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In this paper the nonradiative deexcitation of transition-metal ions in solids is discussed. It has been
found that when the deexcitation of the system occurs due to the crossing of the configurational energies
of ground and excited electronic manifolds (the internal conversion process) the system dynamics can be
described by the perturbation method. Detailed investigation of two equivalent approaches, the adiabat-
ic and the diabatic, shows that the diabatic attempt is usually more useful, since it allows the description
of the vibronic problem in the harmonic-oscillator limit. The model has been successfully applied for
describing the temperature quenching of Ti** :sapphire luminescence.

I. INTRODUCTION

The effect of radiative relaxation of transition metals is
usually diminished by the large temperature quenching of
broadband emission. The simplest model describing this
phenomenon has been proposed by Mott,! who related
the nonradiative deexcitation processes to the crossover
of the configuration-coordinate energy surfaces, describ-
ing the system in the excited and ground states. Thus the
effect of thermal quenching of the fluorescence has been
described by some adequate activation energy Eyg, relat-
ed to the height of the crossing point over the minimum
energy of the excited state, and the so-called ‘““frequency
factor” 7, !, related to the probability of a transition over
the barrier. A more sophisticated approach has been
proposed by Struck and Fonger,>> who have been able to
calculate the tunneling through the barrier as an effect
proportional to the overlap integrals of the vibronic wave
functions of the excited and ground manifolds, using the
single-configuration-coordinate model. An important de-
velopment in the approach of Struck and Fonger has
been presented by Bartram et al.,*> who assumed that
the nonradiative transitions are related to the matrix ele-
ments of the nonadiabatic part of the Hamiltonian. Con-
sidering an arbitrary number of lattice vibrational modes,
interacting (promoting modes) and noninteracting (ac-
cepting modes) with the electronic system, they could de-
scribe the nonradiative processes in a more accurate way,
including the effects of Jahn-Teller-type distortions. One
can find an excellent review of the models based on the
configuration-coordinate scheme in Englman.®

Despite the theoretical efforts, our understanding of
the processes of interconfigurational nonradiative deexci-
tation is still not complete. The main issue is the weak
knowledge of the physical processes which cause the
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internal conversion of the system from the excited to the
ground electronic state. This is a reason why a large
amount of experimental data concerning temperature
fluorescence quenching (i.e., the fitted values of frequency
factor as well as the activation energy in different ions
and materials) cannot be properly interpreted. Especially
the frequency factor, which according to the Mott model
should be more or less a universal constant, changes its
value from material to material and from ion to ion by 13
orders of magnitude [from 6X 10~ * s~! for zirconate
glasses’ to 10'7 s™! for Ce-doped Yal,O; Ref. (8)]. Fur-
thermore, for rather simple and relatively well-known
systems such as ruby (A1;0,:Cr®") Ref. (3) and sapphire
(A1,04:Ti*"),? calculations performed using the Struck-
Fonger model evidently break down the Mott assumption
concerning the universal frequency factor.

II. GENERAL REMARKS AND ASSUMPTIONS:
DIABATIC vs ADIABATIC APPROACH

To begin with, in order to discuss the processes respon-
sible for interconfigurational nonradiative deexcitation,
let us consider the simplest case, when the system can be
described by two electronic manifolds (the ground and
excited one) characterized by a large offset of the
configurational energies. For simplicity, we may assume
that the offset is the result of the interaction with fully
symmetric lattice distortion, and so the above-mentioned
manifolds can be presented in a one-dimensional
configuration-coordinate diagram. This assumption is
not obvious, and the model will be developed to consider
an arbitrary number of modes involved and participating
basis wave functions. The Hamiltonian can be presented
in a perturbation formalism (Appendix), the adiabatic as
well as in the diabatic approximation
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H=Hy+H' +H", (1)

where H is the diagonal part of the Hamiltonian which
gives the states related to each individual manifold. H' is
a perturbation which mixes the states from different man-
ifolds, and H'' describes the interaction of the ion-ligand
subsystem with the entire lattice. In both cases the eigen-
states of H are given by Born-Oppenhaimer wave func-
tions of the type

(g, Q)=¢.(q, QIAT(Q) )

where ¢,(q,Q) is the electronic part of the wave function
and AJ(Q) is the vibronic wave function. g and Q are the
electronic and ionic (configuration-)coordinates, respec-
tively. It is characteristic that it is usually possible to
choose the diabatic basis so that the electronic wave func-
tion does not depend on Q (as in the case presented in the
Appendix). Configuration-coordinate diagrams corre-
sponding to H, for a two-manifold system are presented
in Fig. 1. One can see that for the diabatic basis there is
no anticrossing behavior of the electronic manifolds [Fig.
1(b)], such as appears for the adiabatic basis [Fig. 1(a)].
The perturbation Hamiltonian H' depends on the basis,
and for the adiabatic basis it is always the so-called nona-

diabatic Hamiltonian which acts on the Born-
Oppenhaimer wave functions as follows:
my oy 4°040,Q)
H ‘pv(q’Q):"%}w(Q)T
dé.(q,Q) dA(Q) a)
dQ g '’

whereas for the diabatic basis it is a part of the electronic
and/or the electron-lattice interaction Hamiltonian.

