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Abstract: Thermal-wave Slice Diffraction Tomography (TSDT) is a
photothermal imaging technique for non-destructive detection of sub-
surface cross-sectional defects in opaque solids in the very-near-surface
region (µm-mm). Conventional reconstructions of the well-posed
propagating wave-field tomographies cannot be applied to the ill-posed
thermal wave problem. Photothermal tomographic microscopy is used
to collect experimental data that are numerically inverted with the
Tikhonov regularization method to produce thermal diffusivity cross-
sectional images in materials. Multiplicity of solutions, which is
inherent to ill-posed problems, is resolved by adopting the L-curve
method for optimization. For tomographic imaging of sub-surface
defects, a new high-resolution radiometric setup is constructed, which
reduces the broadening of images associated with previous low-
resolution setups.
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1. Introduction

Thermal-wave inverse problems are ill-posed problems, meaning they either have no solution,
no unique solution or unstable solution. The main difficulty with such problems is that a
regularization method is needed to isolate a unique solution. The ill-posed problem examined
in this work is associated with Thermal-wave Slice Diffraction Tomography (TSDT), a
relatively new cross-sectional photothermal imaging method for the detection of sub-surface
defects in materials through mapping of the cross-sectional slice thermal diffusivity. Images
obtained from conventional thermal wave imaging are two dimensional "projections" of sub-
surface features in the sense that the image is formed by mapping the sample surface
temperature in a two dimensional raster scan without regard to the actual depth position of
scatterers. Cross-sectional photothermal tomographic imaging refers to a line scan that
obtains information about a sample cross-section normal to its surface plane. Although some
early work has been done in obtaining elementary depth information on sub-surface features
(defects) [1], it was not until the 1990s that TSDT was introduced in this Laboratory in a
concerted effort to develop a viable tomographic imaging technology using thermal waves [2-
8]. Multiplicity of solutions was found to be an inherent feature to the (ill-posed) thermal-
wave tomographic reconstruction problem. As a result, a “brute-force” approach [7,8] was
used to obtain a proper (reasonably stable) solution. However, in order to pinpoint a
reasonable solution, it is important to adapt a rigorous optimization approach. This is
especially important, if TSDT is to be successfully implemented for practical and industrial
applications. In this work, a suitable optimization algorithm in TSDT is developed in
conjunction with a high-resolution photothermal radiometric experimental tomographic setup.
The purpose of such a high-resolution setup is to overcome the problem of image broadening
associated with earlier low-resolution experimental set-ups [8]. The optimization algorithm is
necessary for speeding up the image reconstruction procedure under optimal sensitivity and
noise conditions.

2. Theoretical and Numerical Model

A forward theory of the thermal wave propagation process has been developed utilizing
thermal wave diffraction as an integral solution of the pseudo-wave Helmholtz equation [2,3].
The theoretical model that represents the behavior of a three dimensional thermal wave [6,9]
is correlated with the Born approximation utilizing the Tikhonov regularization method to
invert almost singular matrices resulting from the ill-posedness of the inverse thermal-wave
problem [7]. The Born approximation results in the following integral equation [7]
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wherer andr 0 are the coordinates of the observation point and the source point, with respect
to the origin,Ts is the scattering field,G0 is the appropriate Green function.F(r ) is the object
function and it represents the inhomogeneities of scattering object region R. The object
function F(r ) is zero at every point outside region R and has a non-zero value that represents
the ratio of thermal diffusivities inside region R. If the inhomogeneous region R is removed
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from boundary S, thenF(r ) would be zero everywhere and thus the medium inside the
volume enclosed by the boundary S would be totally homogeneous. Therefore,F(r ) is defined
as follows:
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whereq0 is the complex wavenumber andn(r ) is a measure of the variation of the thermal
diffusivity values in the scattering object R from that of the surrounding (reference) region
R0. The ratio in equation (2b) has been symbolized byn(r ) deliberately, to suggest the
analogy of this parameter to the effects of variations in the refractive index in conventional
optical propagating fields [2,3]. The object function reconstructed is the non-dimensional
functionn2(r )-1, referred to as thecontrastof the image. The background thermal diffusivity,
α, thermal conductivity,k, modulation frequency,f, and laser beam size,w, are the necessary
input parameters for calculating the homogeneous thermal-wave field.

