
Materials Science and Engineering, B26 (1994) 121-132 121 

Theory of combined acousto-photo-thermal spectral decomposition in 
condensed phases: parametric generation of thermal waves by a 
non-stationary ("breathing") sub-surface defect 

V. Gusev*, A. M a n d e l i s * *  a n d  R.  Bleiss*** 

Photothermal and Optoelectronic Diagnostics Laboratory, Department of Mechanical Engineering, 5 King's College 
Road, University of Toronto, Toronto, Ont. M5S 1A4 (Canada) 

(Received May 29, 1993; in revised form March 27, 1994) 

Abstract 

The theoretical description of the parametric transformation of the thermal-wave frequency spectrum by a "breathing" 
(i.e. non-stationary) defect in the laser-induced heat flux is presented. We derive analytical descriptions of the thermal- 
wave spectrum in the cases of harmonic and rectangular-wave periodic modulation of the thermal resistance of the defect 
by external acoustic (or other mechanical) loading. Furthermore, we establish the conditions under which the proposed 
method of active acousto-photo-thermal diagnostics allows not only the detection of an otherwise photothermally 
invisible crack without acoustic loading, but also yields information on its depth beneath the surface. 

1. Introduction 

In the development of the modern physics of photo- 
thermal phenomena, significant efforts have been 
directed to the investigation of various possibilities of 
contactless diagnostics of sub-surface cracks and 
delaminations of thin coatings [1-4]. This impetus can 
be primarily explained by the practical importance of 
the non-destructive detection of these kinds of defects 
for applications [4]. In the simplest physical situations, 
both open cracks (gas-filled gaps) and closed cracks 
(intimate contact of the two surfaces of the crack) can 
be characterized by their thermal resistance R [1-6]. 
The possibility of the photothermal visualization of a 
"hidden" crack is determined by the sensitivity of the 
experimental set-up, the depth of the crack beneath the 
surface and the magnitude of the thermal resistance as 
well [4,6]. 

In the present work the photothermal response of a 
non-stationary defect under conditions of active 
(externally forced) variation of its thermal resistance is 
theoretically investigated. The main motivation of the 
proposed method for materials evaluation is the 
following simple and self-evident idea: if it is difficult to 
characterize a sub-surface crack by traditional photo- 
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thermal methods (e.g. as a consequence of its small 
thermal resistance), then it is necessary to increase its 
thermal resistance artificially. This can be achieved by 
acoustical (mechanical) loading of the sample, as the 
induced elastic stresses may cause the enlargement of 
the crack (the increase of the gas-layer width). Under 
these conditions the thermal resistance of the 
thermally-thin gas layer, which is isolated from the 
external ambient, is directly proportional to its width h 
in both regimes of diffusional and ballistic thermal con- 
ductivity. 

In fact, as the gas molecule mean free path l varies 
inversely proportionally to the gas pressure P, while P 
in the isolated crack is inversely proportional to h, then 
loc h. Consequently, there will be no transition in the 
gas heat-conduction regime from diffusional to ballistic 
(or vice versa) with increasing gas-layer thickness. If the 
thermal conductivity in the gas is diffusional (l~.h) 
then the thermal resistance of the thermally-thin gas 
layer is given by the formula R -- h/Kg, where Kg is the 
thermal conductivity of a dilute gas, and is independent 
of P and, consequently, of h [6,7]. In the case of 
ballistic heat conductivity (l,> h) the thermal resistance 
is inversely proportional to P [5,7] and, since P-  1/h, 
it can be also expressed in the form R = h/Ks*, where 
the magnitude of the h-independent quantity Ks* is less 
that of gg. Thus ,  if acoustic loading leads to an increase 
of the gas-layer thickness, then one may expect that the 
corresponding increase in the crack thermal resistance 
will make it easier to detect by photothermal means. 
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Note that the proposed method of non-destructive 
evaluation has one important peculiarity. This method 
is only sensitive to the thermal resistances which can be 
modulated by external stresses, and not to the other 
thermal inhomogeneities of the sample (for example, 
solid inclusions composed of different material). 

For experimental purposes, as well as for photother- 
mal measurements, it is important to implement acous- 
tic loading in a contactless manner by laser generation 
of sound in the sample [6,8]. 

It is, of course, desirable to find means to enhance 
the amplitude of the laser-launched ultrasound in the 
region of an existing crack, which, for our purposes, is 
the photothermally probed region. This can be 
achieved, for example, by use of the converging 
surface-acoustic-wave technique [9]. Furthermore, an 
alternative method to enhance the defect-related signal 
characteristics is through an increase of the sub-surface 
gas-layer thickness. This can be achieved experi- 
mentally by non-contact laser thermal loading at low 
frequencies [10]. Consequently, one can design an 
experimental situation where one (pump-)laser- 
induced thermal wave is used as the driving force to 
modulate the thermal resistance through thermoelastic 
stresses, while another interrogates the modulation 
("breathing") of the thermal resistance. An essential 
aspect of this type of configuration is the investigation 
of the non-linear (or self-induced) photothermal 
processes occuring locally, i.e. the influence of the 
crack "breathing" on the laser-launched thermal wave, 
which itself is the source of the "breathing" 
phenomenon [1 1,12]. 

