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Abstract
A generalized similarity normalization (SN) methodology for characterizing depth profiles of
continuously varying thermophysical properties in curvilinear (cylindrical and spherical) solids
is presented. Specifically, the principle and the physical mechanism of the elimination of the
surface curvature effect from the overall photothermal signal is introduced based on theoretical
models of cylindrical, spherical and flat solids with multi-layer structures. The effects of the
relative values of radii of curvature of the curvilinear solid, the thickness of the inhomogeneous
surface layer and the measurement azimuthal angle on the validity of the technique are
discussed in detail. Experimental reconstructions of thermophysical depth profiles of hardened
cylindrical steel rods of various diameters are performed based on both curvilinear theory and
the equivalent flat surface theory. The reconstructed results are compared and validated.

1. Introduction

Laser-induced photothermal radiometry (PTR) has become
a powerful tool for the thermophysical characterization of
broad classes of materials [1] since the late 1980s due
to its non-destructive and highly sensitive nature. Most
photothermal studies, however, have been limited to solids
with flat surfaces due to the simplicity of geometry and
the associated mathematical algorithms for which both one-
dimensional [2, 3] and three-dimensional [4, 5] theoretical
models have been developed and applied to various material
studies. With increasing applications of PTR to materials
characterization, recent studies have been extended to the
evaluation of curvilinear samples. Wang et al developed
models of homogeneous and 2-layer cylindrical and spherical
samples, respectively [6–8], using the Green function method,
in which the dependence of the photothermal field on both
thermophysical and geometrical parameters of the sample
(e.g. radius of curvature, azimuthal angle, etc) is obtained
analytically. Salazar et al further developed the theory of multi-
layer cylindrical and spherical samples for characterization

of solids [9, 10] with discrete or continuously varying
thermophysical properties. All those approaches establish
theoretical bases for characterizing cylindrical and spherical
solids if all the geometrical and measurement parameters
are precisely known. This is a necessary prerequisite
due to the complicated dependence of the photothermal
signal on the geometrical shape, size and thermophysical
properties [6–10]. Very recently, Liu et al [11] reported
that geometrical factors, mainly the radius of curvature of
cylindrical solids, can be eliminated or suppressed based on
a similarity normalization (SN) method, which opens a new
possibility of characterizing an arbitrarily curvilinear sample
using well-developed analytical tools for flat solids. The
SN was demonstrated experimentally using a set of hardened
steel cylindrical rod samples with continuously varying
thermophysical depth profiles along the radial direction. The
mechanism was explained using homogeneous and bi-layer
theoretical models to first-order approximation, in which
the inhomogeneous layer was considered as an effective
homogeneous layer. In this paper we present a detailed
investigation (including both spherical and cylindrical solids)
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of the methodology, optimization and comparison of results
obtained by means of SN in curvilinear samples based on a
multi-layer model that is more realistic than the bi-layer model
for extracting thermophysical depth profiles of hardened steels.
Especially, it was found that the effect of the measurement
azimuthal angle on the PTR signal of curvilinear solids can
also be eliminated or suppressed in addition to the radius
of curvature. The sensitivity, optimization and the variation
tolerance of the azimuthal angle on the SN method were studied
in detail. The validity range of the SN technique in terms
of the relative value of radius of curvature of the curvilinear
sample, the thickness of the inhomogeneous surface layer
and the measurement angle are discussed based on the more
realistic multi-layered model. Experimental reconstructions
of thermophysical depth profiles of hardened cylindrical steel
rods with various diameters are presented based on both
similarity-normalized curvilinear theory and the equivalent flat
surface theory. The reconstructed results are compared and
validated.