Equation (1) is defined by a system of linear equation asAx=b, where A is an ill-
conditioned matrix that represents the discretized version of the intergral equation (1),b is
the experimental known vector andx is a sought solution. To solve the ill-posed problem,
Tikhonov’s regularization method is used and the regularized solution,xσ, as proposed by
Tikhonov is [10],

}||)(||||min{|| 202 xxLbAxx −+−= σσ (3)

wherex0 is an initial estimate of the solution, and matrixL is either the identity matrixI or a
discrete approximation to a derivative operator. The regularization parameter,σ, controls the
weight given to minimization of the side constraint,||L(x-x0)||2, relative to minimization of
the residual norm, ||Ax-b||2. For this work, no particular knowledge about the desired solution
is available, sox0=0 is used; also matrixL is set as the identity matrix,I . In an ill-posed
problem, small perturbations in the experimental data cause large perturbations in the solution
[11]. Therefore, a regularization method must be implemented to stabilize the problem. The
fundamental idea of Tikhonov regularization is to introduce a trade-off between the size of
the residual norm ||Axσ-b||2 and the side constraint ||xσ||2. By choosing a suitable
regularization parameter,σ, a satisfactory solution can be found for which the two constraints
are balanced [12]. Too much regularization leaves out information actually available inb
while too little regularization produces a solution dominated by errors. One method for
choosing the optimal regularization parameter is the L-curve method [12,13]. This is ana
posteriori method based on plotting the side constraint of the solution versus the residual
norm for a particular regularization parameter. A schematic of the L-curve is shown in Figure
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1 and, as can be seen, the name “L-curve” is derived from the fact that the curve is L-shaped.
The “corner” of the curve corresponds to a regularization parameter that is optimal [12]. The
“flat” part of the L-curve is dominated by regularization errors occurring from oversmoothing
and the “vertical” part is dominated by perturbation errors occurring from undersmoothing.
Thus the corner of the L-curve corresponds to a solution in which there is a fair balance
between the regularization and perturbation errors.

Fig. 1. L-curve method: the corner of the curve corresponds to optimum regularization.

3. Experimental Method

The experimental technique needed to acquire the scanned data for thermal-wave tomograms
is described briefly. The data are obtained at one cross-section from different laser and
detector positions. Historically, the first detection method used to obtain tomographic slice
data was photopyroelectric detection [4,14], which was limited to transmission
measurements. A photothermal infrared radiometric detection method then followed.
However, a disadvantage was that a low-spatial-resolution setup was used, which resulted in
image broadening [8]. In the low-spatial-resolution set-up the beam spot size was focused to
about 50µm and the dimensions of the detector active area were 50µm x 50µm. The major
disadvantage of the system was that the collected infrared radiation with paraboloidal mirrors,
was focused to a spot size much larger (~70µm) than the detector active area. This not only
led to a significant loss of signal but also made the detector size the limiting factor of the
observed image area. When a detector with an active area of 1mmx 1mm was used [8], there
was no signal loss, but a broader image was seen. This broadening, due to the detection size,
was improved by constructing a new high-resolution experimental configuration for
photothermal radiometric tomographic application. In the new set-up the infrared radiation is
collected by two diffraction-limited reflecting objectives as oppose to the paraboloidal
mirrors. Figure 2 illustrates the experimental configuration. A 514.5-nm cw Innova Ar+ laser
from Coherent is modulated and then focused onto a sample to a spot size of approximately
27 µm. The modulation is performed by an external acousto-optic modulator (AOM)
(ISOMET 1201E-1). The blackbody radiation from the optically excited sample is collected
and collimated by the two axially aligned reflecting objectives. It is then focused onto a
liquid-nitrogen-cooled photoconductive HgCdTe (Mercury-Cadmium-Telluride) detector
(EG&G Judson Model J15D12-M204-S050U). The HgCdTe detector has an active square
size of 50µm x 50 µm and a bandwidth of 2-12µm. The detector is operated at a cryogenic
temperature of 77 K since its efficiency increases with decreasing temperature. An
antireflection-coated germanium window with a transmission bandwidth of 2-14µm is
mounted in front of the detector to block any visible radiation from the pump laser. Before
being sent to the digital lock-in amplifier (Stanford Research System Model SR850), the
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photothermal-radiometric signal is amplified by a preamplifier (EG&G Judson Model PA-
300) specifically designed for operation with the HgCdTe detector. The lock-in amplifier,
which is interfaced with a personal computer, receives the preamplifier output and rejects all
stray signals except those that have the same modulation frequency as the excitation beam.
This process of data acquisition, storage, and scanning is fully automated. The
instrumentation has the ability to perform in either reflection or transmission mode by
directing the laser beam to the front or rear surface of the sample using removable mirrors.