2. General mathematical formalism 

To demonstrate the main features of the theoretical 
method of active combination of acousto-photo- 
thermal diagnostics of materials, consider the following 
geometry: laser radiation incident on the plane surface 
of a semi-infinite sample (z >I 0) induces the heat flux 
JL (r,0;t) across the boundary z -- 0 (here r is a vector in 
the plane perpendicular to the z axis). Now consider a 
sub-surface defect (crack) localized at the depth z = H 
parallel to the irradiated surface. The parameters of the 
defect are independent of r, but can be modulated in 
time (non-stationary). Therefore, let us characterize the 
defect by its thermal resistance R=R(t). The 
mathematical description of the laser-induced 
temperature variations T is given by the homogeneous 
equation of heat conduction with the corresponding 
boundary conditions [6]: 

D gt T(r'z;t)=O (la) 

a 
- k  Z- T(r,O;t)=JL(r,O;t), T(r,~o;t)=0 (lb) 

oz 

T(r,H +O;t)- T(r,H-O;t) 

=Rk ~--~. T(r,z=H;t) - -R~(r, t)  (lc) 

where D and k are the thermal diffusivity and the 
thermal conductivity of the sample, respectively, and 
we introduced the notation ~(r,t) for the heat flux 
through the thermal resistance: 

• r( ,z =H-0;t) 

3 
= - k - - -  T(r,z =H+0;t) 

0z 

To fix our ideas, and for simplicity, let us consider 
that the laser beam has cylindrical symmetry. Then the 
application of the Fourier transform in time and of the 
Bessel transform in radial coordinate ( r = l r l ) i s  
appropriate: 

~o 

F(t) = f exp(-ie)t)/~'(e)) de) (2a) 

c~ 

F(e))=(Zer) -~ f exp(ie)t)F(t)dt (2b) 
- c o  

o o  

F(r) = f Jo(qr)[~(q) q dq (2c) 
0 

eo 

F(q) = f Jo(qr) F(r)r dr (2d) 
0 

Here F is an arbitrary function and J0 is the Bessel 
function of the zeroth order. This set of trans- 
formations reduces the partial differential problem of 
Eq. (1) to the analysis of an ordinary Fourier-Bessel 
transform differential equation in the z variable. The 
solution of this equation satisfying the boundary 
requirements at z = 0 and z = oo is: 

~(0 ~< Z~ < H - O ) =  I" (0) cosh(pz) 

1 JL sinh(pz) (3) gp 

1 
(z >I H +0)=~pp ~ exp[ -p (z  - h)] (4) 

where p(q,e))_~q2-ie)/D, Rep(q,e))>O and T (0) is 
the combined Fourier-Bessel transform ~ of the 
temperature of the irradiated surface (z --0). • (q,e)) is 
the Fourier-Bessel transform of ~(r, t). 
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The first relation, between the coefficients T (0) and 
follows from Eq. (3) and the definition of ~: 

6 -  -k  B_ ~ (r,z=H_O;t) 
Oz 
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( R 4 ) =  i dw'R(w')dP(q,w- w') 
- c o  

By differentiation of Eq. (3) we find 

ep = - kpT(O) sinh(pH)+JL cosh(pH) (5) 

The second relation can be obtained by substituting 
Eqs. (3) and (4) in the boundary condition at z = H, 
Eq. (lc): 

1 6 -  T(0) cosh(pH)+ 1 ~pp ~pp Je sinh(pH) = - ( R 4 )  

(6) 
It can be seen that the expression (R'+) on the right- 

hand side of Eq. (6) cannot be deconvolved because 
both functions R and + are time-dependent. 

It is convenient to eliminate • from the left-hand 
side of Eqs. (5) and (6) to obtain the following expres- 
sion for the surface temperature: 

¢r (0) =~pp .~L+ exp( - pH)(R-~) ) (7) 

Eq. (7) connects the surface temperature (usually 
detected in the photothermal experiments) with the 
flux across the thermal resistance. The physical 
meaning of Eq. (7) is clear: the first term on the right- 
hand side describes the surface temperature in the 
absence of thermal resistance (R--0), a simple 
dependence on the surface thermal flux. The second 
term describes the temperature changes caused by the 
reflection of the thermal waves at the boundary z = H. 
The exponential factor e x p ( - p H )  determines the 
attenuation of thermal waves in their propagation from 
the thermal resistance (z =H)  to the probed surface 
(z=0). 

Eliminating T (0) from Eqs. (5) and (6), we derive 
the closed-form equation for the Fourier-Bessel trans- 
form of the heat flux O(r,t) 

$ =JL e x p ( - p H ) - k p  sinh(pH)exp(-pH)(l(cb)  (8) 

The first term on the right-hand side of Eq. (8) 
describes the laser-induced heat flux at the depth z = H 
in the absence of thermal resistance. The second term 
accounts for multiple thermal-wave reflections 
between the thermal resistance and the irradiated 
surface. 

Eq. (8), obtained as a result of the assumed high 
symmetry of the investigated physical model, seems to 
be one of the simplest equations suitable for the 
analysis of combined acousto-photo-thermal effects. In 
the general case 
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(9) 

Therefore, Eq. (8) is the integral equation for the 
frequency spectrum of the heat flux through the 
thermal resistance. In the case of periodic modulation 
of the thermal resistance, 

eo 

n(t)= E n,  e -i"°'°' 
N = - o o  

r/2 

1 ( e -inw°t R, = -  R(t) dt (10) d 
- r / 2  

Here r is the period of modulation and w0 = 2~r/r is 
the angular frequency. Under these conditions, Eq. (8) 
becomes a functional equation [13], since Eqs. (9) and 
(10) yield 

oo 

( R ~ ) =  ~, R , ~ ( r o - n w  ° ) (11) 
n =  - c o  

Furthermore if JL is alSO periodically modulated, 
then Eq. (8) reduces to a difference equation [14]. 