2. Theory

A case-hardened steel (with a flat, cylindrical, spherical or
other curvilinear surface) may be a typical inhomogeneous
structure with an outer hardened layer in which the radial
thermophysical property (e.g. thermal conductivity and/or
hardness) varies continuously down to a homogeneous
unhardened inner layer. To precisely characterize these types
of solids multi-layer theoretical models must be developed and
employed for each type of curvature. The inhomogeneous
layer is divided into N layers thin enough that each layer
can be considered thermophysically homogeneous. When the
number of layers is appropriately chosen (large enough), the
multi-layer model can be a good approximation of a continuous
model. Considering the thickness of the inhomogeneous
hardened layer is generally of few millimetres maximal,
N ∼ 30 layers are usually sufficient to describe a continuous
layer with good accuracy [12]. Special cases have been
presented in previous papers [9, 10, 12]. More general thermal-
wave inverse problem reconstruction techniques have been
introduced over several years by our group [13]. Figure 1
shows the geometries and the coordinates of multi-layer
cylindrical (figure 1(a)), spherical (figure 1(b)) and flat
(figure 1(c)) structures, respectively. All three types of solids
are assumed to consist of N layers. The thermophysical
properties of the ith layer are labelled (ki , αi), where ki and αi

are thermal conductivity and thermal diffusivity, respectively.
In the cylindrical and spherical case the outer and inner radius
of layer i is denoted by ai and ai+1, respectively, with the
thickness of layer i being Li = ai − ai+1(i = 1 . . . N − 1).
The curvilinear solids are illuminated with a uniform light
beam impinging on part of their surface subtending a sector
of angle 2� (shown in figures 1(a) and (b)). The flat solid
is illuminated with a Gaussian laser beam of spot size w0.
When w0 is large enough, the beam is essentially uniform to
ensure the same uniform illumination in comparison with the

Figure 1. Geometry and coordinates of multi-layer cylinder (a),
sphere (b) and flat (c) structures. All the three samples are assumed
to consist of N layers.

cylindrical and spherical cases. The incident beam is intensity
modulated at frequency f .

For the cylindrical solid, the thermal-wave field on the
surface (r = a1) at azimuthal angle ϕ is given by [9]

T (a1, ϕ) = I0

2

∞∑
m=−∞

gm(�) ×
(

A′
m

C ′
m

)
eimϕ, (1)

where

gm(�) = (−i)m
m sin(m�) cos(�) − sin(�) cos(m�)

π(m2 − 1)
.
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The coefficients A′
m, C ′

m are obtained through a recursion
relation:(
A′

m

C ′
m

B ′
m

D′
m

)
=

N∏
i=1

(
Ami

Bmi

Cmi

Dmi

)
, m = −∞, . . . , 0, . . . , +∞,

(2)

where

Ami = [H ′
mi(qiai+1)Jmi(qiai) − J ′

mi(qiai+1)Hmi(qiai)]/Emi,

Bmi = [Jmi(qiai+1)Hmi(qiai) − Hmi(qiai+1)Jmi(qiai)]

/Emikiqi,

Cmi = kiqi[H
′
mi(qiai+1)J

′
mi(qiai) − J ′

mi(qiai+1)H
′
mi(qiai)]

/Emi,

Dmi = [Jmi(qiai+1)H
′
mi(qiai) − Hmi(qiai+1)J

′
mi(qiai)]/Emi,

Emi = H ′
mi(qiai+1)Jmi(qiai+1) − Hmi(qiai+1)J

′
mi(qiai+1).

Here qi = √
jω/αi (ω = 2πf is the angular frequency) is the

complex thermal wavenumber of layer i; Jm,Hm and J ′
m,H ′

m

are the Bessel and Hankel functions of the first kind of order
m, and their derivatives, respectively.

