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Abstract 

The analysis of the thermal-wave second-harmonic generation in thin films and coatings is presented. It is demonstrated 
theoretically that thicknesses much less than the thermal-wave penetration (diffusion) length may be measured from the 
detection of the second-harmonic thermal-wave phase variations. The theory developed describes the crucial dependence 
of the depth resolution of the resulting non-linear photothermal microscope on the material non-linear parameters. 

1. Introduction 

Significant interest in non-linear photothermal 
imaging was generated as a result of the first publica- 
tions [1,2] on this topic. The basic idea is to modulate a 
heating laser beam at an angular frequency to, but to 
detect the temperature variation of the sample at 
angular frequency 2to. The generation of the second 
harmonic signal is caused by the dependence of the 
thermophysical parameters of matter on temperature 
[1-4]. It is important to use detection instrumentation 
with linear behavior to examine non-linear effects. In 
the initial non-linear experiments [1,2] the mirage- 
effect (or photothermal-optical beam deflection) 
detection technique was applied. The most important 
result was that, when the object was raster-scanned, 
harmonic images of cracks showed very high contrast 
when compared with the fundamental image. The 
recent experiments [3] with a thermal-wave imaging 
system based on gas-microphone detection of the 
second-harmonic component of the photoacoustic 
signal demonstrated that non-linear response also pro- 
vides better contrast in depth-profiling applications. 

For the analysis of the resolution of the non-linear 
thermal-wave microscope, a theoretical description of 
the second-harmonic generation in semi-infinite 
samples was proposed [4]. The dependences of heat 
capacity C = C(T) and thermal conductivity k = k(T) 
on temperature T were taken into account. It has been 

*On leave from International Laser Center, Moscow State 
University, 119899, Russian Federation. 

**Author to whom correspondence should be addressed. 
***On leave from Jenoptik GmbH, Jena, Germany. 

argued [4] that there may be a significant gain in spatial 
resolution when applying detection at higher 
harmonics of the modulation frequency. Detection of 
the nth harmonics (i.e. at ton--nto) gives a resolution 
equivalent to a linear detection scheme of modulation 
frequency n 2 to. 

In our theoretical analysis of non-linear photo- 
thermal phenomena we presented [5] a careful re- 
examination of thermal-wave second-harmonic 
generation in a semi-infinite spatial domain. The 
detailed description of variation with depth of the 
second-harmonic amplitude, A2~ , and phase, ~2~,, was 
thus obtained. It was shown that the 2 to thermal wave 
(excited both by bulk and boundary non-linearities) 
consists, in general, of two components. The first com- 
ponent may be considered as free-propagating, because 
it satisfies the thermal-wave dispersion relation at 
frequency 2to. If we denote the complex thermal-wave 
number at frequency to as p(to)=~/-ito/Do, with D O 
being the equilibrium thermal diffusivity of the 
material, then the wave number of the free-propagating 
2to component will be p(2to).The second component 
of the 2 to thermal wave may be considered as forced, 
because its space-time behavior is induced by the 
spatial distribution and the time dynamics of bulk 
second-harmonic sources, which are related to the 
square of the temperature field at the fundamental 
frequency. As the fundamental thermal-wave spatial 
distribution is governed by its wavenumber p(to)(i.e. 
depends on p(to)z, where z is the coordinate), then the 
2to-forced component depth distribution is governed 
by 2p(to)= p(22to). This separation of the 2to tempera- 
ture field into two contributions provides a better 
understanding of the physical origin of the method and 
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can be used as a guide to increase the resolution of the 
photothermal depth profiling proposed earlier [4]. 
According to those authors, one should operate with 
the forced component of the second-harmonic 
temperature field to achieve 2 to thermal wave attenua- 
tion closer to the laser-irradiated surface and the best 
spatial resolution of the photothermal microscope. 