In all these cases the possibility of analytical solution 
of Eq. (8) looks questionable because of the compli- 
cated frequency dependence of the coefficients in Eq. 
(8). 

We have managed to solve the problem of Eqs. (7) 
and (8) in the case when the thermal resistance is 
thermally localized close to the irradiated surface, i.e. 

IplH~.l  (12) 

which simplifies coefficients in Eq. (8). Before 
starting this analysis, let us examine the solution of Eqs. 
(7) and (8) in the limit of extremely small thermal 
resistance 

k ip[R<1 (13) 

Using the stepwise successive approximation 
method [15] we obtain as the second step 

1 .~L+exp[_p(q,w)H ] 

oo 

x Z R, Je(w-nO)o) e x p [ - p ( q , w - n w 0 ) H  ] 
n =  - o o  

(14) 
For concreteness, R(t) is now taken to be a periodic 

function, Eq. (10). In agreement with Eq. (14), the 
variation of the thermal resistance with time causes the 
parametric transformation of the laser-induced heat- 
flux modulation spectrum. It is important to note that 
in the spectrum of the surface temperature there may 
appear new frequencies, which are absent in the 
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absence of thermal resistance modulation. For 
example, in the case of harmonic modulation of the 
laser intensity, JL(t)-[1 +sin(~oLt)] , and harmonic 
modulation of the thermal resistance, R(t) - [ 1 + sin(o0t)], 
the additional frequencies ~o0, ~o L- o) o and ~OL+ ~O 0 
appear in the spectrum of the surface temperature 
already at the second step, Eq. (14), of successive 
approximations, (i.e. after the first reflection of thermal 
waves from the thermal resistance). Note that progres- 
sive broadening of the thermal-wave spectrum with the 
order of reflection from the thermal resistance also 
occurs in the absence of laser intensity modulation. 

These simple considerations illustrate one of the 
practical advantages of the combined acousto-photo- 
thermal diagnostics, that is: acoustic modulation of the 
thermal resistance may lead to the parametric genera- 
tion of new components in the surface temperature 
spectrum. Detection of these new spectral components 
may significantly increase the sensitivity of photo- 
thermal characterization of non-stationary cracks, i.e. 
those which are able to "breathe". Such a photothermal 
detection mode has the distinct advantage of back- 
ground (fundamental frequency) signal suppression via 
the monitoring of harmonics with zero background 
which arise only if a sub-surface defect exists, i.e. signal 
selectivity of defects superior to the conventional 
photothermal imaging of near-surface defects. 

3.  T h e r m a l l y - t h i n  over layer  

Let us now analyze the situation of a thermal 
resistance thermally localized close to the sample 
surface, according to relation (12). Notice that this 
situation is typical of some experimental configura- 
tions, such as in Refs. [1,2]. Under the condition (12), 
Eq. (8) simplifies to 

(°)- ~ J k - k H  q 2 - 1 ~  N ~  15) 

Consequently, the inverse Fourier transformation 
(Eq. (2a)) leads to the differential equation for the 
function ~ (q, t): 

, ~ , J L _ k H ( q : + l  O) 
DOt  R + = O  (16) 

This equation can be conveniently rewritten by 
introducing the characteristic times 

rq- 1/(Dq 2) rR-- CHR (17) 

where C = k/D is the heat capacity per unit volume: 

O ( R , ) + I I +  1 I 1 ~ 
a t  ~ rff(t) (R+)=~- -~  JL (18) 

Under the condition (12), Eq. (7) gives the following 
description of the temperature variation Fourier- 
Bessel transform, AT, related to the existence of a 
thermal resistance 

(19) 

Combining Eqs. (18) and (19), we arrive at the 
equation 

0 +k+ 11 1 
at  rR(t) A~=  CH )L (20) 

From the physical point of view rq is the charac- 
teristic diffusional cooling time of a strip of thickness 
on the order of 1/q. When the laser beam is focused on 
a gaussian spot with a radius r0, then the q spectrum of 
the launched photothermal waves has an upper bound: 
q ~ 2/ro. Consequently, in Eq. (20) rq >- ro2/4D- rr. 
The introduced time rR is the characteristic time of 
diffusional heat transfer from a thin homogeneously 
heated sub-surface strip of thickness on the order of H, 
as a result of heat transfer through the thermal 
resistance. In accordance with Eq. (20) it is the acoustic 
loading of the sample which causes the modulation of 
the characteristic time rR. 

In due consideration of the classical theory of heat 
transfer, in the model of Eqs. (18) and (19)(or, equiva- 
lently, Eq. (20)), we proceed to treat the sub-surface 
layer of thickness H as a lumped heat-capacity system 
[16] of uniform temperature. Then rR is called the time 
constant of the layer [16]. A reasonably uniform 
temperature distribution is expected in the sub-surface 
layer, if its internal resistance to heat transfer by con- 
duction is small compared with the externally 
modulated thermal resistance of the crack 

H/k~R (21) 

Under the condition (21), the major temperature 
gradient would occur throughout the crack itself (i.e. 
the gas-filled layer). Let us note that if the inequality 
(21) does not hold (i.e. H/k>_ R), then for the thermally- 
thin layer, condition (12), the inequality k l p I R "~ 1 will 
be valid. Therefore, in agreement with condition (13), 
the problem may be solved by the stepwise successive 
approximation method [15]. 