For spherical samples, the thermal-wave field at the
surface (r = a1) is given by [10]:

T (a1, ϕ) = I0

2

∞∑
n=0

gn(�) ×
(

A′
n

C ′
n

)
Pn(cos ϕ), (3)

where Pn is the Legendre polynomial,

gn(�) = 2n + 1

2

∫ �

0
Pn(cos λ) cos λ sin λ dλ,

I0 is light intensity, and the coefficients A′
n, C ′

n are given in [10]
as follows:

(
A′

n

C ′
n

B ′
n

D′
n

)
=

N∏
i=1

(
Ani

Bni

Cni

Dni

)
, n = 0, . . . , +∞, (4)

where

Ani = [h′
ni(qiai+1)jni(qiai) − j ′

ni(qiai+1)hni(qiai)]/Eni,

Bni = [jni(qiai+1)hni(qiai) − hni(qiai+1)jni(qiai)]/Enikiqi,

Cni = kiqi[h
′
ni(qiai+1)J

′
ni(qiai) − J ′

ni(qiai+1)H
′
ni(qiai)]/Eni,

Dni = [jni(qiai+1)h
′
ni(qiai) − hni(qiai+1)j

′
ni(qiai)]/Eni,

Eni = h′
ni(qiai+1)jni(qiai+1) − hni(qiai+1)j

′
ni(qiai+1).

Here qi = √
jω/αi is the complex thermal wavenumber of

layer i; jm, hm and j ′
m, h′

m are spherical Bessel and Hankel
functions of the mth order, and their derivatives, respectively.

For a flat rectilinear solid the thermal-wave field at the
surface is given by [12]

T1(r, z = 0, ω) =
∫ ∞

0

QS(0)

k0δ0(1 + b1,0)

· 1 + g1e−2δ1L1

1 + γ1,0g1e−2δ1L1
e− λ2w2

0
4 J0(λr)λ dλ, (5)

where

QS(0) = AS(1 − R1)P

πω2
0

e−r2/w2
0 ;

where R1, AS are the surface reflection and absorption
coefficient, respectively. The coefficients g1, γ1,0 in
equation (5) are calculated using a recursion relation as
follows:


gi = 1 − bi+1,ipi+1

1 + bi+1,ipi+1
, pi+1 = 1 − gi+1e−2δi+1Li+1

1 + gi+1e−2δi+1Li+1
,

bi+1,i = ki+1δi+1

kiδi

, δ2
i = λ2 + σ 2

i ,

γ1,0 = 1 − b1,0

1 + b1,0
, gN = 1 − bM,N

1 + bM,N

,

σi = (1 + j)
√

ω/2αi.

To quantitatively characterize and/or reconstruct steel case
hardness depth profiles by means of their relation to
inhomogeneous thermophysical parameters of solids with a
flat, cylindrical or spherical surface, a proper mathematical
description of the thermal conductivity/diffusivity depth profile
is needed. The assumed depth profile ansatz meets the
following requirements: (1) the thermophysical parameters
are a monotonic function of depth, z, with the possibility to
increase or decrease; (2) the thermophysical profile saturates
at a pre-determined depth to conform with the unhardened bulk
of the sample and (3) the number of parameters involved in the
ansatz is as small as possible to minimize the complexity of the
computational best fit and fitting time. Equation (6) satisfies
the assumed requirements [12, 13]:

k(z) = k1

(
1 + 
e−Qz

1 + 


)2

, with 
 = 1 − √
kN/k1√

kN/k1 − e−QL.0

(6)

where k1 and kN represent the values of the thermal
conductivity at the two boundary surfaces z = 0 (sample
surface) and z = L0 (depth inside the sample at which the
thermophysical parameters saturate to those of the bulk body),
respectively. L0 is the total thickness of the inhomogeneous
surface layer. Equation (6) is capable of describing all
possible monotonic curves with depth, which is adequate
for expressing arbitrary monotonic profiles, if parameters are
properly chosen. The depth profile of the thermal conductivity
is determined by the combination of k1, kN , Q and L0.

From the aforementioned theoretical models, it is
analytically seen that the thermal-wave fields of cylindrical
and spherical solids are inherently more complicated than
that of the flat solid because of the dependence of the TW
signal on the azimuthal angle and the diameter. In what
follows, we will quantitatively discuss the effects of the
geometrical factors on the thermal-wave signal and will present
a method for the deconvolution of the geometrical parameters
of curvilinear solids. The method introduces a geometry
insensitive technique for characterizing depth profiles of solids
with arbitrary curvatures and multi-layers.