Since the information about the whole lattice is usually
poor, the perturbation H'' can be added in both cases in
the same form, independent of the basis used for describ-
ing the ion-ligand subsystem. Since H, is not the full
Hamiltonian, H'+H'"' is nonzero, and the eigenstates of
H, are not the stationary states of the entire system
(ion—+ligands+lattice) or the subsystem (ion-ligands).
This causes the nonradiative transitions, which yield the
relaxation and internal conversion processes. One can
recognize two types of such transitions. The first one is
when the subsystem emitting phonons does not change
the electronic manifold (intraconfiguration relaxation),
and the second is when the manifold is changed
(interconfigurational relaxation). The second process can
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FIG. 1. Configuration-coordinate diagram for two electronic
manifolds: (a) adiabatic limit; (b) diabatic limit. The diagram
has been calculated assuming that the part of the Hamiltonian
which mixes the manifolds does not depend on the configuration
coordinate Q.

be divided into two steps: the internal conversion of the
subsystem for the excited to the ground electronic mani-
fold (via the vibronic degenerate states) and emission of
phonons by intraconfiguration processes. It is obvious
that the intraconfigurational processes take place due to
the interaction of the subsystem with the entire lattice,
H"', whereas the internal conversion takes place due to
the subsystem perturbation Hamiltonian H’. Since the
subsystem is usually converted to a very highly excited
phonon state, the intraconfigurational transition rate is
much larger than the internal-conversion rate. Therefore
the internal conversion actually controls the nonradiative
interconfigurational deexcitation.

The idea that internal-conversion processes can cause
the nonradiative deexcitation has been proposed by Ro-
binson and Frosch!© for molecules. One can find a review
on this subject in Ref. 11.

According to the above discussion, the inter-
configurational transition probability can be calculated as
the probability of internal conversion between excited
and ground electronic manifolds. One can use the stan-
dard method and calculate this quantity as the probabili-
ty of transition, W;", related to the time-independent
perturbation H':!?

War=(2m /R)S(E}—EJ)| Ty *p(E]) , 4)

where p(E}) is the density of states in the excited elec-
tronic manifold and 8(E;'—E;") is the Dirac delta func-
tion. The matrix T,;" is related to H' as follows:

COLLE W) SO o D Ll

5= Y+ 3

where (( ---)) indicates integration over the g and Q
coordinates, v,v' are the electronic quantum numbers,
and k, k' are vibronic quantum numbers.

It is easy to see that, although the adiabatic approach
gives always the same perturbation Hamiltonian, the dia-

2
Ee"_E]\f v,k

e
v,

(E’—EXNE’—EX)

batic base is very useful for proceeding further even if
sometimes some extra effort must be made to generate
this basis. The main reason is that in the diabatic base we
can get electronic wave functions that are not dependent
on the vibronic (ionic) coordinate Q. A very important
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consequence of this result is that the vibronic wave func-
tions can be approximated by the harmonic-oscillator
wave functions. If one operates in the framework of the
adiabatic approach, all matrix elements of the nonadia-
batic Hamiltonian depend on the particular dependence
of the electronic wave function on Q. Also, because of
the large anticrossing of the electronic manifolds, the vib-
ronic wave functions cannot be approximated by the
harmonic-oscillator wave functions. This casts doubt to
all approximations made to simplify the procedure of cal-
culations and to perform the qualitative analysis of the
process. Thus, to obtain accurate T-matrix elements, one
must calculate numerically the vibronic wave functions
and perform inconvenient numerical integrations in Q
space. In the diabatic approach, the problem is simpler.
Here the perturbation Hamiltonian H' is a part of the
electronic Hamiltonian or of an electron-phonon interac-
tion Hamiltonian. In the former case, we have

H'=H'(q), (6)
and in the latter case, the linear coupling gives
= 1 AV(4,Q) | o ‘
= | —2= = . 7
H 40 Q=H'(q)Q 7N
Using the diabatic wave function
Vg, Q=0 (@AT(Q) , (8)

where AJN(Q) is the harmonic-oscillator wave function,
one obtains

Ky |H |[Yp N =($,|H'|¢, ) FT" , 9)
where the overlap integral F™.™ depends on H' and is
mm=(AZ AT (10)

for H' given by Eq. (6) and
Fpr =7 |QIAY) (11)

for H' given by Eq. (7).