The solution of Eq. (20) satisfying the initial condi- 
tion A 7"(t ~ - oo ) = 0 is 

1 - t' A ~ r ( t ) = ~  f a t ' Z ( t  )exp - 
0 t - I  t 

(22) 
In the case of a gaussian laser intensity distribution, 

i.e. Jt=Jt(t)exp(--r2/ro2), the inverse Bessel trans- 
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formation, Eq. (2c), of Eq. (22) leads to the following 
description/solution of the surface-temperature 
variations along the axis of the system (r = 0): 

1 i J L ( t - - t ' ) {  J" dt" 1 
AT(O,O;t)=~-~ dt' l + t , / r  exp - ZR(t")] 

t - t '  

(23) 

We will use Eq. (23) in our further analysis. 
As two important examples demonstrating the 

nature and power of the mathematical approach 
developed, we will examine harmonically modulated 
thermal resistance R 

R(t) = R 0[1 + sin(o~ 0 t)] (24) 

and rectangular-periodic modulation 

(25a) 

0 for 
R(t) = 

m = 0 ,  +1,  + 2  ... .  

o o  

=R 0 ~. p n e  -inw°' 
t / =  - - o o  

--R0 - +  Z 2 
2 n=l :~(2n-  

Here R 0 -- const, and 

1) s in[(2n-  1)w0t]} (25b) 

exp(iz~n)- 1 
p ,  = (25c) 

2i0rn 

are the dimensionless complex amplitudes of the 
spectral components of the modulation function. The 
modulation Eq. (24) introduces into the system only 
non-zero average resistance and the fundamental 
frequency w0, while the spectrum of the modulation, 
Eq. (25a), is wide-band, albeit discrete. Note that the 
square-wave spectral decomposition function, Eq. 
(25b), contains only odd harmonics of the fundamental 
frequency. 

In agreement with the adopted models, Eqs. (24) 
and (25), the thermal resistance periodically becomes 
equal to zero. Thus, we will mainly turn to the examina- 
tion of the situation when the magnitude of the thermal 
resistance actively induced and modulated by external 
acoustic loading considerably exceeds the value of 
possible residual thermal resistance of the closed crack. 
Lastly, for the sake of completeness we will investigate 
in this work the case of c.w. laser action, i.e. 
unmodulated input thermal flux to the sample surface 

in the presence of a.c. acoustic modulation of the 
defect. In other words, we will examine the process of 
parametric thermal-wave excitation by an acoustically 
driven breathing crack alone, when only a constant 
heat flux on the system is present in the absence of 
acoustic loading. 

4. One-dimensional geometry 

One of the important features of the physical 
phenomena under the present investigation is the 
existence of limited convergent solutions for A T even 
in the one-dimensional (l-D) approximation (i.e. 0JtJ 
Or-0) ,  when the background temperature T itself 
exhibits an unbounded increase near the surface: 
T(0; t ) -  ~/t. The physical explanation of this follows 
from the fact that in agreement with Eq. (19) AT is 
caused by the modulation of the heat flux, which is 
bounded, but not by the temperature field, which 
diverges. 

4.1. Harmonic thermal-resistance modulation 
In the 1-D geometry ( rr "> r, rR, i.e. r 0 --" oo ) typical of 

some photothermal depth-profiling experiments, the 
temperature variation, Eq. (23), induced by the 
harmonic modulation of the thermal resistance, Eq. 
(24), can be expressed in the form: 

t f 2 

+ ~. r (n)Im U n,0,i 2 
n = 1 (DO TR 

( x exp - inwot-i ~ n (26) 

where O~o=--JL/cH~oo is the characteristic amplitude 
of thermal waves, F(n) is the gamma function, U is the 
confluent hypergeometric function and f is  the auxiliary 
function related to sine and cosine integrals Si and Ci 
[17] 

f(x)=Ci(x)sin(x)-[Si(x)-2] cos(x) (27) 

In the limit of weak modulation of the thermal 
resistance when the characteristic time rR is much less 
than the period of the resistance modulation ( rgW 0 ,* 1 ) 
the solution Eq. (26) takes the form: 

r(n) AT(O,O;t)=Oo~o rRW0+ ~ ,  ~ ( r R ( / ) 0 )  n 
n = l  

X sin[mo0t - 3r(n - 1 )][ (28) 
J 
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Eq. (28) explicitly describes the broadening of the 
thermal-wave spectrum as a result of multiple reflec- 
tions of thermal waves from the time-modulated 
thermal resistance. From the structure of Eq. (28) it can 
be seen that the nth harmonic of the fundamental 
frequency is excited after the nth reflection of the 
thermal flux from the resistance R 0. Its dimensionless 
amplitude A n is proportional to (rRW0)"--R0" with a 
phase delay equal to ¢, = x ( n -  1). Thus, all the odd 
harmonics start to grow with increasing R 0 in phase 
with the fundamental frequency, while all the even 
harmonics grow out of phase with the fundamental. 

In the limit of strong modulation of the thermal 
resistance (rR~00"> 1) the solution Eq. (26) transforms 
to: 

where f ( x )  was defined in Eq. (27) and g(x ) i s  given 
by 

g ( x ) = - C i ( x )  cos(x) -  [S i (x ) -21  sin(x) (34) 

Then, in view of Eqs. (30) and (31), the description 
of any thermal-wave harmonic can be given in terms of 
the functions l and  g. 

The results of the calculations of the dimensionless 
amplitudes and phases of the three first harmonics 
and their contribution to the average temperature 
(A0) as functions of the dimensionless parameter 
TR/'E = (rRtO0)/2Jr are presented in Figs. 1 and 2. These 

co 
AT(0,0;t)= 0,~ ° zl+ ~. 2 

n=l F/ 

× sin[n~o0t- ~ (3n -2)1 (29) 

Eq. (29) describes the saturation of both the contri- 
bution to the average temperature and the amplitudes 
of the harmonics (A, - 1/n). It shows that the phase of 
the nth harmonic for R 0--, oo exhibits an additional 
delay equal to (zl/2)n relative to its phase for R 0 --" 0. 

