be determined 
by 

(A1.3) 

The real part of the exponent iwr eii"+n/4' exhibits negative behaviour if, and only 
if, sin(@ + ~ / 4 )  > 0, for values w > 0. Therefore, a decaying exponential is obtained if 
-a/4<@<3?r/4,  in which case Jordan's lemma gives equation (A1.3) on C,, (figure 
5 )  provided that 
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I m  k 

Figure 5. Contour for the integral (A1.2) 

andf(k)  is bounded. Furthermore, on ro, 

(A1.4) 

where 

3 n  7 n  / (o)=l imf(p e'") -<@<- 
, W O  4 4 (A1.6) 

(A1.7) 

and, upon variable redefinition, f 

so that 
m ,iX 

O-m l imJ,-"(w)=e- '~ '~f(O)(P -m -dx) x =ine-'"'4f(0). 

Finally, on the straight line I :  (-00 e-""', m define 

(A1.9) 

(A1.lO) 

( A l . l l )  
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so that 

exp(iwk m 

f ( k )  dk. (Al .  12) 
ke'"I4 

J , ( o ) =  lim ( J , ( w ) + J 2 ( w ) )  = P 
P - 0  
r-m 

Now, from the theorem of residues, 

$ exp(iwk 
lim J , ( w )  = lim k e i +  f ( k ) d k = 2 r i  lim [Res(k=0)] 
a-m W - m  U-m 

since the only pole of equation (A1.2) is at the origin. Furthermore, 

lim [Res(k =0)] = lim ( exp(iw;FJl )f(k)lr-o) = e-'"'4f (0). 
W-m J(e'-/" 

(A1.13) 

(A1.14) 

Collectingterms from equations (A1.3), (A1.9) and (A1.12) into equation (A1.13) yields 

exp(iwk 
U-m lim ( p  j-: k 

(A1.15) 

We use the generalized complex definition - 
exp(ioz) =cos(wz)+i sin(wz) z = k  (Al .  16) 

and from the (formally) imaginary components of equation (A1.15) we obtain 

( A I  .17) 

where it is understood that only the principal value of the imaginary part of the 
expression for exp{i[wk(l + i ) / f i ] ) ,  

Im[exp(iwk = exp(-wk/a)  s i n ( o k / a )  (Al.18) 

is to be retained under the integral sign on the left-hand side. A comparison of equations 
(Al.1) and (A1.17) proves the definition of the Dirac delta function distrihutiont in 
thermal-wavenumber domain and in the sense of the contour shown in figure 5 :  

(A1.19) 

Corollary. An integral representation of the thermal-wavenumher domain Dirac delta 
function is 

(A1.20) 

along the line (-CC CCe-'7i4). 

Proof: Let 
m 

(A1.21) 

t For a proof o f  the D i m  delta function distribution along the real axis see, for example, [31]. 
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Now 

(A1.22) 

(A1.23) 

Therefore, using the foregoing theorem, 

~ ( C ) = ~ e - ' " ' ~ r a ( i )  (A1.24) 

and equation (A1.20) follows immediately from equations (A1.21) and (A1.24). 

Appendix 2. Integral representation of two-dimensional thermal-wave Green's function 
for semi-infinite domain 

Consider the modified integral of equation (35): 

This integral does not converge in the range -co<p, < O  for all values of IAl and 
where coZ,ix -xoI = A and Co1y -y,l= E; however, it will be assumed to be well defined 
momentarily for purposes of functional form definition of J.  The range of convergence 
will be discussed later. Letting 

pm=sin(w-+) + = tan-'(E/A) (A2.2) 

then, for pm + *CO, it follows that 

Zip, = e*i" (A2.3) 

or 

r 
w +  Filn(Zp,)*-. (A2.4) 

2 

Therefore, equation (A2.1) may be transformed to 
-im+n/2 

exp[-Asin(w-q5-6 cos(w-+)]dw. (A2.5) 

It is now easy to show that 

As in(w-+)+icos(w-+)  =A[1+(~ j /A)~] ' ' ' s i n  w=Lolr-rolsin o (A2.6) 

A change in the integration variable of equation (A2.5) to U = iw  yields 
m+in/2 

exp(iCu1r- r,l sinh U )  du. (A2.7) I ---in12 
J (  r - rg) = -i 

Using the definition of the Hankel function of the first kind [27]: 
mi!" 