In both cases, however, since H' is given by off-
diagonal matrix elements, when the subsystem is restrict-
ed to two electronic manifolds, the even-order com-
ponents of sum (5) are zero. Moreover, since the overlap
integrals are calculated for highly excited oscillator wave
functions, the only important contribution comes from
the first-order component of (5) (linear approximation).
In this case the T matrix is given by

T ={¢.|H'|p, YF" . (12)

It should be noted that if (¢,|H’|¢, ) =0, one must also
consider other excited electronic states (higher excited
states) of the system. In such a case, the internal-
conversion probability is given by even-order components
of (5), and considering only the most important, second-
order, contribution, one obtains

4 nk ppkm
=3 (¢, |H'|¢, )| YFIFg .

n__pk
v,k Ee Ev
v#*e,g

(13)
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III. CALCULATIONS
A. Calculation of the frequency factor 75 !

To calculate the possible value of the transition proba-
bility, one can consider two one-dimensional harmonic
oscillators as in Fig. 1(b). For this case the density of
states in the excited energy manifold is constant,
p(E!’)=(#w)"!, where #iw is the phonon energy. Thus,
using Eq. (12), we obtain

Wom= (2 /5)(F0) " b, | H' |6 V12| F 2|2
X8(EI—EJ) . (14)

Assuming that H' is a pure electronic Hamiltonian, this
formula reproduces exactly the Struck-Fonger model.?

For the transition metals, the Hamiltonian which
mixes the states belonging to different electronic
configurations is usually the spin-orbit interaction Hamil-
tonian (e.g., *T, and *4, states of Cr*" or 2E and 2T,
states of Ti’" in the octahedral field'*). The importance
of the spin-orbit coupling in the nonradiative processes
has been mentioned by Sturge'* for KM,F;:Co?". To
calculate the frequency factor, one can use a typical value
of the spin-orbit matrix element H, , =50-500 cm ™! and
a typical value of phonon energy %o =250 cm ™! and ob-
tain

o '=2m/B)Fiw) (¢, | H'|¢g )|
=02n/#)H?, /Aw=10"%-10" 571, (15)

The situation is different when the symmetry allows the
mixing of the electronic wave functions of the ground
and excited states due to the interaction with the lattice
distortion. In such a case, the matrix element of the elec-
tronic wave functions is given by

(B H'|¢y) =(8,1dV(4,0)/dQlg,)=V,, ,  (16)

and F.;" is given by Eq. (11).

One can assume in this case that the mixing may be
quite effective; i.e., V,, may be on the order of the magni-
tude of

Vee=C¢.1dV (q,0)/dQ|¢, ) =(28%w)'?

(see the Appendix), where S is the Huang-Rhys factor,
which describes the energy offset. On the other hand,
considering that @ =27"%(a}+a,), where a' and a, are
the creation and annihilation phonon operators acting on
the phonons in the excited state, one can approximate
Feg" by

Fim=(2n#io)' >(AZ[AT) . (17)

Since we are interested in the value of 7, ! for n corre-
sponding to activation energy Eyng, one can put
nfio=Eyg to obtain

7o '=Q2m /%) #iw) " (¢ |H'|$, )|
=Q2m/#)#iw) '4SHOE g . (18)

Considering that S#w is on the order of 1000 cm™! and

Eng may even be a few times greater, one obtains 75 ! on
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the order of 10'°~10!" s™!. One can see that in this case
the Struck-Fonger model can work due to the approxima-
tion (17), however, with a much greater frequency factor.
One should also consider the case when (¢,|H’|¢, ) =0.
Here the probability of the internal conversion should be
calculated using the T matrix approximated by Eq. (13).
For performing the estimation of 7; ! in this case, one can
assume that we have only one higher excited state v and
that there is no offset between v and e electronic mani-
folds. Under these simplifications, since F'*=§,, yields
FI'*F fg"ZFe';,’", one can calculate the internal-conversion
probability as follows:

Wi'= (27 /WS E!—E])#iw) ™!

[<¢.1H'[¢,)*[{,|H"|$, )|
X
(E,—E,)?

|[Fam?, (19)

where the overlap integral F,;" is given by Eq. (10).

Considering that the value of (E,—E,) is equal to a
few thousand cm ™! and the electronic matrix elements
are equal to ~ 100 cm ™!, Eq. (19) yields 7, ! on the order
of 10° s™! or even less, depending on the individual case,
especially when the simplification of the absence of ener-
gy offset in the excited state is not valid.

It is interesting to mention that for all considered
cases, for different types of interaction yielding internal-
conversion processes, although very different values of
the frequency factor have been obtained, the probability
of a transition is always governed by the Struck-Fonger
prediction. However, the model as proposed by Struck
and Fonger? is strictly valid only in the case when H' is a
pure electronic Hamiltonian (i.e., it does not depend on
Q). In other cases the formalism resulting from overlap
integrals of vibronic wave functions can be reduced to the
Struck-Fonger formula under some additional conditions,
not always satisfied.