Fig. 2. High-resolution tomographic radiometric microscope experimental set-up.

In the experimental set-up, both the modulated heating source and the detector are
localized, and therefore can be scanned independently. For each laser position, data are
collected at several detector positions along a straight line. This defines the cross-sectional
plane (tomographic scan) to be imaged, e.g. line PQ in Figure 3. The scan for the same cross-
section is repeated for different laser positions. The experimental information is then used to
reconstruct the respective cross sectional slice, using the method outlined in section 2. In
practice, moving the sample becomes equivalent to moving the detector. For example, the
transmission tomographic scan is performed by first positioning the laser and then moving the
sample and laser together over the detector. Figure 4 illustrates a tomographic scan in
transmission with three detection points and three laser positions, which ensures that the same
cross-section is maintained at all times. When detector and laser are aligned with each other
the signal is highest. For laser position #1, the maximum occurs at point 3; for laser position
#2, the maximum occurs at point 2; and for laser position #3, the maximum occurs at point 1.
These three scans (or more) can be used to reconstruct the experimental tomographic scan. In
reflection mode the tomographic scan is achieved by attaching a 45o mirror to the first
reflective objective, Fig. 2. The dead optical field that the reflective objective produces limits
the size of the mirror. For this reason the dimensions of the mirror are 3 mm�2 mm, limiting
the tomographic scan to 1.5 mm (3 mm/2). Experimentally, this limit was found to be 0.7 mm
and thus tomographically only a maximum cross-section of 0.7 mm can be investigated at a
time with the current set-up.

Fig. 3. Line scan for cross-sectional imaging, of sample thicknessd with a round subsurface defect.
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Fig. 4. Schematic of experimental method of thermal-wave tomographic scans for 3 laser and 3 detection
positions.

4. Tomographic Experiments

Steel is a good thermal emitter and can be reasonably assumed homogeneous for testing the
tomographic method. Two samples of a mild steel alloy with subsurface defects were used for
the tomographic experiments. Sample 1 contained a subsurface hole of diameter 0.6 mm
located 0.1 mm below the surface and had a thickness of 2 mm. The thermal diffusivity of the
sample was measured in transmission and was found to beα=1.1x10-5m2/s, in agreement with
literature reports [15]. Since the experimental setup in reflection was limited by the
tomographic range, a second steel sample (similar geometry as Sample 1) was customized to
investigate the reflection experiments. Sample 2 had two 0.3-mm diameter defects, 0.1 mm
and 0.2 mm deep in the material, respectively. The thermal diffusivity of this steel material
was measured in transmission and was found to beα=1.55x10-5m2/s.