3. Numerical calculations

3.1. Dependence of thermal-wave field on geometrical
parameters of curvilinear solids

We first show the sensitive dependence of thermal-wave fields
on geometrical parameters of cylindrical, spherical and flat

3
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Figure 2. Thermal-wave field frequency response dependence on
cylindrical, spherical and rectilinear (flat) solids. (a) Depth profile
of thermal conductivity of the common inhomogeneous surface
layer, calculated using equation (6) with L0 = 1 mm,
Q = 4500 mm−1. (b) Amplitude and phase of thermal-wave field of
the flat, cylindrical and spherical solids with various radii of
curvature. (c) Amplitude and phase of thermal-wave fields at
different azimuthal angles ϕ, figures 1(a) and (b).

solids. The depth profiles of the thermal conductivity along
the radial direction of cylindrical and spherical solids are
assumed to be identical to that of a rectilinear solid, represented
by equation (6). Figure 2(a) shows the assumed thermal
conductivity depth profile of the same inhomogeneous layer
for all three types of cylindrical, spherical and flat solids, as
if they all underwent the same carburizing process, although
the sizes of the samples are different. In figure 2(a), k1 =
36.05 W mK−1, α1 = 9.426 × 10−6 m2 s−1 at z = 0 (sample

surface) and kN = 51.9 W mK−1, αN = 13.57 × 10−6 m2 s−1)

at z = L0 (steel material AISI1018 is assumed [14]). The
total thickness of the inhomogeneous layer (case-hardened
layer) L0 is assumed to be 1 mm. The exponent Q in
equation (6) represents the thermal conductivity gradient
and is assumed to be 4500 mm−1. Figure 2(b) shows the
radius-of-curvature effect for various cylindrical and spherical
samples on the thermal-wave signal frequency dependence
and the comparison with that from the flat solid with the
same depth profile. Normalization of the amplitudes and
phases in figure 2(b) is done by amplitude division and phase
subtraction of equations (1), (3) and (5) for inhomogeneous
cylindrical, spherical and flat surfaces, respectively, by those
of a semi-infinite flat unhardened (homogeneous) AISI1018
steel sample. The amplitude and phase of the semi-infinite
flat solid sample are calculated based on the well-known 1D
theoretical model [2]:

T (0, ω) = F0[
√

α/(k
√

ω)] exp(−iπ/4), (7)

where k and α are thermal conductivity and thermal
diffusivity, respectively, of the homogeneous solid. This
normalization has the additional benefit of eliminating
the instrumental transfer function from experimental data
processing. Theoretically, cylinders and spheres with
diameters D = 10, 20, 30 and 40 mm and the corresponding
inhomogeneous flat solids were investigated. The azimuthal
angle ϕ as fixed at 90◦ and 0◦ for cylinders and spheres,
respectively, figure 1. For a fixed inhomogeneous depth
profile, thermal-wave signals of different radii of curvature
show different frequency responses. The smaller the radius
of curvature, the larger the deviation from the flat solid, as
expected. The sensitivity of the thermal-wave signal on the
measurement azimuthal angle (ϕ) is shown in figure 2(c). It
should be noted that the definition of azimuthal angle (ϕ) for
cylinders and spheres is different and shown in figures 1(a)
and (b). The (common) diameter of the cylinder and sphere
with the same thermal conductivity depth profile, figure 2(a),
was assumed to be 10 mm. From figure 2(c), it is obvious that
the thermal-wave signal is very sensitive to ϕ, especially at
low frequencies. Furthermore, the thermal-wave responses
from cylinders and spheres at a given azimuthal angle are
different from that of the corresponding flat solid. In all these
simulations in figures 2(b) and (c), the laser beam size was
assumed to be large enough, i.e. subtend an angle 2� = 180◦,
so as to cover the entire upper part of the cylinder and sphere,
thereby also meeting the 1D condition as in the case of the flat
solid.