B. Case of two- and three-dimensional local lattice modes

It usually happens that the electronic system of a
transition-metal ion is coupled to not fully symmetrical
lattice distortion. For the case of octahedral and
tetrahedral coordination, we should consider two-
dimensional distortion of E symmetry and three-
dimensional distortion of T'; or T, symmetry. To simpli-
fy the problem, let us assume that the static Jahn-Teller
distortion splits the initially degenerate electronic mani-
fold in such a way that, instead of single manifold, we
have a few new manifolds with the same shape, but with
the minima shifted to different points in the
configurational space. Thus, independent of the resulting
number of manifolds in the ground and excited states, we
can consider the internal-conversion processes involving
pairs of manifolds, one from the ground and one from the
excited state, and thus summarize the effects. The dia-
batic basis allows the simplification of the problem, since
each manifold can be described by a two-or-three dimen-
sional harmonic oscillator. Under these conditions the
energy of the vibronic states is given by!®

E'=#o(N +n) , (20)

M. GRINBERG, A. MANDELIS, AND K. FJELDSTED 48

where N =1 and # for the two- and three-dimensional
problem, respectively, » is the vibronic quantum number,
and v is the electronic quantum number corresponding to
the specific manifold. An adequate oscillation wave func-
tion for the nth state can be presented by a linear com-
bination of functions of the type

Xk(Q1,Q2)=A""HQANQ,) , (21)

where kK =0,1, ...
and

, n, for the two-dimensional oscillator,

Xz,l(Ql’szQ3)=7Vnhk(Q1)}\k_l(Qz)}\-I(Qﬂ , (22)

where k=0,1,...,n, 1=0,1,...,k, for the three-
dimensional oscillator. In Egs. (21) and (22), A"™(Q) are
the one-dimensional harmonic-oscillator wave functions.
The density of states is

p(E")=(n +1)/fiw (23)

and

p(EN=3 (n'+1)/f0 (24)

n'=0

for a two- and three-dimensional oscillator, respectively.
To calculate the overlap integrals related to the vibron-
ic wave functions of a “‘displaced” many-dimensional os-
cillator, one can choose the orthogonal coordinate sets in
such a way that only one coordinate represents the “cou-
pling” parallel mode Q,, whereas other coordinates cor-
respond to perpendicular modes Q, (see Fig. 2). Thus the
functions (21) and (22) can be presented as follows:

Xk(Q1,Q2)=A""X QAN Q,) (25)
and

X0 1(@1,05,03)=A""KQ, A" T1Q, )ANQs)) . (26)

Since we have assumed the same phonon energies for
all the modes involved,

(Aramy, =8, . 27)

The procedure described above, i.e., the dividing of the
modes into two classes depending on their properties, is
very similar to the concept of promoting and accepting
modes. Nevertheless, at this stage of the calculations, the

_ Q /Ql

| = Q Q

energy

Q

FIG. 2. Configuration-coordinate diagram for two two-
dimensional harmonic oscillators. Parallel and perpendicular
modes are shown in the Q,,Q, plane.
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similarity is only formal, since parallel and perpendicular
modes have been introduced for mathematical conveni-
ence. In the particular case when the H' is the electron-
phonon interaction Hamiltonian given by Eq. (7), the
parallel mode becomes a promoting mode and the per-
pendicular modes become accepting modes, in the sense
of Refs. 4 and 5.

C. Interaction with nonlocal lattice modes

The interaction of the electronic system with the non-
local lattice vibrations usually does not cause the energy
offset. Nevertheless, when the symmetry allows, this type
of vibrations can produce an effective mixing of the elec-
tronic parts of the wave functions.

Let Q). be the configurational coordinate describing
the nonlocal lattice distortion. We may define the pertur-
bation Hamiltonian H' related to this type of distortion
as follows:

_ adv(q, Qi)
dQlatt fatt -

To consider the matrix elements of H' defined by Eq.
(28), one should use the Born-Oppenheimer functions
given by

¥7Ng, 0, Qrar) = u(a, DX V(O (Qrare) (29)

where ¥Y(Q,,..) is the vibronic wave function describing
the nonlocal mode. Since Q,,; can be represented by the
sum of creation and annihilation operators (similar to the
case of local modes), the matrix element of Q) is
nonzero only when it connects the vibronic functions
with N and N %1 vibronic quantum numbers.

Thus, in the frame work of our model, H' given by Eq.
(28) can be treated as a purely electronic Hamiltonian;
however, its matrix elements involving the functions (29)
are additionally modified by a factor N!/2, where N is the
quantum number of the nonlocal lattice vibration state
involved in the internal-conversion process.