Fig. 5. Amplitude and phase in transmission of the line scan,f=11 Hz.
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First, Sample 1 was tested in transmission at a modulation frequency,f=11 Hz with a
thermal diffusion length,µ=(α/πf)1/2=0.56 mm. The tomographic scan was taken along a
constant cross section. The defect imaged lay 0.1 mm from the front surface and was 0.6 mm
in diameter. Figure 5 shows a conventional line scan along the imaged line. A line scan is
achieved by scanning the laser and the detector together. This provides information about the
defect’s x-location. Both the amplitude and phase of the scan exhibit a minimum at the defect
location. This behavior is due to the fact that the defect (air) is a poor thermal conductor and
thus acts as a thermal impedance to heat propagation in transmission. In general, the
amplitude of the signal is influenced by surface blemishes and reflectance, whereas the phase
is largely unaffected and truly represents subsurface defects [16]. From the line scan data the
defect is found to be at the center of the scan (x=1.5 mm). Figure 6 represents amplitude and
phase images of the transmission tomographic scan with five laser positions along the cross-
section (3 mm) at 49 detector points. The five laser positions used werexf = 0.5, 1, 1.5, 2, 2.5
mm. From the tomographic scan, the information given from a line scan can also be obtained:
In the former scan, the maximum signal always occurs when the laser and detector are aligned
with each other. Therefore, the locus of maxima at all laser positions can produce the line
scan. This is the diagonal line (x=y) in the experimental data as seen in Figure 6, where a
minimum is observed for both amplitude and phase. These are equivalent to the line scan of
Fig. 5.

Fig. 6. Transmission tomographic spatial-frequency scan of 0.1-mm deep defect atf=11 Hz. Amplitude and
phase.

The homogeneous field of the samples, i.e the background field with no defect, was also
investigated for both transmission and reflection modes. Figure 7 shows the field in reflection
for f=80 Hz. The response is shown on a two-dimensional graph. Each laser position
corresponds to a maximum in the experimental data. The theoretical fields, equations (20a)
and (20b) in Ref [7] for reflection and transmission, respectively, are also shown at each laser
position for f=80 Hz. The agreement between theory and experiment at all frequencies and
experimental modes is excellent although there is a slight instrumental asymmetry on the
right-hand side of the experimental data.

Reflection tomographic scans at modulation frequencies of 80 Hz and 300 Hz were
performed subsequently for two defects, 0.1-mm and 0.2-mm deep. The x-location of the
defects was always at the center of the scan. The tomographic scans in reflection at 80 Hz
were performed for 11 laser positions,xf = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5 mm, and 21 detector positions. The length of this scan was 0.5 mm and the thermal
diffusion length at 80 Hz was 0.25 mm. The 0.1-mm deep defect was centered at (xc=0.15
mm, yc=0.25 mm). The 0.2-mm deep defect was centered at (xc=1.5 mm, yc=0.35 mm).
Similar tomographic experiments were performed at the same locations using 300 Hz. The
thermal diffusion length at this frequency was 0.13 mm. The length of this scan was confined
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to 0.3 mm, since there was no signal at greater scanning distances. The reflection
tomographic scans were thus performed for 7 laser positions,xf = 0, 0.05, 0.1, 0.15, 0.2, 0.25
mm, and 13 detector positions.

Fig. 7. Homogeneous field of sample #2 atf=80 Hz. Experiment (square); Theory (eq. (20a) in Ref.[6]) (solid).