3.2. Elimination of geometrical effects in the TW response of
cylinders and spheres

The SN resulting in the approximate suppression of the
radius of curvature of cylindrical and spherical solids from
their thermal-wave frequency response has been explained
[11] using uniform and bi-layer theoretical models, which is
adequate for a thin two-layer structure. For more general cases
such as a multi-layer or continuously inhomogeneous media
(e.g., a case-hardened steel layer), the multi-layer theoretical
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Figure 3. (a) Normalized amplitude and phase of thermal-wave
fields of cylindrical and spherical samples with different radii of
curvature and that of the corresponding flat sample. (b) Normalized
amplitude and phase of thermal-wave fields at different azimuthal
angles ϕ, figures 1(a) and (b).

models introduced in this work must be used. From the
mathematical expression shown in equation (1) (cylinders) or
equation (3) (spheres), it is seen that the dependence of
the thermal-wave field on geometrical parameters (radius
of curvature, azimuthal angle and beam-subtending angle)
of a homogeneous cylinder (sphere) and their multi-layer
counterparts is similar, with the only difference being
the A′

n and C ′
n related terms which carry information

on depth inhomogeneity of the thermal-wave fields of
composite solids and act as coefficients of otherwise identical
angular functions. With the same outer radius a1, the
aforementioned normalization process of the thermal-wave
field in a curvilinear multi-layer solid with respect to that
of the corresponding homogeneous cylindrical (spherical)
solid can essentially eliminate the dependence of the thermal-
wave field on the radius of curvature and the azimuthal
angle ϕ, curvilinear parameters which otherwise affect the
behaviour of the thermal-wave field as shown in figures 2(b)
and (c). Figure 3 shows the details of curvature elimination
based on the homogeneous and multi-layer cylindrical and
spherical models. In the calculation, the thermal conductivity

and diffusivity depth profiles of the inhomogeneous layer in
figure 2(a) were employed. The other solid parameters (radius
of curvature and azimuthal angle) were exactly the same as
those in figure 2(b). The normalization was performed using
multi-layered solid (cylinder or sphere) normalization with
respect to the corresponding homogeneous counterparts with
the same outer diameter. The thermophysical parameters
of these homogeneous solids as well as those of the central
region of the inhomogeneous solids were assumed to be
unhardened AISI1018 steel, i.e. kN = 51.9 W mK−1 and
αN = 13.57 × 10−6 m2 s−1. It is seen in figure 3(a) that
the normalized amplitudes of solids with different diameters,
including the flat solid, essentially coincide in the entire
frequency range. This is in sharp contrast to figure 2(b).
This phenomenon can also be seen in figure 3(b) in which
the diameters of the cylinder and sphere are fixed at 10 mm
while the angle ϕ is varied. These results indicate that effects
of radius of curvature and azimuthal angle of cylindrical
and spherical solids can be eliminated from photothermal
amplitudes using the aforementioned normalization process.
The significance of curvature and azimuthal angle elimination
is that the curvilinear solid can be characterized using the
current existing and considerably simpler techniques for flat
solids. Nevertheless, a residual memory of the curvature
and angle of measurement can be seen in the phase channel
especially for small radii of curvature in the low frequency
range < 5 Hz. Therefore, next we will discuss the curvature
suppression validity range from the thermal-wave frequency
response using the aforementioned normalization process in
detail.