At the same time, the detailed analysis [5] revealed 
the crucial dependence of the spatial distribution of the 
second-harmonic amplitude and phase on the 
magnitude of the parameter A-(61--263)/(62-63) 
characterizing the non-linear photothermal process. 
Here 61=(1/C)(0C/3T ), 62=(1/k)(Ok/OT) and 
6 3 = ( 1 - R )  I(3R/OT). The formal origin for this 
phenomenon is the proportionality of the free- 
propagating and forced components of the 2to thermal 
wave to different combinations of the parameters 6i, 
62 and 63 (i.e. to (61-62-63) and to ( 6 1 - 2 6 2 )  , 
respectively). As a result, the interference pattern 
formed by free-propagating and forced 2e) thermal 
waves is extremely sensitive to the magnitude and the 
sign of the dimensionless parameter A.  It was demon- 
strated [5] that, depending on the magnitude of A,  the 
maximum amplitude of the second-harmonic thermal 
wave may be realized at the surface or in the bulk of the 
crystal. The local 2to temperature minimum (besides 
the one at z -~ co ) may also be localized at z = 0 or near 
the laser-irradiated surface. There is no 20) signal at 
the surface (z = 0) for the critical value of the character- 
istic parameter A =Act - - ,/2. 

The most important result was the demonstration 
that for some parameters A the combined spatial 2to 
temperature gradients are even steeper than in the pure 
forced 20) wave. This, for example, was shown [5] for 
]A ] '~ 1, typical of semiconductors exhibiting only weak 
dependence of reflectivity on temperature. Thus, the 
theoretical analysis [5] predicted that in some specific 
materials, or through specific choices of the laser 
optical frequency to minimize A (as the reflectivity 
depends on the optical energy quantum), the spatial 
resolution of non-linear photothermal imaging may be 
improved beyond the limit estimated previously [4]. In 
particular, enhanced sub-surface spatial resolution may 
result with materials in which the dominant role of the 
non-linearity is associated with the dependence of the 
thermal conductivity on temperature. The recent 
theory [5] made the connection between the physical 
nature of this effect and the observation that non- 
linearities associated with heat capacity and reflectivity 
dependences on temperature may operate even under 
spatially homogeneous conditions, while the non- 
linearity associated with k = k(T) appears only in the 
regions with a spatially varying temperature field. The 
latter kind of non-linearity may provide a spatial con- 
trast to the 2to temperature field in addition to that 

generated by the two former non-linearities. From this 
point of view the 2 to temperature field generation can 
also be treated as a result of the competition between 
different mechanisms of second-harmonic generation 
owing to (Ok/OT), (OC/OT) and (3R/OT), which are 
not phase-synchronized. 

In order to extend our theoretical prediction that 
steeper 2to temperature-field spatial gradients in a 
semi-infinite sample are equivalent to increased resolu- 
tion in depth profiling, in the present paper we have 
examined the thermal-wave second-harmonic excita- 
tion both in a free-standing film and in a film resting on 
a backing. The analytical description obtained demon- 
strates explicitly the enhanced spatial resolution of 
non-linear photothermal depth profilometry. At the 
same time, the results presented below contribute to 
better physical insight into the non-linear photothermal 
wave phenomena as a whole. 

2. Theory 

Let us first re-examine the basic mathematical 
formalism for the description of the thermal-wave 
second-harmonic excitation [4,5] in the specific case of 
1-D layered structures. We will start from the well- 
established form of the heat conduction equation, 
taking into account the possible temperature variation 
of heat capacity and thermal conductivity [6]: 

0T 3 / - - / [ k  OT~ C Ot-Oz k Oz} (1) 

Here C = p Cp with p denoting the density of the 
material and Cp the specific heat at constant pressure. 
In Eq. (1) we have neglected the thermal and acoustic 
wave coupling, considering the thermal conductivity to 
be subsonic. In other words, we have assumed the 
characteristic frequency to to be much lower than the 
one at which the wave numbers of thermal and acoustic 
waves become equal: 

to "~ 0919 = CL2 /Do 

where CL is the longitudinal sound velocity. We will 
describe the laser action by introducing the modulated 
heat flux boundary condition at the irradiated surface 

k O0-~ ~=,, = - (1 - R)(I o + I~ cos tot) (2) 

where I0 and Io, denote averaged and modulated com- 
ponents of light intensity, respectively. At the internal 
interfaces of the layered structure considered 
(z = h i > 0 ,  i=  1,2, ..., m, where m is the number of 
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interfaces) the boundary conditions are: 

OT hi+O T h,+0 
k--~z h_~0,  h_O=0 (3) 

Here we have used + 0 spatial shifts to denote the 
temperature and heat flux functions at opposite sides 
of the interface. 