In order to describe the evolution of the spectrum of 
the parametrically excited thermal waves with 
increasing thermal resistance in the intermediate 
regime, it is necessary to use the exact analytical 
solution, Eq. (26). Towards this goal, note that the 
calculation of U(n,0,z) for n/> 3 can be performed with 
the help of the recurrence relation [ 17] 

1 
U ( n , O , z )  - - -  

n ( n - 1 )  

1.0 .... 

0 . 8 -  A 

4 0.6. 

0.4, 

0.0 ~ A3 
0.0 03 li0 13 210 2.5 

1; R 

Fig. 1. Dependence of the dimensionless amplitudes of the 
spectral decomposition of the surface temperature, Eq. (28), on 
the parameter (rR/r) in the case of harmonic modulation of the 
thermal resistance of a non-stationary defect (crack) in the 1-D 
regime. Curve (1), A0 contribution to the average temperature; 
curves (2)-(4), contribution of the thermal-wave harmonics 
A I - A  3. 

2re- 

× {[2(n - 1) -z ]  U(n - 1,0,z) 

- U ( n  - 2 ,0 , z ) }  ( 3 0 )  

Therefore, all calculations of the confluent hyper- 
geometric function are reduced to the calculations of 
U(2,0,z) and U(1,0,z), which are also related: 

U(2,0,z) = l  [(1 +z)U(1,O,z) -zU(1,1 ,z )]  (31) 

Furthermore, the functions U(1,i,z) and U(1,0,z) can 
be expressed through the auxiliary functions f and g 
related to sine and cosine integrals [17] 

U(1,1,ix) =g(x) - i f (x )  (32) 

U ( 1 , 0 , i x )  = 1 - xf(x) - ixg(x) (33) 

t~2 

o./I, 
0.0 03 f.o E5 210 2.5 Xg 

Fig. 2. Dependence of the phases of the spectral decomposition 
of the surface temperature, Eq. (29), on the dimensionless 
parameter (rR/~) in the case of harmonic modulation of the 
thermal resistance of a non-stationary defect (crack) in the 1-D 
regime. Curves (1)-(3), contributions of the phases ~1-¢3 of the 
thermal-wave harmonics. 
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plots of Eq. (26) exhibit the asymptotic behavior 
indicated by Eqs. (28) and (29) in the limits of small 
and large values of 3R/3, respectively. 

4.2. Rectangular-wave thermal-res&tance modulation 
In the case of rectangular periodic modulation of the 

thermal resistance, Eq. (25), the solution Eq. (23) may 
be expressed in terms of special functions without the 
one-dimensionality assumption: 

0 
&3r At(0,0;t) = 

exp E1 -~ - E ~ \  rR /J 

/ 2 m + l ]  
for mr< t < / ~ /  3 (35) 

\ z /  

where m--0, + 1, + 2 . . . .  , and E 1 is the exponential 
integral [17]. The expansion of Eq. (35) in Fourier 
series with complex amplitudes leads to the following 
expression for the nth Fourier component of A T(0,0;t): 

,L, 
A T~ = - ~  exp PnEl 2 ~in 

X(exp(iztn)E'(~R+2:R)--EI(--~R ) 
+ e x p ( 2 : t i n ~ ) { E , ( ~ - 2 : f i n ~ )  

- El[ ( ~ -  2erin ~)  (1 +~r~)l})l (36) 

Pn was defined in Eq. (25c). The derived expression 
Eq. (36) completes the description of the signal after 
insertion in a conventional complex Fourier series 
expansion of A T(0,0;t), Eq. (25b). 

In the 1-D geometry (rr'> 3,3u) the general solution 
Eq. (36) reduces to: 

JL3r{ 1 -- exp[i:tn --(3/2 rR)] 1 
ATn = - ~  p . -  ~ ~ j (37) 

Using the expression for Pn, Eq. (25C), it is con- 
venient to rewrite Eq. (37) as 

{ [ A T n = O ~  Pn 3Rexp(i:~n) 1--exp -- (38) 
3 

where 0r---JLrlCH is the characteristic amplitude of 
thermal waves. To compare the spectrum of the 
thermal waves to that of the resistance modulation it is 

useful to present the temperature field A T in the form 

AT(O,O;t)=O, Ao+ ~ A, sin(ntOot-~,) (39) 
n=l 

where 

A0='{I   R[lexp(   )lJ ,40a, 
2 

A n - 
d(3/3~) 2 + (2azn) 2 

x yell1-(- 1)112+{ [ l - 2 : z n  J exp ( -  ~ ) ] } 2  (40b) 

-{'[ - t a n  ~ ~ n - -  1 -exp  - 
3 

for n odd (n=2m -1,  m =1, 2, ...) (40c) 

,(¢) ~ . = ~  tan- 2nn 

for n even (n =2m, m = 1, 2 .... ) (40d) 

In agreement with Eqs. (40a)-(40d) in the limit of 
weak thermal resistance modulation ( rR '* 3/2zrn) 

a 0 -~ (1/2)(~Ur) (4 la) 

A 2 k - 1  =(2/:zn)(rUr) (41b) 

A2k ~" 2(3R/r) 2 (41C) 