3.3. Validity range and geometry suppression tolerance

The frequency range validity of radius-of-curvature suppres-
sion, or the degree of equivalence of curvilinear to flat solids,
depends mainly on the relative values of the thickness of the
inhomogeneous layer and the radius of curvature of the curvi-
linear solid. Figure 4 shows the suppression effect of cylindri-
cal curvature with a fixed outer diameter but different thick-
nesses (depth profiles) of the inhomogeneous layer. The cor-
responding thermal-wave fields of flat solids with the same
depth profile are also shown. In the calculation, the outer
diameter of the cylinders is fixed at 10 mm. Four different
thermal conductivity depth profiles are assumed with (k1, α1)

at the surface and (kN , αN) inside the core of the solids. They
are the same as those of figure 2 with Q = 10 000 mm−1,
6000 mm−1, 4000 mm−1 and 3000 mm−1 and L0 = 0.5 mm,
1.0 mm, 1.5 mm, 2.0 mm, respectively. It is seen that different
ratios of inhomogeneous layer thicknesses over radii of cur-
vature result in different degrees of curvature suppression. A
ratio factor χ = (a1 − aN)/a1 is defined as the measure of the
relative thickness of the inhomogeneous layer L0(= a1 − aN)

and the radius of curvature (a1) of cylinder or sphere.
To quantitatively show elimination, the deviation factor is

defined [11] as


x =
√√√√ N∑

j=1

(Xj,cylinder − Xj,flat)2/N/(Xmax − Xmin)flat
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Figure 4. Equivalence of multi-layered cylinders with a fixed
diameter (2a1 = 10 mm) and various thicknesses of the
inhomogeneous layer to the corresponding flat solids. Ratio
χ = (a1 − aN)/a1 with aN being the inner layer radius.
Symbols: cylindrical solid; solid lines: flat solid.

and represents the average deviation from the corresponding
SN flat surface in either amplitude or phase channel (X = A,
ϕ, respectively). N = 51 is the number of frequency scanned
points. The effect of 
x is shown in figure 4. In that
figure 
A is 0.68%, 2.1%, 3.3% and 5.4%, whereas 
ϕ

is 1.8%, 2.1%, 4.7% and 6.8% for χ = 10%, 20%, 30%
and 40% , respectively. This indicates that the smaller the
ratio is, the better the suppression of the curvature effect,
which can also be seen clearly at low frequencies in figure 4.
Significant discrepancy between the curvilinear and the flat
surface appears as the ratio increases to ∼40%, especially in
the phase channel where the important featured peak position
of the cylindrical solid may shift away from that of the flat
surface sample. From figure 4, it is estimated that the validity
range of the ratio (L0/a1) is around 30% if 5% of experimental
uncertainty is assumed.

It is seen that curvature suppression is very efficient in the
high frequency range while the discrepancies due to curvature
appear in both amplitude and phase channels, especially in the
low frequency range (below the peak frequency) for samples
with small radius of curvature. The lower limit of the SN
validity frequency range is related to the peak frequency in
the phase channel which depends on the thickness of the
inhomogeneous top layer of the solid as described in [11]: the
thicker the top layer the lower the frequency of the peak, which
can be explained by the larger thermal diffusion length (lower
frequency) required to detect the thicker coating layer through
interlayer thermal-wave interference. However, it is found
that choosing an appropriate azimuthal measurement angle
can improve the curvature suppression effect or broaden the
SN validity frequency range as shown in figure 5. Figure 5
shows the effect of curvature for various diameters (4 mm,
6 mm, 12 mm and 18 mm) of cylindrical solids as a function
of variation in azimuthal angle ϕ. The thermal conductivity
depth profile and the thermophysical parameters are the

Figure 5. Curvature effect suppression in cylinders of various
diameters as a function of azimuthal angles ϕ, figure 1(a).

same as those used in figure 2. From figure 5, it is seen
that curvature effects can be suppressed completely at high
frequencies at all azimuthal angles. At low frequencies below
the peak frequency, however, different angles exhibit different
suppression efficiencies: the optimum azimuthal angle is 45

◦
.