In a manner similar to the semi-infinite homo- 
geneous sample [5], the second harmonic of the 
thermal wave in the problem described by Eqs. (1)-(3) 
may be induced by the first-order corrections to the 
initial heat capacity, thermal conductivity and surface 
reflectivity: 

C=Co(I +61Ti) k=ko(l +62Ti) 

1 - R  ~-(1 - Ro)(1 +63  T,) (4) 

where T~ = T - T  o is the laser-induced temperature 
rise, T o is the initial temperature, Co-C(To), 
k 0 = k(To), R 0 - R(To), and 61, 62, 63 are also evaluated 
at T= T 0. However, in the layered structure under 
examination there is, in principle, an additional source 
of second-harmonic generation related to interface hi 
motion (i.e. layer "breathing") caused by the material 
thermal expansion. 

( ' ) 
hi-~-hio 1+ --1 Z fl*j f Tt(z) dz (5) 

hio j = 1 h(/_l) 0 

where hi0 = hi(To), t5" is the bulk thermal expansion 
coefficient of the j th layer effective in 1-D geometry 

= ¢ j[1 - (4/3)(CTj/CLj) 2] 

fl is the ordinary bulk thermal expansion coefficient 
of elastically isotropic solids, and C T is the velocity of 
transverse acoustic waves. Note that, according to the 
structure of Eq. (5) and in the sequel, we are measuring 
distances to the interfaces from the photothermally 
excited front surface. Under the condition 

1 i hi,, 

Z flj* f TI(Z) dz '~ 1 
hio y=l hu_o ° 

one can expand the functions /'1 and OT~/Oz at the 
interfaces (z --hi) in Taylor series. We will keep in these 
expansions only the first terms which may be respon- 
sible for the 2 to excitation: 

T,(h,o)+ (h,o) 
y= 

OT~ (h~)~(h~o)+O2T~ (h~o) 
Oz Oz 2 ]=l 

h i 

f T~dz 
h(j-l)0 

i hj 

Z/ j* f 
h(j-l)0) 

T~ dz 

(6) 

In the next step one can look for a solution of the 
problem (Eqs. (1)-(4),(6)) in the form: 

~ -itot ~, - 2itot/ TI=Tm+T~+T2,o=Re{Tm+T, oe + 12,~e ~ (7) 

Then, under the conditions of the stepwise succes- 
sive approximation method [5], the description of the 
time-averaged temperature field, the fundamental 
thermal-wave component (T~), and the second- 
harmonic component (T2~) may be separated out. To 
evaluate the 2w temperature field one should first 
obtain the solution of the equations at the fundamental 
frequency: 

(02 ) 07= 
~ z  2 - p 2  1"°=0; Ozz k0 at z = 0  (8) 

0 hi°+O hio + 0 

T,o =0;  T~ = 0  (9) k0 t ,.0 I ,.0 

with p=-p(w) and J~,=-(1-Ro)Io,. Next the 2w 
temperature field may be found from 

~sz2-2p2 1"2,o = d2 -61 (2p  z) L 2 

0 S  0 7 " 2 w =  1 0 OZ Z K 0 1 (J~) v - L  at z = 0  
(10) 

1 0 2 *" 
4 0Z 2 ]=1 ) h"'-0 0 (11) 

ho-l)0 

, h,.  th,0+ 0 
~'2,o 1 0 + - - - L E 3 ?  f Y dz = 4 0z j=l ) h'"-° 0 (12) 

h(/-l)0 

Eqs. (8)-(12) provide the general mathematical 
formalism for the examination of the thermal-wave 
second-harmonic field in layered structures in 1-D 
geometry. Owing to the fact that Eqs. (8)-(12) are 
linear, their general analytical solution is available and 
can be obtained for specific structures, when necessary. 
In the present work we will present the detailed 
analysis of the three simplest situations: a free-standing 
film in a vacuum; a homogeneous film with the back 
surface in contact with a heat sink; and a bilayered 
structure composed of two films with the same linear 
but different non-linear thermophysical parameters. 
This investigation will reveal the most important 
peculiarities of the 2to generation in thin films, and at 
the same time will provide a means for qualitative 
predictions of the second-harmonic temperature-field 
behavior in more complicated structures. 
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2.1. Free-standing film 
In the case of a thin solid film in a gaseous ambient, 

the thermal flux through the back surface of the film 
may be neglected. The boundary conditions (9), (11) 
and (12) then reduce to 

0 ~ , = 0  0 ~ ,  3" 0 ~ ~ (h  g 
Oz OZZ 4 0Z 2 'J 

dz 
0 

at z=h (13) 

where h is the film thickness. The exact solution of the 
problem described by Eqs. (8), (10), (13) may be pre- 
sented in the form: 