Consequently, all the even harmonics of the funda- 
mental frequency are seen to be excited already after 
the second reflection of the thermal flux from the non- 
stationary crack. This is one of the major differences 
between the cases of narrow-band (Eq. (24)) and wide- 
band (Eq. (25b)) thermal-resistance modulation. For 
small (rR/r) the odd spectral harmonics are 
synchronous with the thermal resistance modulation: 
#2k_l~-'~n(3R/3)'~l (Eq. (40c)), while the even 
harmonics are excited with a phase delay of zr/2: 
(~2k~:r/2+2ern(ra/3) (Eq. 40d)). However, in the 
limit of strong thermal resistance modulation (3R'> r) 
the amplitudes of all the components saturate: 

A 0 = 1/8 (42a) 

A ~ - - - - -  1+ (42b) 
2:in ~n 
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The phases also saturate for r R ~ r/2Jrn: 1.75 I 
/ 

¢2k-1 = tan- l [2/ : r (2k-  1)] (43a) 15° 1 
1.25 

¢zk ~ zr (43b) 1 
/ 

1.00~ 
For sufficiently large numbers n, one can further -~ | 

examine the behavior of the thermal waves generated 0.75 
under the condition r / 2 n n ~  r e'~ r. If these inequali- 0.50 
ties are valid, then the amplitudes of both odd and even 
harmonics are increasing proportionally to R0: 0.25- 

0.00- 

Z ~ r R ~ l + [  1 - ( - 1 ) ' J 2 r  --zrn j (44) 0.0 

For n ,> 1 and r R "~ r, Eq. (40c) for the phases of the 
odd harmonics reduces to the form 

~, _tan_l  [ z t n ( r R / r ) 1  (45) 
1 + 2(gtr/'t'R/l") e 

(2) 

(i) 

(3) 

(4) 

(5) 

0.5 1.0 1.5 2.0 2.5 

Fig. 3. Dependence of the amplitudes of the spectral decomposi- 
tion of the surface temperature, Eqs. (404) and (40b), on the 
parameter (rR/r) in the case of rectangular-wave periodic 
modulation of the thermal resistance of a non-stationary defect 
(crack) in the 1-D regime. Curve (1), A 0 contribution to the 
average temperature; curves (2)-(5), contributions of the 
thermal-wave harmonics A I-A 4. 

which exhibits non-monotonic dependence of the 
phase on rR/r. 

The results of our calculations of the dimensionless 
amplitudes A o - A  4 and the phases ¢1-¢5 as functions of 
the dimensionless parameter rR/r are presented in 
Figs. 3 and 4. These plots are based on Eqs. 
(404)-(40d). According to Fig. 4, the non-monotonic 
phase changes of the odd harmonics commence with 
/ ' / = 3 .  

The theory developed in this work predicts a signifi- 
cant dependence of both the amplitudes and the phases 
of the thermal waves in 1-D geometry on the relative 
magnitudes of the time constant rR of the sample and 
the thermal resistance modulation period r. The plots 
in Figs. 1-4 demonstrate that, observing experi- 
mentally the effects of the onset of amplitude or phase 
saturation, one can identify the situation when z R ~ r. 
Thus it is possible to measure experimentally the 
quantity HRo ~- r /C from the known value of the 
thermal resistance modulation period r. If the thermal 
resistance can be determined independently, then this 
parametric thermal-wave technique provides a method 
of characterizing the position of the crack (i.e, the 
depth H) beneath the irradiated surface. 

If one is interested in a self-consistent experimental 
method, then there is another possibility to determine 
thermal resistance. In the limit of weak thermal 
resistance modulation (i.e. rR/r'~ 1) the dimensional 
amplitudes of those spectral components of AT(0,0;t) 
which initially exist in the spectrum of R(t) do not 
depend on the depth H because they are proportional 
to 0,oo.~(Z'R/r) -- JLRo, where the symbol 00,0,3 stands for 
either 0o,0 or 0z. Thus increasing the modulation 
period r from r 0 - r e  to too "> rR, we arrive at the 
possibility of experimentally determining the thermal 

- o -  - -  

2 

(even harmonics) 

(3) 

o.o o.~5 030 

(1) odd harmonics) 

055 
"JR 

T 

1.oo 1.25 1.50 

Fig. 4. Dependence of the phases of the spectral decomposition 
of the surface temperature, Eqs. (40c) and (40d), on the 
parameter (rR/r) in the case of rectangular-wave periodic 
modulation of the thermal resistance of a non-stationary defect 
(crack) in the 1-D regime. Curves (1)-(5), contributions of the 
phases ¢~-¢_s of the thermal-wave harmonics. 

resistance R 0 (and then the sub-surface crack position 
H-- ro/CR o) by performing absolute-temperature mea- 
surements. We also note that, according to Eqs. (29), 
(40a) and (40b), in the limit of strong thermal resis- 
tance modulation (~'a ~> r) the thermal-wave amplitudes 
become independent of R 0 (A T -  0~,~ -JLr/CH).  Con- 
sequently, in the regime rR'> r the problem of the 
determination of the overlayer thickness H reduces to 
the absolute measurement of the thermal-wave ampli- 
tude at the probing surface. 
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5. Quasi-stationary regime 

In usual photothermal experiments the quasi- 
stationary regime is typical for photothermal micro- 
scopy. In this mode the penetration length of the 
thermal wave is controlled by 3-D heat diffusion from 
the laser-heated surface spot, i.e. r,> rr. In the com- 
bined acousto-photo-thermal configuration examined 
in the present work, the quasi-stationary condition is 
described by the inequality r'>(rr, rR). Under this 
condition one can proceed further in the general 
solution of the problem, omitting the time derivative in 
Eq. (20). Then the solution corresponding to Eq. (23) 
is: 

1- r 
A T(0,0;t)=~--H JL(t) exp[Vr/VR(t)] El[Vr/~R(t)] (46) 

In the 1-D geometry ( rr ~> Va), Eq. (46) reduces to 

A T(0,0;t) ~- JL(t)R(t) (47) 

i.e. to the case of 1-D quasi-stationary frequency 
mixing. Note that information on the overlayer thick- 
ness H completely disappears from Eq. (47). 