5. Numerical Reconstructions

The scanned thermal wave data, for one laser position and multiple detection spots, were used
as an input to reconstruct a cross-sectional slice with the method outlined in section 2. The
first reconstruction performed was that of the transmission experiment, Fig. 6. Figure 8 is the
average reconstruction of five laser position reconstructions obtained individually from the
experimental data. In a previous work [8], it was found that averaging of reconstructions at
different laser positions improves the final image, since limited information is obtained
through one laser-position reconstruction. By averaging reconstructions, information from
different perspectives is obtained and weighed, thus minimizing numerical artifacts. The
individual numerical reconstructions were performed with laser positions atxl = 0.5, 1.0, 1.5,
2 and 2.5 mm. The experimental amplitude and phase data of the respective laser positions
were used as input parameters for the inversion technique. The frequency used in this
experiment wasf=11 Hz with a thermal diffusion length of 0.56 mm. Figure 8 reconstructs
the object functionF(x,y), with a contour of the reconstruction function at the bottom. The
solid line on the contour of Figure 8 indicates the exact location and size of the defect, which
was 0.6 mm in diameter, centered at (xc=1.5 mm, yc=1.6 mm). The defect is shown at the
correctx-position but it extends further to the back of the sample. This is an artifact of the
reconstruction, which diminishes as a wider spatial-frequency spectrum range (laser
positions) is used. Furthermore, the theoretical contrast was -0.5. On averaging, information
was lost because a few reconstructions underestimated the defect contrast, and only limited
information was available for reconstructing the defect, since detection occurred at the back
surface of the sample only. Therefore, the contrast in Fig. 8 is underestimated. In conclusion,
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the use of more laser positions for averaging reconstructions, including reflection
reconstructions, would ensure better positional accuracy and contrast for the object function.
The optimal regularization parameter for the reconstruction was retrieved using the L-curve
method. For each reconstruction performed at a specific laser position an L-curve was plotted
for selecting the optimal solution corresponding to the corner regularization parameter,σ. For
one laser position the L-curve is shown in Fig. 9 and the optimal solution isσ=1x10-6. The
average reconstruction was created by an average of all the optimal solutions. Figure 10 is the
result of a reconstruction from the “vertical” part of the L-curve plot. The regularization
parameter isσ=1x10-8. Perturbation noise dominates such a solution and the location of the
defect is distorted. In Figure 11 an oversmoothed solution (“flat” part of the L-curve) is
shown with the regularization parameter beingσ=0.1. In this reconstruction the defect is
overshadowed by the laser position x=1.5mm.

Fig. 8. TSDT transmission reconstruction of Figure 6, averaged over 5 laser positions. True defect shown by
solid line; average regularization parameterσ~1x10-6.

Fig. 9. L-curve of x=1.5mm laser position reconstruction of Fig. 8; optimal regularization parameterσ~1x10-6.
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Fig. 10 Reconstruction from the vertical part of the L-curve (Fig. 9). Regularizationσ=1x10-8.

Fig. 11 Reconstruction from the flat part of the L-curve (Fig. 9). Regularizationσ=0.1.

0.0
0.5

1.0
1.5

2.0
2.5

3.0 0.0

0.5

1.0

1.5

2.0-30.0

-20.0

-10.0

0.0

σ = 1e-8

F
(x

,y
)

Depth
[m

m
]

Length [mm]

0.0
0.5

1.0
1.5

2.0
2.5

3.0 0.0

0.5

1.0

1.5
2.0

-2.0

0.0

2.0

4.0

6.0

σ = 0.1

F
(x

,y
)

Depth
[m

m
]

Length [mm]

(C) 2000 OSA 18 December 2000 / Vol. 7,  No. 13 / OPTICS EXPRESS  528
#26871 - $15.00 US Received October 27, 2000; Revised December 15, 2000



An ill-defined problem provides a reasonable solution after being regularized. The
regularization parameter is directly proportional to the ill-conditioning of the problem. The
next reconstruction was of the reflection data from a 0.1-mm-deep defect atf=80 Hz. Figure
12(a) is the average reconstruction of the aforementioned eleven laser positions. The optimal
regularization parameter used for reconstruction was 10-4. All subsequent experimental
reconstructions in reflection used this regularization parameter. On the other hand, the
optimal value of the regularization parameter for transmission reconstructions (~10-6) was an
indication that the transmission problem was less ill-conditioned than the reflection problem.
In Fig. 12 the depth position of the defect atf=80 Hz is correctly reproduced but the image is
smaller than the true defect size shown by the solid line. Also, it is observed that the defect is
somewhat asymmetric on the right hand side. This can be attributed to a slight inherent
instrumental asymmetry of the photothermal radiometric microscope. The contrast is
underestimated at -0.25. Some artifacts exist at the left and back surfaces of the defect. As the
number of laser positions increases, these artifacts may decrease. Figure 12(b) shows the
same reflection reconstruction atf=300 Hz. Although the front of the defect is reconstructed
well, the back boundary is shifted toward the front by about two thermal diffusion lengths
(0.26 mm). This can be attributed to the fact that, in reflection, a scatterer can be seen no
deeper than about two diffusion lengths. Deeper information is lost, resulting in severe
distortions of deep-lying features. The reconstruction is, nevertheless, more symmetrical than
that in Figure 12(a), as expected, since for a 0.3-mm scan the asymmetry of the instrument is
much diminished.