Jo~ ) cosh[p(z-h)] (14) 
T~'= ko p si-nh(ph) 

~ =  --8 kop sinh(ph)] sinh(,~ ph) 

x ( ~  fl* sinh(ph) cosh(f2 pz) 
+{61 + (262 -- 61) cosh[2p(z - h)]} sinh(,~ ph) 
+ -~ (61 - 62 - 63) sinh(2ph) cosh [,/2 p(z - h)] 

(15) 

According to Eq. (15), at the back interface (z -- h) of 
the thermally thick film (IP[ h,> 1) the dominant con- 
tribution to the second harmonic is caused by the film 
"breathing" mode: 

1 (  Jto21_ph 
T2~lz=h>l/Ipl = -~--~ ~Cokoog] e 

X [fl*+ 2(61- 62-  63)e -(J2-1)ph] 

i ( J f  ]fl*e-Ph 
=  Coko ol 

Nevertheless, this limiting case is not important in 
practice, as the signal is too small owing to the small 
parameter [exp(-ph)[ '~ l .  The analysis of the 
solution, Eq. (15), showed that in nearly all practically 
interesting situations one can neglect the contribution 
from the thermal expansion as a consequence of the 
inequalities 13"1 ~ 16,1, 1621, which is usually the case 
with solids [7,8]. 

In the important case where the system under con- 
sideration includes gas-filled layers (e.g. adhesive layers 
or contacts at rough surfaces, which may also be gas- 
containing layers), both the effective thermal con- 
ductivity and the corresponding non-linear parameter 
62 can be reduced significantly. Under these condi- 
tions, the "breathing" of the layer may be the main (and 

extremely effective) cause of nonlinearity, acting in a 
manner similar to gas-filled cracks [9]. 

In our search for ways to enhance spatial resolution 
of non-linear photothermal depth-profiling, let us 
examine the asymptotic behavior of the solutions, Eqs. 
(14) and (15), for thermally thin films. In the limit 
I P[ h "~ 1 the expressions of Eqs. (14) and (15) simplify: 

~r~'l'Plh'l=i C~h~h {l+i[(z-h)2-he/3]q2} 

(16) 

1( )21 r2tollplh'~l~'4 ~ ~1--63"]---2 

- i {262[(z - h) 2 - h:/3] - 263(z - h) 2 

+ f l , ( z 2 _ ~ ) }  q2] (17) 

where we have introduced the real part of the thermal 
wavenumber q=Re(p)=[to/(2Do)] 1/2. This is the 
inverse of the thermal diffusion length /.tq=q -1. 
The solution, Eq. (16), shows that the temperature field 
at the fundamental frequency is spatially quasi- 
homogeneous in the thermally thin film (i.e. with in- 
phase variations of To~ throughout the thickness of the 
film). The spatial distribution of the second-harmonic 
temperature field, Eq. (17), is generally more compli- 
cated: according to Eq. (17) there are two phase-shifted 
contributions to the 2oJ temperature field which 
depend on different combinations of the non-linear 
parameters 61, 62, ~3 and fl*. The relative magnitude 
of these two contributions is controlled not only by the 
dimensionless parameter (qh)2"~ 1, but also depends 
on the spatial coordinate and the relative magnitudes 
of the various non-linearities. Therefore, the second 
term in the curly brackets of Eq. (17) generally cannot 
be omitted, as was done in Eq. (16). Note that the non- 
linearity associated with the dependence of the thermal 
conductivity on temperature does not contribute to the 
first term in Eq. (17), in agreement with the fact that 
this non-linearity operates only in spatially inhomo- 
geneous temperature fields T~,. The contribution of this 
kind of non-linearity in Eq. (17) is principally spatially 
inhomogeneous. For example, it is evident that the 
component of the second-harmonic thermal-wave field 
which is proportional to 62 exhibits a zt phase shift in 
Eq. (17) when proceeding from the front to the back 
surface of the film. 