5.1. Harmonic thermal-resistance modulation 
In the case of harmonic modulation of the thermal 

resistance, Eq. (24), the solution Eq. (46) can be 
presented in the form: 

AT(0,0;t) = Or IAo 
f 

+ 2 A. sin moot---~(n-1)  (48) 
n=l 

where 

exp( ) A 0 = f  dx _ r r 
( xfxfx~ 1 + 1) 2TR X (49a) 

2nexp( ) An = 2 ! x n-I dx _ r_.z_ ~ 
x/x--+]- (fx + i + 1) 2rR x (49b) 

Here 0 r = JLrr/CH is the characteristic amplitude of 
temperature variations. 

According to Eq. (48), each next higher harmonic in 
the quasi-stationary regime is delayed in phase relative 
to the one before, i.e. Cn+l-~n=3: t /2 .  In the case of 
weak thermal resistance modulation (rR "~ rr), Eq. (48) 
leads to A 0 = r a / r  r and An--2F(n)(rR/r,.) n, demon- 
strating that the nth harmonic is parametrically 
generated after the sequence of n reflections of thermal 
flux from the breathing defect. In the limit of strong 
modulation ( rR ~> rr), the solution Eq. (48) describes the 
saturation of the harmonics (An=2/n) and a 

logarithmic zeroth-mode contribution to the average 
temperature: A0 ~" ln(rR/rr). 

For the analysis of the intermediate regime, one 
must use the general solution, Eq. (48). It is convenient 
to present the amplitudes in the form 

A o =qJ(1) (50a) 

An = ( _  1)k2k+ 1 n 1 q J ( k + 2 )  (50b) 
k=0 

where we introduced the binomial coefficients (~) 
[17] and the notation W(m) for the integral 

exp( ) W(m)_ [" dx _ rr 
x/~-]- ( xx/x+ 1 + 1) m ~rR x (51) 

The recursion relation 

2 [ 1 
W(m>~2)= 

m - 1  12m-I 

+ rr [q j (m_l )_qS(m_2) ] l  (52) 
2 "Ca ! 

gives a way of reducing the calculation of the 
amplitudes to the known functions 

W(0)= ~ 2 : r  ( ~ ) e x p  (rf--~R) erfc ( r ~ r R  ) (53) 

and 

exp( ) dx _ rr 
W(1)=W(0)- f x + l + l  2vRX (54) 

The latter integral can be expressed in terms of the 
generalized hypergeometric functions : F 2 [18]; 
however, it is more convenient to calculate it numeri- 
cally. The results of the calculations of the dependence 
of the dimensionless amplitudes A o - A  3 on  the 
parameter rR/rr are presented in Fig. 5 (curves ( 1 )-(4)). 

5.2. Rectangular-wave thermal-resistance modulation 
In the case of rectangular-wave periodic modulation 

of the thermal resistance, Eq. (25a), the solution Eq. 
(46) gives the following description for the nth- 
component complex amplitude of the photothermal 
waves: 

" :0r exp (55) 

According to Eq. (55) the spectrum of A T(0,0;t) is 
identical to that of R(t). We graphically present the 
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dependence of the dimensionless normalized 
amplitude component A T,, of the thermal wave (i.e. 
A TJOrp~) in Fig. 5 (curve (5)). The even harmonics of 
the fundamental frequency appear in the quasi- 
stationary regime only in the next approximation in the 
small parameter ( r / r ) .  Using the condition 
r'>(rR,27rnrr) to expand Eq. (36) in a McLaurin 
series, we obtain 

\3R/ ~R (56) 

The derived small contribution to the solution Eq. 
(55) for AT,, ( r~oo)  describes transient processes 
taking place in the system on a time scale significantly 
smaller than the modulation period r. 

From Eq. (55) the thermal-wave amplitudes increase 
without bound with increasing thermal resistance: 

AT,(rR ~ r~) = O r ln(rR/r~)p, (57) 

This occurs in the same manner as the contribution 
to the average field in the case of harmonic modulation. 
At this point it is important to recall that these 
solutions were derived in the quasi-stationary approxi- 
mation, particularly under the condition rR'~ 3, and 
that they are limited (bounded) by the modulation 
period 3. 

In the case of square-wave thermal-resistance 
modulation, it makes physical sense to examine one 
more (a third) limiting regime for the relative values of 
the characteristic times, that is 3R >> (3, 27rn3r) in the 
system under consideration. 

2.0 

1.5 

~Z 
0.5 

~"  (3) 
f ~  (4) 

0.0 I ~ - ~ " ' ~  ~ 
0 0  0.2 0.4 0 6  0.8 10  xR 

Fig. 5. Dependence of the dimensionless amplitudes of the 
spectral decomposition of the surface temperature, Eq. (50), on 
the parameter rR/rr in the quasi-stationary regime in the case of 
harmonic modulation of the thermal resistance. Curves (1)-(4), 
contributions to the average temperature A 0 and the amplitudes 
of the thermal-wave harmonics A 1-z3; curve (5), AT,/Orp~ in 
the case of rectangular-wave periodic modulation of thermal 
resistance; from Eq. (55). 