Besides, the valid frequency range is broadened when choosing
the azimuthal angle at 45◦. For example, in the case of the
4 mm solid (dashed line in figure 5), the lower limit of the SN
validity frequency range is about 30 Hz, 20 Hz, 4 Hz, 10 Hz and
20 Hz when the azimuthal angle is 25◦ , 35◦ , 45◦, 65◦ and 90◦,

6



J. Phys. D: Appl. Phys. 43 (2010) 285403 L Liu et al

Figure 6. The effect of azimuthal angle deviations between the
inhomogeneous and the homogeneous cylindrical solid. ϕ of the
homogeneous cylindrical solid is fixed at 90◦ while that of the
homogeneous solid is varied from 55◦ to 90◦.

respectively. This indicates that it is better to set the azimuthal
angle at 45◦ when using the SN method to characterize the
thermophysical property of cylindrical samples.

The essence of suppressing geometrical factors lies in the
normalization process of solids of the same size and shape
with either inhomogeneous or homogeneous thermophysical
property depth profiles. In terms of experimental
implementation, proper positioning of the curvilinear sample
with either inhomogeneous or homogeneous depth profile in
the experimental set-up is crucial for accuracy of the technique.
To indicate sensitivity to sample positioning, figure 6 shows the
effect of various deviations of the azimuthal angle between an
inhomogeneous and a homogeneous cylindrical solid. In the
calculation, the azimuthal angle of the homogeneous cylinder
is fixed at 90◦, while the azimuthal angle of the inhomogeneous
solid is varied from 55◦ to 90◦, simulating the positioning
error in the experiments. In the simulation, the diameter of
the solid is assumed to be 10 mm and the thermal conductivity
depth profile of figure 2(a) is employed. Both normalized
amplitude and phase with various deviations in azimuthal
angle between homogeneous and inhomogeneous solids show
good or excellent consistency, especially in the high frequency
range. Within the range ∼15◦–20◦ deviation in azimuthal
angle, the effect of sample misalignment can approximately
be ignored at frequencies above 1 Hz. This is very significant
for real-time industrial applications: the high tolerance in
sample alignment makes the measurement more convenient
and practical.

4. Experimental results

Two sets of cylindrical AISI 1020 steel samples were machined
with diameters of 4, 10 and 16 mm. The length of the samples
is ∼4 cm. The cylindrical samples stand on a sample holder
freely and vertically. The measuring point on the cylindrical

Figure 7. Experimental PTR set-up.

sample is far away from the contacting boundary between
the standing end of the sample and the holder, so thermal
contact can be negligible. One set of samples underwent a
case hardening (carburizing) process together as one batch to
ensure the same case depth profile, with a nominal case depth
0.04 inch, while the other set of samples was kept unhardened
(reference). Thermophysical properties of AISI 1020 steel
are as follows: kN = 50.63 W mK−1, αN = 13.7663 ×
10−6 m2 s−1. The experimental PTR set-up of figure 7 was
employed and the north pole point of the cylindrical rods,
i.e. with 90◦ azimuthal angle, was adopted. It should be noted
that the PTR signal of flat solids was obtained by measuring the
bottom (flat) surface of 16 mm diameter cylindrical samples,
and the beam size was expanded to around 18 mm so as to
meet the conditions of the 1D theoretical model. Experimental
results have been reported in [11], and the results show
good agreement with the theoretical simulations. Normalized
amplitudes and phases obtained from curvilinear samples with
various diameters overlap with the corresponding flat solid;
however, both amplitude and phase of different diameters show
discrepancies at the low frequency range, especially for small
diameters. For comparison, we fitted the experimental data
on the basis of two different theoretical models and the results
are shown in figure 8 while the detailed best-fit parameters
are shown in tables 1(a) and 1(b). It is seen that all best-
fitted results, regardless of model (cylindrical or flat solid),
show good agreement with data from the 10 mm and 16 mm
diameter samples. Particularly for the 4 mm diameter cylinder,
while the cylindrical theoretical model can fit the experimental
data very well, including the valley in the phase channel
at low frequencies, the rectilinear theoretical model exhibits
obvious disagreement especially in the phase channel at low
frequencies. This is because the ratio χ reaches about 50%,
that is, far beyond the upper limit of the validity range (30%)
discussed in section 3.3.