The 2to temperature at the back surface (z = h) of 
the irradiated film is given by 

l ( J ~ o l  2 
T2<°lz:h'iilpi=-4 \Co<oh] 

x[6~-d3+fl~-~+i(262-f l~-~)  (qh) 2] 

(18) 

the 

and 

Let us introduce compact notations for 
important combinations of non-linear parameters 

A I ~ 0 1 - O 3 + ~  A2~-2C~---23 fl*2 

According to Eq. (18) one can neglect the imaginary 
component on the right-hand side even in thermally 
thin films (qh~ 1), if and only if the inequality 
141 > 11421 also holds. If [A1/AE[ ~t 1, then both com- 
binations of non-linearities play an important role in 
the non-linear thermal-wave signal generation in 
thermally thin films. With the use of Eq. (18) the phase 
of the second-harmonic thermal wave may be 
described as follows 

¢2~o = - ~ sgnA~ - tan- 1 (qh)2 (19) 

Consequently, the 2~o phase depends weakly on 
modulation frequency (i.e. on (qh) 2) if IA2/Al[ ~ 1. 
However, if tA2/All ~> 1 then the ~2~ exhibits signifi- 
cant shift (-(:~/2)sgn(A2/A1)) with the increase of 
frequency across the regimes (qh)24lA1/A2[.~l to 
I A1/A2l~(qh) 2 '~ 1. One can expect the steepest phase 
variations for 

~/q ,~ [A2/At 11/2h ~> h (20) 

It is well known that, using fundamental frequency 
detection (i.e. with linear photothermal techniques) to 
measure the film thickness h, one should have laser- 
beam intensity modulation at frequencies o9 L - 2Do/h 2, 
which provide thermal-wave penetration length/Aq - h. 
This statement follows from the solution Eq. (14). 
According to Eq. (20), using the detection of the 
thermal wave second harmonic (i.e. with non-linear 
photothermal techniques) it is possible to measure the 
thickness of thin films with [A2/AI[,> 1 at significantly 
lo,-~r frequencies 

OJsL--14,/4210JL<~ (/)L (21) 

This implies that the thicknesses of thermally thin 
films may be measured non-linearly, E q. (20). 

This non-linear effect originates in the competition 
of different mechanisms giving rise to thermal-wave 

second-harmonic generation. Not only is it important 
that the efficiencies of different mechanisms demon- 
strate different dependencies on modulation frequency, 
but also that their contributions to the total 2¢0 
temperature field should be significantly phase-shifted. 

Note that the r*  contribution to A 2 can be omitted 
for most solids, as a consequence of I/7"1 ~ 1621. The 
thermal expansion contribution (/7*) to A1 can be 
neglected in comparison with [611 only if the non- 
linearity associated with C(T) is not compensated in A1 
by the component associated with the reflectivity R(T). 
However, it should be mentioned that, since 

6~ 1 0C 1 0p 1 0Cp 

C 0 T  p 0T C o 0T 

x 

1 0 p  
/7* pOT 

then in the same approximation the contribution 
from the mass-density dependence on temperature 
may be neglected. Furthermore, it would be immaterial 
under these conditions to discriminate between 
specific heats at constant pressure Cp and constant 
volume Cv [10]. 

To illustrate the predicted 2aJ phase behavior, we 
have presented in Fig, 1 the dependence of ~2o>(z = h) 
on (qh) for various values of the dimensionless 
parameter B---(61- 63)/6z. We have considered for 
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$tq 

Fig. I. Dependence of the thermal-wave second-harmonic phase 
at the back surface of a free-standing film on the relative magni- 
tude of the film thickness h and fundamental-frequency thermal- 
wave penetration length/aq. The plots are valid for 61 - 63 > 0 
and for several values of the dimensionless parameter 
B~-(6~- 63) /~  2 equal to: - 1 0  -3 (curve 1); - 1 0  -2 (curve 2); 
- 10-1 (curve 3); - 1 (curve 4); 1 (curve 5 ); 10- ~ (curve 6); 10- 2 
(curve 7); and 10 -3 (curve 8). Here 61=(1/C)(OC/OT), 
62 =(1/k)(Ok/OT) and 63 =(1 - R)-~(ORfO T ). 
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simplicity fl*--, 0, which implies B-~ (2/3)1A l/A21. The 
plots have been calculated with the help of the general 
solution, Eq. (15), and are presented only for the 
special case dt - 63 =A 1 >0. In the case 6t - d 3 <0  an 
additional phase shift equal to ( - J r )  should be 
introduced. Fig. 1 demonstrates the transition from the 
thermally thin regime to the thermally thick regime in 
the thin film. Steep phase variations for [Al/ 
A21 = (61 - 63) /62  "~ 1 in the thermally thin films are 
clearly observable. 