Hyl(z)  = -I I exp(z sinh w - uw) dw 
71 -e2 

(A2.8) 
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we find formally 

J( r - ro) e, ?rHb"(i&, r - rol) (A2.9) 

where the path of integration has yet to be determined. 
In exploring the convergence of equation (A2.7), the proper integration contour 

may be determined by requiring the integrand to be bounded at infinity. Let U = 7 + i f :  

~ e x p ( i i o ~ r - r o ~  sinh u)l=exp[ - y l r - r o l ( s i n h  7 cos {+cosh 7 sin 4 )1 .  (A2.10) 

Equation (A2.10) shows that boundedness is tantamount to 

1 

L $ 2  I 

sinh ~ c o s f f c o s h s i n f > O  (A2.11) 

or, equivalently, 

(cos f > 0) n (sin f > O)+ Os Im(u) s- , (A2.12) 

Therefore, the appropriate representation of J( r - ro) consistent with a well-defined 

[ 2 -1 
integration path is 

m+in/2 

exp(iiolr-r,, sinh U )  du (A2.13) I-- J ( r -  ro) = -i 

01 

7r 
J ( r - r  ) - - X ~ ) ( j i o l r - r o l )  (A2.14) 

where the script notation of the Hankel function is introduced as a reminder of its 
modified definition along the path shown in figure 6 half the extent up the imaginary 
axis in the u-plane, compared to the conventional definition [27] of Hb"(r).  
Operationally, the conventional Hankel function H r )  divided by 2 is used (equation 
(A2.14)) to account for this integration path difference. From equations (35) and 
(A2.141, and the relation [32] 

- 2  

2i 
Hb"(iz) = -- &(z)  (A2.15) 

Tr 

. I m) Re U 
-m IO 

Figure 6. Contour for the integral (A2.14) 
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where KO is the Kelvin function, one obtains 

G o ( r - r o )  = - - - X o ( ~ o ~ r - r o ~ ) .  
47r 

(A2.16) 

In equation (A2.16) the script notation is, once again, a reminder of the origins of 
the (modified) definition of the Kelvin function in terms of %$'I, rather than HF'. It 
is instructive to note that the conventional zero-order Hankel function of the first kind 
and of a real argument is obtained in solving the two-dimensional Green's function 
equation for propagating acoustic waves [21]. In developing the theory of Mirage 
effect detection of thermal waves in solids, Kuo et a1 [33,34] obtained a conventional 
Kelvin-functional dependence of the temperature field along a two-dimensional cross- 
section defined by a line (the probe laser beam) and the point of incidence of the 
pump laser beam onto a solid surface. The present analysis indicates that a modified 
function is required in order for the solution to be well-defined and bounded. 

Appendix 3 

Theorem. A Laplace diffraction theorem valid for diffusive thermal-wave scattering 
media may be constructed in a form analogous to the well-known Fourier diffraction 
theorem for propagating wavefields (e.g. ultrasonic waves [17]). 

Boo$ Consideration of the expression in parentheses in equation (75) shows that the 
Laplace transform of the Born field TR with respect to k, may be written as 

Upon substitution of equation (65) into equation (A3.1) 

x -ix, & - c v )  e".', dk,. (A3.2) 

Now evaluating the Born field (equation (75)) at a point xI along the detection line 
y = I in figure 1, and replacing the integrand of equation (65)  with equation (66) in 
the representation for H, yields 

(A3.4) 
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Guided by the combination of exponents in equation (A3.4), the following two- 
dimensional bilateral Laplace transform definition is convenient: 

fB(im, 5)- / TB(xr,  I ;  x,) e-('~x~t'-x~)dxl dx,. ( '43 .5)  

Inspection of the right-hand side of equation (A3.4) readily identifies fB explicitly: 

Finally, use of equation (66)  gives an expression relating spectrally (i.e. in spatial 
frequency domain) the two-dimensional Laplace transform of the Born field over the 
scanned input line and detection line coordinates (x,, xI), to the two-dimensional 
Laplace transform of the object scattering field F(ro)  over the coordinates of the probe 
region KO: 

Equation (A3.7) can be construed to be the desired Laplace diffraction theorem, linking 
the transform of the (experimentally measurable) scattered thermal-wavefield to the 
transform of the scatterer to be determined tomographically, modified by the spectral 
distribution of the incident photothermal aperture Ao, represented by the laser beam 
waist intensity profile at the material surface of incidence. 
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