’

(28)

IV. TEMPERATURE DEPENDENCE
OF INTERNAL-CONVERSION PROCESSES

One can consider the total probability of the internal
conversion as a sum of transition probabilities related to
all occupied vibronic states of the excited electronic man-
ifold:

P\r(T)=3 3 wipkmsn, (30)
n k(n)

where S” is the Boltzmann distribution factor. In the
above expression, n corresponds to the vibronic quantum
number of the parallel mode and k corresponds to the
vibronic quantum numbers of all perpendicular modes.
Using this convention, we have no need to introduce the
density of vibronic states in Eq. (30).

Considering Eqgs. (25)-(27), one can obtain the Pyg(T)
in more explicit form:
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n
Pr(D)=7513 k)_: S(E;—EJ)|Fg %™ " ip (EMS™,
n =0

(31)
where
7o ' =@ /A)Fiw) B |H'(q)|p, ) |* . (32)

Here H’ is the part of the perturbation Hamiltonian de-
pending on the electronic coordinate only. Fe';_k’"‘_k is
the overlap integral of parallel vibronic modes defined by
Eq. (10) or (11) depending on the nature of the perturba-
tion Hamiltonian. S” is the Boltzmann occupation fac-
tor:

S"=exp[ —(E!—E?)/kT)

X |S exp[—(E!—EQ%)/kTp(E") | .  (33)

p(E™) is the density of states and is equal to unity for a
one-dimensional oscillator; for two and three dimensions,
p is given by Egs. (23) and (24), respectively. p,(E") is
the density of states of perpendicular modes and is equal
to 840, 1, and (k +1) for the one-, two-, and three-
dimensional oscillator, respectively.

One can immediately conclude that Eq. (31) can be re-
duced to the Struck-Fonger model for a one-dimensional
oscillator when the Hamiltonian is purely electronic. In
other cases our generalized approach yields a transition
probability usually greater than the Struck-Fonger treat-
ment.

V. NONRADIATIVE DEEXCITATION
OF Ti:SAPPHIRE

The Ti*" ion in sapphire is an octahedrally coordinat-
ed d! electron system. The crystal field yields the split-
ting of the d state into a doubly degenerate excited 2E
state and triply degenerate 2T, state (omitting the Kra-
mers degeneracy).!

In spectroscopy, two bands in the absorption spectrum
and one broadband in the emission spectrum are charac-
teristic for a large static Jahn-Teller (*E X E) and a small
Jahn-Teller (T, XE) effect in the excited and ground
states, respectively.'®® The detailed analysis of the spec-
troscopic data allows the reconstruction of the
configuration-coordinate diagram of the system (see Fig.
3 in Ref. 17 and Fig. 4 in this work). It has been found
that the electron-lattice coupling in the excited state is
not linear. The value of the electron-phonon coupling
constant K, is in the range of 0.195C to 0.385C (C is the
lattice elastic constant). On the other hand, the small
second-order contribution to the electron-lattice coupling
in the ground state (K= —0.077C to 0.077C) influences
drastically the energy barrier for nonradiative transitions,
E\g (see Table IV in Ref. 17). Since this activation ener-
gy Eng is not much greater than the difference between
the energy of the minimum and the saddle point, A;, the
excited-state electronic manifold can be represented by
three two-dimensional harmonic oscillators (see Fig. 6 in
Ref. 17). The calculated vibronic energies corresponding
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to the excited state #w, are on order of 200 cm ™ !.17:18
The vibronic energy in the ground state is #iw, =239
cm~.' In all cases at the crossing point of the
configuration-coordinate diagram (see Fig. 5 in Ref. 17
and Fig. 4 in this work), the lower component of the ’E
state [vy,,, (Ref. (13)] is very effectively mixed with the
upper component of the ?T, state [{.;,, Ref. (13)], via
the spin-orbit interaction. Therefore the spin-orbit in-
teraction can be considered as a perturbation Hamiltoni-
an of our system. The matrix elements of the perturba-
tion potential H' are calculated as follows:

(¢elH’|¢g>=(th/2|Hs.o.‘§i1/2>:iiﬂ ) (34)

where S is the spin-orbit crystal-field-theory parameter.'?
B=80 cm™! has been obtained in Ref. 17 by analysis of
the spin-orbit splitting of the 27, state. Taking
fio=%w,=200 cm ™! and using Egs. (32) and (34), one
can calculate the frequency factor 7, !:

1o l=~3x1013 571, (35)

Since the symmetry conditions exclude the possibility
of mixing the 2E and 2T, states via the E-symmetry lat-
tice distortion and there is no experimental evidence for
large T, distortion, one can consider the spin-orbit in-
teraction as the only important contribution to the per-
turbation Hamiltonian. To calculate the vibronic overlap
integrals which govern the internal-conversion transition
probability, one divides the vibration into parallel and
perpendicular modes. Considering two oscillators related
to the 2E and 2T, states, respectively, it can be seen that
Qg corresponds to the parallel and Q, to the perpendicu-
lar vibration. Thus parallel oscillators are displaced by