2.2. Film contacting a heat sink 
In the case of a thin film with spatially stabilized 

back surface temperature, the boundary conditions 
Eqs. (9), ( 11 ) and (12) reduce to: 

h 

gf gdz; t"=° 
(I 

at z = h  (22) 

The exact solution of the problem described by Eqs. 
(8), (10) and (22) may be expressed in the form: 

T~= - kop cossh(ph) sinh[p(z -h)]  (23) 

1 I J~o ]2 1 
~ =  - 8  k0 c~sh(ph) c o s h ( f 2 p h )  

x (2 ldl  - 62 + fl*[1 - cosh(ph)] 

× cosh(42 pz)+ {6, + ( 6 1 -  262) 

x cosh[2p(z - h)]} cosh(-~ ph)) 

(6~-  62 -  d3)sinh(2ph) sinh[f2 p(z -h) ] [  
1 

(24) 

In the thermally thin film approximation ( ]p[ h '~ 1 ) 
the solutions Eqs. (23) and (24) become 

T~ = - ~ (z -h){1 +i[h 2 - ( z  -h2)/3]q 2} 

~- - (~o)(Z - h) (25) 

4 ~ k,, ] -2 

- i  0~--~02 ~ - d 3 +  fl* (qh) 2 (26) 

Note that Eq. (26) is already compactly written for 
z = 0, i.e. at the front surface of the film. 

An analysis similar to the one presented in Section 
2.1 demonstrates the enhanced sensitivity of the 20) 
phase to variations of the modulation frequency, again, 
under the condition ]AI/A2] ,~ 1. This time, however, 
A~ and A 2 are governed by different combinations of 
the familiar non-linear parameters 6~, de, 63 and fl*: 

Aj = 62-  263- f l* /2  

7 + 1 6 6 3 + 1 1  r ,  (27) A~ = 61 - ~ d2 3 6 

In the previous case of a free-standing film (Section 
2.1 ), the thermal-conductivity dependence on tempera- 
ture was shown to contribute only to the term A2, 
owing to the particular set of non-linear parameters 
assigned to the definition of this term. As a result, the 
domination of the non-linearity associated with k(T) is 
sufficient condition to achieve [A1/A2[ "~ 1. In the case 
of a film in contact with a heat sink, it is the non-linear- 
ity associated with C( T ) that contributes to A 2 and does 
not contribute to A m . In the system under considera- 
tion, the efficiency of the second-harmonic generation 
mechanism associated with C(T) decreases with 
decreasing modulation frequency. This is caused by the 
fact that according to Eq. ( 1 ) this kind of non-linearity 
is related to temporal variations of temperature, while 
the boundary conditions determine the magnitude 
(spatial distribution and amplitude) of the temperature 
T,, at low frequencies, Eq. (25). As a result, this non- 
linearity makes a contribution to the 2o) temperature 
field at the surface proportional to 610)-6~q 2. The 
main contributions from the rest of the non-linearities 
become frequency-independent in a thermally thin film 
(qh ~ 1 ) owing to the nature of the T o field. 

Therefore, the domination of the non-linearity 
associated with C(T) suffices to achieve I AI/A2] "~ 1 in 
the regime described by Eqs. (26) and (27). Note that 
162/6if-0.1 in certain polymers (for example, Plexi- 
glas) at room temperature. Nevertheless, this is not a 
necessary condition. One can also try to minimize I Al/ 
AEI by choosing appropriate initial temperature T 0 or 
the irradiation wavelength. In any case, and in agree- 
ment with Eqs. (20) and (21 ), an enhanced spatial reso- 
lution of non-linear photothermal depth profilometry 
is expected for IAl/A2] '~ 1. 

The possibility of minimizing IA~/A2I arises in 
general from the fact that k = k(T) is a non-monotonic 
function of temperature. Usually k(T) increases at low 
temperatures immediately above T= 0 K, as a con- 
sequence of the increase in the population of particles 
(or quasi-particles) participating in the energy 
transport: this amounts to an increase in the heat 
capacity. At sufficiently high temperatures, however, 
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conventionally k(T) decreases with increasing tem- 
perature of the solid, a result of the domination of 
thermal transport by scattering processes. Therefore, 
by varying the initial temperature one can change not 
only the absolute value, but also the sign of the non- 
linear parameter 62 in order to minimize [A1/A 2 I. Near 
the extremum (maximum) of the k = k(T) curve, i.e. in 
the region 6 2 ~ 0 ,  the thermal "breathing" of the surface 
film, which is directly associated with the parameter 
fl*, may become important even for solid films. 