Figure 9 shows the comparison of the reconstructed
thermal conductivity depth profiles based on the two different
theoretical models. From the reconstructed hardness
case depth profiles based on the cylindrical theoretical
model (figure 9(a)) and the multi-layered rectilinear model,
figure 9(b), it is seen that thermal conductivity profiles of
rods with various diameters all approximately coincide with
that of the flat solid no matter the diameters of the cylinders
and which theoretical model is used for reconstruction. This

7



J. Phys. D: Appl. Phys. 43 (2010) 285403 L Liu et al

Figure 8. Comparisons of the best-fitted results of experimental
data on the basis of the cylindrical theoretical model (solid line) and
flat theoretical model (dashed line). Symbols denote experimental
curves.

Table 1(a). Best-fit result of cylindrical rods based on cylindrical
model.

Sample
diameter
(mm) k1 (W mK−1) L0 (mm) Q (mm−1) ϕ Degree

4 15.06 1.05 3100 80.7
10 16.49 1.15 3610 82.6
16 16.46 1.07 3580 85.0

Table 1(b). Best-fit result of cylindrical rods based on rectilinear
(flat) model.

Sample
diameter (mm) k1(W mK−1) L0(mm) Q(mm−1)

4 15.55 0.95 4805
10 15.93 0.98 3475
16 15.79 1.02 3666
Flat 15.34 1.08 3975

is consistent with the theoretical demonstration and indicates
that a curvilinear cylindrical depth profile can be characterized
using the algorithm for a flat solid. This phenomenon was
also observed in [15] in which different shapes of screw
samples have the same depth profile after undergoing the same
carburizing hardening process in the same batch.

5. Conclusions

In summary, we have performed a detailed and comprehen-
sive investigation on the thermal-wave equivalence of ther-
mophysical property depth profiles between curvilinear and
rectilinear (flat) solids based on theoretical models of cylindri-
cal, spherical and flat solids with multi-layer structures. The
curvature effect can be suppressed or eliminated by an appro-

Figure 9. Comparison of the recovered thermal conductivity depth
profile based on the cylindrical theoretical model (a) and the flat
theoretical model (b).

priate normalization procedure (SN) depending on the ratio of
the thickness of the inhomogeneous layer to the radius of the
cylinder: the smaller the ratio, the better the SN equivalence.
Compared with that described in [11] which uses a two-layer
cylindrical model, the validity range of the ratio (L0/a1) can
reach 30%, in contrast to ∼15% in the two-layer theory, if
5% of experimental uncertainty is assumed. The effect of the
measurement azimuthal angle was discussed in detail. It was
also found that the effect of the measurement azimuthal angle
on the PTR signal of curvilinear samples can be eliminated or
suppressed in addition to that of the radius of curvature. The
curvature in the low frequency range, <10 Hz, may not obey
the SN equivalence, especially for small diameter solids, but
the equivalence can be improved by choosing an appropriate
azimuthal angle optimized at 45◦. In addition, the effect of
azimuthal angle deviation due to sample positioning error in
experimental implementation was studied. It was shown that
within the range ∼15–20◦ deviation in azimuthal angle, mis-
alignment of the sample can approximately be ignored. This is
of practical significance for convenient and accurate measure-
ments. The SN equivalence was further validated experimen-
tally using PTR detection from a series of case-hardened steel
cylinders and their flat surface counterparts with the same case-
hardened profiles. The thermophysical depth profiles of rods
reconstructed using a cylindrical theoretical model approxi-
mately coincide with those of the corresponding flat solid. In
conclusion, curvilinear solids can be characterized using exist-
ing inversion techniques for flat solids on the basis of the SN
presented in this paper. This is significant in that it enables the
application of photothermal depth profilometric techniques,
and PTR in particular, to inhomogeneous solids of cylindri-
cal and spherical geometry. The extension of the method to
arbitrary curvilinear geometries is under further investigation.
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