AQ,=|Ly/(1—Kp)|+ 2Ly /(142K )|

and perpendicular ones by 0. Furthermore, since the en-
ergies of the vibrations in the ground and excited mani-
folds are different, Eq. (27) is not valid. This yields a
more complicated expression for the internal-conversion
probability, which includes the vibronic overlaps for the
perpendicular mode:
m n
Pr(D =153 kEO kEO S(E:_Eén”Fe'Z;_k’m_kl ﬁ

n = =

X |FE|3sm . (36)

Here IFe"g_k””’k'IH and IFe’Z,k'I , are overlap integrals for
parallel and perpendicular modes, respectively. Given
that the perturbation Hamiltonian is purely electronic,
the overlap integrals for both cases can be calculated ac-
cording to Eq. (10).

To compare the results obtained using our approach
with the experiment, we have reproduced the tempera-
ture dependence of fluorescence decay time for
Ti:sapphire. It has been assumed that the total measured
(effective) decay time 7 is controlled by the radiative as
well as the nonradiative transition rates 7,4 and Tng.
Thus
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T:(T;é+7‘§11{)_1 . (37)

The radiative decay time has been assumed to be equal
to the measured decay in the limit of zero temperature,
and so 7,,4=3.85 us.!” The nonradiative transition rate
has been calculated assuming that the internal conversion
is the only nonradiative process depopulating the 2E
state, i.e., 7np = Pnr(T) [Eq. (36) with 75! given by Eq.
(35)]. The vibronic overlap integrals for individual pairs
of the vibronic wave functions have been calculated using
the Manneback recurrence approach.?° The results of the
calculations, with a comparison to the experimental re-
sults of Albers, Stark, and Huber’ and Moulton,?! are
presented in Fig. 3. The dashed curves have been ob-
tained using the value of 75 !=3X 10" s~! and the pa-
rameters of configurational energy manifolds listed in
Table IV of Ref. 17: curve I corresponds to K,=0,
K;=0.289, E;1(E)=2909 cm™!, E;r(T)=158 cm™!,
and curve II corresponds to K= —0.077, Kz=0.195,
E;1(E)=2993 cm™!, E;(T)=113 cm™'. If one uses a
third parameter set to reproduce the spectroscopic data
[Ky=0.077, K;=0.385, Ey(E)=2879 cm™l,
E;r(T)=223 cm™ '], with 75 ! given by Eq. (35), the cal-
culated decay is approximately two orders of magnitude
smaller than measured. In this case the very low nonra-
diative activation energy (Eng =985 cm™!) yields large
values of the overlap integrals. For instance, the overlap
corresponding to the zero vibration state of the 2E mani-
fold, |ngm 2 is on the order of 107°. Since the experi-
mental decays are placed between the theoretical decays
obtained for the limiting values of K, we may treat K
as a free parameter for fitting purposes. The best fit has

4.0 g

[
o
L

decay time (us)
N
o)

-
o
11

0.0

temperature (K)

FIG. 3. Luminescence decay time for Ti:sapphire vs tempera-
ture. Dashed curves correspond to the sets of the input parame-
ters of configuration-coordinate diagrams as follows: I corre-
sponds to K;=0, Kp=0.289, E;(E)=2909 cm’},
Ey(T)=158 cm”! (Eng=2633 cm™!); II corresponds to
K;=—0.077C, Kz=0.195, E;;(E)=2993 cm™!, E;7(T)=113
cm™! (Exg=7171 cm™!) (see Ref. 17). The solid curve corre-
sponds to the best fit. Asterisks correspond to the experimental
data by Albers, Stark, and Huber (Ref. 9); circles correspond to
the experimental data of Moulton (Ref. 21). O corresponds to
our annealed sample; A corresponds to our normal sample (Ref.
17).
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TABLE I. Parameters of configuration-coordinate diagram for the best fit K, = —0.043.

Ky En(E) En(T) #Q, fiwy, fiwry Exg A,
(cm™1)
0.236 2924 132 11225 208 202 4507 1125

been obtained for K= —0.043C (solid curve in Fig. 3).
The calculations have been performed considering that
the resulting electronic manifolds should reproduce also
the spectroscopic data (see Ref. 17). This induces a small
change in the values of other parameters defining the sys-
tem; see Table I. The respective configuration-coordinate
diagram is presented in Fig. 4.