2.3. A pair of thin films 
Let us examine the bilayered structure consisting of 

two films 0~<z~<h and h~<z~<h+H in a gaseous 
ambient. We will consider the linear thermoelastic 
parameters of both films to be the same. This is a 
sufficient condition for the absence of thermal-wave 
reflections at the interface z = h. Then a description of 
the temperature field at the fundamental frequency 
may be obtained by substituting h--" h + H in Eq. (14). 
The boundary conditions Eqs. (11) and (12) further 
reduce to: 

h-O 4~zzr~  =0,  =0  
h-0  

0z ( < flh* f < dz 
0 h+H ) 

+flu* f T~dz =Oat  z = h + H  (28) 
h 

In what follows, we introduce the superscripts (h) 
and (H) to denote the non-linear thermoelastic 
parameters of different layers. The solution of the 
problem described by Eqs. (10) and (28) at the front 
surface, z = 0, may be written as follows: 

1{ J~ ]2 
T2~lz=0 = - ~ kop sinh[p(H + h)] 

1 

x sinh[f2 p(H + h)] 

{ 63 sinh[2p(H + h)] cosh[  p(H + h)] 

+ ¢I)(flh*, 61 h, 62 h, H + h) 

- O(Afl*, A61, A62, H)} (29) 

where we have introduced the function 

• (fl*, 61, 62, ~/)-4r2 t *  sinh(pr/) 

+[61 + ( 2 6 2 -  61) cosh(2pr/)] 

x sinh(,~ pr / ) -  f2 (62 - 61) 

X sinh(2p~/) cosh(,~ p~/) 

with the notations 

= 6 / -  6#  A62-- & -  62" 4f* = A * -  fH* 

for the differences in non-linear parameters of the 
layers. According to Eq. (29), only the last term in the 
curly brackets describes the influence of the lnon- 
linear thermal inhomogeneity on the 2o9 signal. In the 
limit H- ,0 ,  Eq. (29) yields Eq. (15), as expected. We 
have examined the solution Eq. (29) in two limiting 
cases of thermally thick ([pIH> 1) and thermally thin 
( I pl H 1) backing. 

For the description of a coating on a semi-infinite 
substrate (i.e. H--' oo ), we have obtained from Eq. (29) 

l ( J o 9  2 ] 
T2,~ = - ~  kCokoogl ( . f2-  1) 

{[(6~ h -  263)+ f2 (62 h -  63)] 

- (461  +~/2 A62) exp[ -  (2 + 42)ph]} (30) 

It is worth noting the complete absence of the 
influence of the thermal expansion on the 2o9 tempera- 
ture in this regime. In the most interesting situation of a 
thermally thin coating ([P[ h "~ 1 ), the solution Eq. (30) 
transforms to 

n~'/Ipl 4 /k0o9 o 
h411Pl 

(.f2- 1)[(6t H- 263)+.f2 (62 n -  263)] 

+(1 -i)(A6~ + r ~  A62)(qh)} (31) 

Eq. (31) exhibits significant 2o9 phase variations, 
which may occur even for thermally thin coatings 
under the condition 

A3 ~ 1(61 H-  263)+ ~f2 (62 H-  63)1 ~ [m41 

--=1A61+  Arzl (32) 

If the inequality (32) holds, then a phase shift on the 
order of + at/4 will occur when 

]- /q~ IAa/A3Ih~> h or O)NL--]A3/A4IZ(/)L'~ (2) L 

Given that the non-linear parameters 61 and 62 of 
the coating contribute only to A4, we can say that a 
sufficient condition to satisfy the inequality (32) is the 
domination of the signal by the non-linearities 
associated with the dependences C(T) and k(T) of the 
film. Another possibility to satisfy condition (32) is to 
compensate the thermal non-linearities associated with 
the dependences C(T) and k( T ) of the backing by the 
non-linearity associated with the R(T) of the coating. 
This observation is consistent with the fact that in the 
case of a semi-infinite sample [5], the 2o9 temperature 
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is zero at the irradiated surface z = 0  when 
(61 - 263)+ ~ (62 - 63)-~ 0. 