Another reconstruction was the reflection experiment of the 0.2-mm deep defect. The
modulation frequency of the experiment was 80 Hz, so that the thermal diffusion length was
0.25mm. Figure 12(c) is the average of all the reconstructions performed for each laser
position. The location of the defect is in agreement with the exact position shown with the
solid line. The front surface is accurately reconstructed, but the back of the defect is degraded.
An instrumental asymmetry in the reconstruction is again observed on the right-hand side.
Also on the back of the defect some artifacts are observed, due to the relatively small number
of laser positions used. Figure 12(d) is the reflection reconstruction of the same defect for
f=300 Hz. The front surface is reconstructed well, whereas the back surface is reconstructed
well up to about two thermal diffusion lengths (~ 0.25 mm) from the front surface. At the
front surface some artifacts are visible. In general, most of the error related to defect location
and shape in Fig. 12 is associated with the y-direction depression (loss of depth). This error
occurred because the reconstruction information was obtained over a limited number of laser
positions. A defect is delineated accurately on the side closer to the laser position, regardless
of which mode of detection is used [8]. The experimental technique for obtaining the thermal-
wave spatial-frequency spectrum is currently limited to providing information from the front
or back of the sample. A tomographic scan along the perimeter of a cross-section would fill
more of the spatial-frequency domain [17] and would result in a higher-fidelity reconstruction
of the sample cross section.

The Born approximation seems to be adequate for the materials and defect geometries
utilized in this investigation.Assuming tubular (cylindrical) defects, such as drilled holes in
aluminum, Kak and Slaney [17] have given a mathematical condition for the validity of the
first Born approximation for general propagating hyperbolic wave fields that obey the
conventional Helmholtz wave equation. This condition can be expressed as [8,17],

4

λ
δ <an (4)

wherea is the radius of the cylindrical defect,nδ (eq. 2b) is thechangein the refractive index
between the surrounding medium and the defect, which in this case is the square root of the
ratio of background to defect thermal diffusivity; λ is the probe field wavelength (in the
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thermal-wave caseλth=2πµ). Even though there is no rigorous proof that the foregoing
criterion is valid for non-propagating parabolic diffusion-wave fields [18], for all the cases
examined the criterion was calculated in Table 1. It can be seen the criterion was valid for all
the cases examined in this work. One issue that arises from this Table is that the criterion for
reconstruction #2 is identical to that for reconstruction #4 and the criterion for reconstruction
#3 is identical to #5. These cases have the same size defect located at different depths. With
thermal waves the criterion of relation (4) is not strictly true, since thedepthof the defect is
as important as itssize. In the future perhaps a better criterion can be formulated on the
validity of the thermal wave Born approximation, which would include the depth of the
defect.

Based on these observations, a “guide” can be formulated for optimal thermal-wave
tomographic reconstructions. Reflection reconstructions can better resolve defects close to the
surface. The probing frequency, and thus the thermal diffusion length, must be chosen with
care. Large defects compared to the thermal diffusion length do not reconstruct as well as
when the defect diameter is on the order of one thermal diffusion length. If the depth of the
defect is greater than the thermal diffusion length,the defect will not be resolved depthwise.
Therefore, for an optimum reconstruction the depth and size of the defect must be of the same
order of one thermal diffusion length. This is consistent with the fact that in the cases
examined the optimal reconstruction was that of a 0.2 mm deep defect atf=80 Hz.