To compare our results with the Struck-Fonger model,
we have performed a calculation of the vibronic overlap-
integral quenching factor resulting from our model:

f(n)= ﬁ 2 S(E}—E[|Fp~om—K}FE 2 (38)
k'=0 k=0
and of the respective Struck-Fonger overlap integral
Fep(n)=8(E}—E")|F1m|?, (39)
which can be obtained from Eq. (38) assuming
FiF'=84 (40)
and
s Fp=bm = i=|Fam|> . 41

k=0

Since |F| rapidly increases with increasing i and j and
the vibronic energies related to the excited and the
ground manifolds do not differ much, the above approxi-
mations seem to be reasonable. The results of the calcu-
lations are presented in Fig. 5. Asterisks correspond to
the overlap-integral quenching factor calculated accord-

24000

°R

19000
A Enr En(E)

1

-
5
[=]
o

FNSSESRENISRNSEREERA NSRS RNERNIRERENNNENERRERENRRNNNE]

hQ,

energy (cm
©
o
[«]
o

»
(<]
=]
<1

AT
2
e 0 1010 e o o o o o o e e o o o

—-20 -10 0 10 20
Qo [ units of (B/Mw)"?]

En(T)

FIG. 4. Configuration-coordinate diagram for Ti**:sapphire,
cross-section direction. Intersystem crossing is not discontinu-
ous, since the diagram has been calculated in the diabatic limit.

ing to our Eq. (38), and circles correspond to the
simplified approach [Eq. (39)]. Lines connecting the
points have been added to aid the eye. One can see that
for the assumed values of input parameters
[K;=—0.043, K;=0.236, E;;(E)=2924 cm™},
Eyp(T)=132 cm™!] the Struck-Fonger approach is still a
reasonable approximation, although it gives smaller
values of the overlap integrals.

The quantitative results presented in this section have
been obtained under the assumption that the spin-orbit
interaction is the only interaction which is responsible for
the internal conversion process in Ti3*. Thus only the
value of the parameter 3 determines the frequency factor
7o !. Assuming that additional mechanisms allowing the
internal conversion are possible (the interaction with 7T',-
symmetry lattice distortion and interaction with nonlocal
lattice vibrations), we can see that the value of 7, 1 used
may be underestimated. An increased frequency factor
above 3X10'% s™! may be easily compensated for by
smaller overlap integrals, which rapidly decrease with a
decreasing value of K. In fact, these two parameters,
75 ! and K, are closely related to each other. On the
other hand, the values of the remaining parameters
describing the system (Kg,E;p(E),E;p(T)) are almost
the same, since they are determined mainly by the spec-
troscopic data (see Table IV in Ref. 17 and Table I in this
work). Only the nonradiative activation energy Ey\gr
effectively increases with decreasing K. Thus one con-
cludes that since the value of 7, !=3X10'3 s™! is the
lower-limit value, the nonradiative transition activation
energy Eyg =4507 cm ™! is also the lower-limit value for
Ti**:Al,O;. The remaining parameters of the
configuration-coordinate diagram seem to be estimated
quite accurately.

o o o o
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510 ™3
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5 10
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FIG. 5. Vibronic overlap-integral reduction factor vs excita-
tion vibronic number n. The solid curve corresponds to the cal-
culations performed for the two-dimensional case [Eq. (38)]; the
dashed curve corresponds to the Struck-Fonger formula [Eq.
(39)].
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VI. CONCLUSIONS

Both the adiabatic and diabatic approaches have been
examined with respect to the perturbation Hamiltonian
which induces nonradiative deexcitations of transition-
metal ions in solids. The methodologies were further ap-
plied to the Ti*1:Al,0; system and were found to de-
scribe successfully the temperature quenching of
Ti3":sapphire luminescence, including the observed
luminescence decay times reported in the literature and
those from our samples. The theoretical nonradiative
transition rate was calculated under the assumption that
the spin-orbit interaction is the only process responsible
for the internal-conversion rate in Ti**. The expressions
for the nonradiative transition rate involve a generalized
vibronic overlap-integral quenching factor, which, in spe-
cial cases, yields the well-known Struck-Fonger overlap
integral. The values of the nonradiative rates obtained in
the present generalized theoretical nonradiative frame-
work were found to be in closer quantitative correspon-
dence to the experimental values than the Struck-Fonger
approach.

APPENDIX: DIABATIC AND ADIABATIC
APPROACHES TO A TRANSITION-METAL
CONFIGURATION ENERGY MANIFOLD

In the most general case, the system of an electron (or
electrons) interacting with the lattice ions can be de-
scribed by the following Hamiltonian:

H=H,(q,0)—1Y% , (A1)
where H,(q,Q) is the electronic part of the Hamiltonian
depending on the electronic (g) and ionic (Q) coordi-
nates, and %VZQ is the lattice kinetic energy. For simplici-
ty, the ionic coordinate Q is given in (%#/M ®)'/? units,
where o is the frequency of the lattice vibration and M is
the reduced mass of the involved ions.

In the Born-Oppenheimer approximation, being in the
nth electronic and mth vibronic state, the system is de-
scribed by the total wave function v,

Y =0.(q, QX7 (Q) , (A2)
where ¢ and Y correspond to electronic and vibronic
parts of the wave function. Since the Hamiltonian (A1) is
separable in the variables ¢ and Q, one can obtain Q-
dependent configurational energies by diagonalization of
the electronic part of the Hamiltonian H,. This pro-

cedure creates the adiabatic electronic wave functions
¢%(q,Q), for which

(¢¢1H,145)=¢,(0)8,; .