A simplification of Eq. (36) under this condition 
leads to: 

Or 

2Jrin 

x exp 

X[ l 
- E l  

{exp(iern)ln (1 +~r~) 

(2zlin ~ )  

- 2erin r rr - zlin) 

(58) 

Eq. (58) shows that in thecase of 100% modulation 
of the thermal resistance (this physically corresponds 
to the opening of a vacuum-fiUed closed crack) the 
amplitudes of all the thermal-wave spectral com- 
ponents are simply inversely proportional to H, since 
O r ~- 1/H. The dependence of temperature variation on 
the parameter r/r~, i.e. Eq. (58), describes the transition 
from 1-D to 3-D heat conduction with increasing value 
of r/rr and contains no additional information about 
H. In the limit r,> 27 tn3  r, the solution Eq. (35) can be 
simplified 

AT',  = O r l n ( r / r r ) P n  (59)  

thus demonstrating the logarithmic growth of tem- 
perature with the increase in modulation period r 
under the conditions of 2-D heat conduction in the thin 
strip 0 ~< z ~< H, which is thermally isolated from both 
sides. 

The theory developed predicts that experimental 
observation of the onset of saturation of the thermal- 
wave amplitude with increasing parameter rR/rr, Fig. 5, 
leads to the identification of the situation when rR = rr. 
Thus the measurement of the quantity HR o -~ ro2/4k is 
possible. In a manner similar to the 1-D geometry, the 
determination of R 0 may be achieved by the absolute 
measurements of temperature in the limit of weak 
modulation of the thermal resistance. This is possible 
because for "KR/3r "~ 1 the amplitudes of the spectral 
components belonging both to AT(t) and R(t) are 
proportional to Or(rR/rr)~-JLRo. The thickness H of 
the thin strip may also be extracted from the absolute 
measurements of temperatures in the limit of strong 
modulation of the thermal resistance when the 
amplitudes of all the thermal-wave spectral com- 
ponents are proportional to 1/H, Eqs. (48) and (58). 

It is interesting that in the case of weak harmonic 
modulation of the thermal resistance, r R "~(r, rr), both 
in the 1-D and in the quasi-stationary regimes the 
amplitudes of the higher harmonics (n>_,2) are still 
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dependent on the overlayer thickness H: 

0 ..... tAn-  Ro"H n-l (60) 

Consequently, they are sensitive to the sub-surface 
position and the value of the thermal resistance. The 
measurement of these amplitudes should provide 
better contrast in the combined acousto-photo-thermal 
microscopy than in the conventional mode, which only 
detects the fundamental frequency. 

Finally, let us describe the possible limits of the gas- 
filled layer thickness variation h in the above- 
developed theoretical model. The minimum values of h 
are determined by the condition (21) within the range 
of validity of the lumped heat-capacity analysis. Under 
the assumption R-~ h/kg this leads to the condition 

h~>(~) H (61) 

Note that for the gas-metal interface the typical 
situation is (kg/k)- 10 -4. The maximum values of h 
are controlled by one of two factors. First, the physical 
concept of thermal resistance is valid only for 
thermally-thin gas layers: in l-D, this requires the fulfil- 
ment of the inequality 

h ~ x/Dgr (62) 

Dg is the gas thermal diffusivity and Dg/O- 1 for a 
gas-metal combination. In the quasi-stationary regime 
the equivalent requirement to condition (62) is h '~ r 0. 
Second, in the 1-D regime (rr "> 3, rR) the upper limit 
for h is set by the inequality rr "> rR, which is equivalent 
to 

h'~ (~/)2(~ H) (63) 

In the quasi-stationary regime (r~>rr, rn) the 
inequality r,> rn yields an upper bound for h: 

h '~ (Dr lZ (~  H ] ~k (64) 

Therefore, under the condition (12) of a thermally- 
thin strip (overlayer), the combined inequalities shown 
below determine the possible non-zero range of h 
variations. For the 1-D regime these conditions are: 

k  7I]  k/j (65) 

and for the quasi-stationary regime 

~ H ~ h ' ~ m i n [ r o , ( ~ ) Z ( ~ H ) l  (66) 

6. Conclusions 

We investigated the process of parametric excitation 
of thermal waves by a sub-surface non-stationary 
defect localized in the path of a c.w. laser-induced heat 
flux. The analytical description of the thermal-wave 
frequency spectrum at the irradiated surface in the 
cases of harmonic and rectangular-wave periodic 
modulation of the thermal resistance of the defect by 
an external acoustic field has been presented. We 
described the role of multiple reflections of the thermal 
flux between the defect (crack) and the probed surface 
in synthesizing the amplitude and phase of the thermal- 
wave Fourier components at various frequencies. We 
also showed how these parametric processes cause 
broadening of the thermal-wave spectrum. 

The proposed theory comprises a scheme of active 
acoustic modulation of the thermal resistance of the 
defect through its periodic opening by an applied stress 
field, which gives a methodology for characterizing 
sub-surface cracks which are photothermally invisible 
in the absence of acoustic (mechanical) loading. We 
also determined the conditions under which this com- 
bined acousto-photo-thermal materials diagnostic 
method can be applied to obtain information on the 
sub-surface localization of cracks. 

This type of information is defect-selective in the 
sense that a signal appears at higher than fundamental 
harmonic frequencies only if a sub-surface defect 
exists, while the strong fundamental signal is efficiently 
suppressed by synchronous lock-in phase-sensitive 
means. 
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