However, in the system considered here the physical 
situation is more interesting, as the parameters of 
different materials may participate in the compensation 
of non-linear effects at low frequencies. We should also 
mention that the first correction to the low-frequency 
limit increases with frequency rise relatively more 
steeply in a coating than in a free-standing film. 
Actually, the second term in the curly brackets of Eq. 
(31) is proportional to (qh)- ,/to in a coating, while the 
same second term in Eqs. (17) and (18) is proportional 
only to (qh)2- ~0 in a free-standing film. For (qh)~ 1 
the former dependence is stronger. From Eq. (31 ) it can 
be seen that the signal contributions from the non- 
linearities associated with C(T) and k(T) of the 
coating are directly proportional to the thickness of the 
coating. 

For the thermally-thin bilayered system, assuming 
Ipl H,~ 1, we have obtained from Eq. (29) 

1 [ j ~ 1 2  1 
T2~,lz=o = 4 ~ C ~ ]  ( H + h )  3 

,'I~ I/Ipl 

{( × 61h--63 + -  h 

-- (4 A~2--~--~ ) n 3 

2 (2Adl+Afl*) (2H+h)Hh q2 (33) 

From earlier considerations (Sections 2.1 and 2.2) 
we can state that non-linear photothermal depth pro- 
filing of thermally thin layers should be possible, pro- 
vided that real and imaginary parts of the expression in 
the curly brackets of Eq. (33) are of the same order of 
magnitude, even for q(H+ h)'~ 1. Under this condi- 
tion, and in the experimentally interesting situation 
h ~H,  we can rewrite the curly brackets in Eq. (33) to 
obtain 

~,o~.AIh+A,H H-i(3A2h h+A2n HXqH) 2 (34) 

with A 1 -= 61 - 63 + fl*/2 and A 2 -= (462/3) - 263 - fl*/2. 
Note that the inequality has already been taken into 
account in Eq. (34). Therefore, from Eq. (34) one can 

expect significant changes in the 2 to phase when 

Alhh +_AfH t/2 
q H -  3A2h h +A2HHI ~ 1 (35) 

In a manner similar to the case of a free-standing 
film (Section 2.1 ), in order to realize this phase regime 
it is sufficient to have a system with the dominant non- 
linear role associated with k(T), since 62 h and 62 h con- 
tribute only to A2. This analogy becomes even more 
evident if one notices that the parameters A~ intro- 
duced in Eqs. (35) and (19) are identical. Thus, the 
solution Eqs. (34) and (35) demonstrates how the rela- 
tive contributions of different layers to the total signal 
are weighted. 

It is more difficult to extract information on the coat- 
ing thickness h when the backing is also thermally thin 
than the case of a thermally-thick backing. Actually, 
according to Eq. (35), if one of the layers is "more 
linear" than the other (i.e. ]A¢,2lh,~ I%":ln or vice 
versa), the information on h is lost: 

U2 
qH-IAI"/A:"I 

or 

qH-[Aah/3A2hl '/2 

In mixed situations, that is, for [A~hIh~IA~I~IH 
]A2hlh~ ]A2HIH or vice versa, the information on h 
appears together with that on backing thickness H: 

1/2 
q(Hh) -]AIH/3Azhl 1/2 

or 

qH3/2h -1/2 -- ] Alh/A2H[ 1/2 

3. Conclusions 

The present theoretical analysis of thermal-wave 
second-harmonic generation in thin films and coatings 
demonstrates the possibility of non-linear photo- 
thermal depth profilometry of thermally-thin layers. It 
was shown that thicknesses much smaller than the 
thermal-wave penetration (diffusion) length may be 
measured from the second-harmonic thermal-wave 
phase variations. This can be achieved in a free- 
standing film in which the dominant non-linearity is 
related to the dependence on temperature of the 
thermal conductivity; or in films which are in contact 
with a heat bath, and in which the dominant non- 
linearity is associated with the dependence on tempera- 
ture of the heat capacity. The thickness of a 
thermally-thin coating on a semi-infinite substrate can 
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also be measured using a non-linear photothermal 
technique if the non-linearities of the substrate are 
compensated by the non-linearity associated with the 
dependence on temperature of the optical reflectivity 
of the coating; or in the case where the dominant non- 
linearities are related to the C(T)  and k (T )  
dependences of the coating. In summary, the one- 
dimensional theory presented in this work predicts the 
dependence of the depth resolution of non-linear 
photothermal microscopy on specific combinations of 
important non-linear parameters of thin solid films. 
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