In our previous work [8] the measured experimental field was broader than the theoretical
field, resulting in broadened reconstructions. A major achievement of this work is that the
broadening of images has been reduced by the use of a high resolution set-up. The L-curve
method of finding an optimal reconstruction proved to be an effective tool for TSDT. The
only limiting factor for the reconstructions was the validity of the Born approximation in a
thermal-wave field. Nevertheless, it was found that for the geometries used in this work, the
Born approximation yields a large number of satisfactory results. A tomographic scan along
the perimeter of a cross-section would yield more information. Reconstructing a cross-section
at different frequencies may prove effective for future superposition of images and artifact
rejection. A marked deterioration of images is observed as modulation frequency is increased
beyond two thermal diffusion lengths as compared to the defect depth. The ability to
reconstruct images is lost with increasing depth and decreasing frequency. Optimal
reconstructions can be obtained in reflection when the defect depth and size are of the order
of one thermal diffusion length.

Table 1.Born approximation validity for all thermal-wave reconstructions.

Reconstructions αααα∗∗∗∗nδδδδ criterion πµ/2=λλλλth/4

1
Transmission

0.1mm deep /F=11Hz
Figure 8

0.3*0.71=
0.213mm <

π*0.56/2=
0.880mm

2
Reflection

0.1mm deep / F=80Hz
Figure 12(a)

0.15*0.84=
0.126mm <

π*0.25/2=
0.393mm

3
Reflection

0.1mm deep /F=300Hz
Figure 12(b)

0.15*0.84=
0.126mm <

π*0.13/2=
0.204mm

4
Reflection

0.2mm deep / F=80Hz
Figure 12(c)

0.15*0.84=
0.126mm <

π*0.25/2=
0.393mm

5
Reflection

0.2mm deep /F=300Hz
Figure 12(d)

0.15*0.84=
0.126mm <

π*0.13/2=
0.204mm
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Fig. 12. Average reconstruction of 0.1-mm deep defect with 0.15-mm diameter (front is the bottom and back is the
top of image): a)f=80 Hz, b) f=300 Hz. Average reconstruction of 0.2-mm deep defect with 0.15-mm diameter: c)

f=80 Hz, d) f=300 Hz.
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6. Conclusions

In this work, a robust computational method for TSDT was developed. Most importantly, the
L-curve method was used to resolve the difficulty of multiplicity of solutions, thereby
obtaining an optimal solution to the inverse problem. Furthermore, a new high-resolution
photothermal microscope, suitable for tomographic scans and limited by the beam spot size
(w=27 µm), was constructed. Machined defects were made in mild steel samples to test the
performance of TSDT. It was concluded that when the defect depth and size were of the order
of one thermal diffusion length, optimal reflection reconstructions were obtained.

Photothermal radiometric tomography was shown to be a method of collecting cross-
sectional data, which are then numerically processed with the use of Tikhonov regularization
to produce a tomogram. The implications of this work, besides establishing a reliable
experimental foundation of TSDT, are quite broad in that it has the potential to address
several other fields of diffusion-wave tomographic science where strong dispersive
attenuation presents a reconstruction problem. These fields include medical diffuse photon-
density-wave tomography, optical coherence imaging, attenuated acoustical imaging, and
geophysical tomography. There are aspects that require further research in order to make
TSDT a practical diffraction tomographic technique: Developments are presently being
pursued to improve both the computational and experimental methodologies. There are
several other methods besides Tikhonov regularization that can be investigated for solving the
ill-conditioned thermal wave problem. Such methods of regularization are the truncated
Singular-Value Decomposition (SVD) and the maximum-entropy, which are the subject of
many publications [11]. A wavelet-based method developed by Milleret al. [19] appears to
be very promising for data inversion and cross-sectional thermal-diffusivity tomographic
imaging.

Acknowledgments

This work has been supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC), through a research grant.

(C) 2000 OSA 18 December 2000 / Vol. 7,  No. 13 / OPTICS EXPRESS  532
#26871 - $15.00 US Received October 27, 2000; Revised December 15, 2000