Here ( - -+ ) denotes an integration over the g coordi-
nate.

Using (A3), one obtains the set of equations defining
the adiabatic vibronic states of the system:

{—1VoI—e(Q)—EI+1[2 A(Q)V,+B(Q)]}x%2)=0 .
(A4)

(A3)

M. GRINBERG, A. MANDELIS, AND K. FJELDSTED 48

Here I is the unit matrix and &(Q) is diagonal matrix.
A(Q) and B(Q) are matrices with the elements

Aij=<¢?IVQ|¢?> ,
B;=(¢7|Vple%) .

x%(Q) represent the set of vibronic, adiabatic wave func-
tions. When the adiabatic base is complete,??

— A2
B=A2+V,A.

(AS)

(A6)

One may obtain the approximate solutions of (A4) by
omitting A and B as small. Here such an approximation
has been made, to define the adiabatic vibronic states re-
lated to the individual manifolds described by €,(Q) and
¢%(q,0Q). In fact,

is the so-called nonadiabatic operator [see also Eq. (3) in
the main text]. The matrix Hy, is off diagonal, and
therefore it is responsible for the mixing of the vibration-
al states related to different electronic manifolds.

We can now define a “diabatic”?® set of nuclear wave
functions as follows:

X%q,0)=G(Q)x%q,Q) ,

where the matrix G is any matrix which satisfies the rela-
tionship?

dG(Q)
dQ

Then, using (A7) and (A9), one transforms (A4) into the
form

(A8)

+ A(Q)G(Q)=0. (A9)

{—iVLI-V(Q)—ELx%Q)=0. (A10)
Here
V(Q) =G 1(Q)e(Q)G(Q) . (A11)

One can see that the diabatic and adiabatic electronic
wave functions are related by

$%q,0)=¢%q,0)G(Q) . (A12)
It is obvious that, for any i and j,2*
($81V,led)=0. (A13)

The above calculation can be exemplified when we con-
sider the transition-metal system which can be described
by two electronic manifolds: the excited e and the
ground g manifold. In this case one can use the crystal-
field-approximation electronic wave functions ¢,(q)
=¢.(q,Q0) and ¢,(q)=¢,(q,Q,) as an initial basis. By
definition, these functions do not depend on the
configuration coordinate Q, since the crystal-field Hamil-
tonian has been taken with the ions fixed at Q, (Q,
defines the crystal-field strength). To focus our attention,
we can assume that Q, corresponds to the minimum en-
ergy of the ground electronic manifold. Thus, putting
Q,=0, one can obtain the electronic energies €(Q) in the
adiabatic limit (the configurational energy manifolds in
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the adiabatic limit) from the determinantal equation

Q*/2—¢(Q) H'(Q)
H'(Q) Q2%/2+(28)'?2Q +AE +S —&(Q)

of electron-phonon interaction. One obtains the energies:
e+(Q)=1(0%25)'?Q +AE

+S+{[(25)2Q + AE +8)*+4H"*}'?) .

(A15)

=0.
(A14)
The adiabatic wave functions ¢“(g, Q) describing the elec-

tronic manifolds €.(Q) are related to the initial basis
wave function by the matrix d,

Here (25)!/2Q is the diagonal part of the electron-lattice
interaction Hamiltonian (S is the Huang-Rhys parame-
ter); AE is e —g separation energy; and H' is the part of
the Hamiltonian which mixes the ground and excited

%q,0)=d , Al6
state wave functions. Depending on the system, H' may $%(q,0)=d(Q)¢(q) ( )
be the matrix element of spin-orbit interaction or a part which for our case can be easily obtained:

J
d1,(Q)=d, (Q)=2"12(1+[(28)'/2Q +AE +S1/{[(28)"/?Q +AE +S1*+4H"}'/?)1/2 |
(A17)

dye(Q)=—d ,(@Q)=2""2(1—[(25)"?Q + AE +51/{[(28)'?Q + AE + ST +4H"}'/*)!/ .

The electronic configuration manifolds in the adiabatic limit, €, (Q) and €_(Q), are presented in Fig. 1(a). One can ob-
tain the vibronic state of the system using Eq. (A4), where the matrix elements of A and B can be calculated using Eq.
(A16). As a first approximation, one can obtain the vibronic states for individual manifolds, assuming Hy, =0. Next
Hy 4 can be treated in the framework of the perturbation approach to obtain more exact solutions. However, even un-
der this simplification, the problem is difficult since the vibronic problem must be solved for quite a general potential.
Since the perturbation Hamiltonian is always Hy,, one can see that in the adiabatic limit all information on the physi-
cal reasons of the interconfigurational interactions is contained in the particular shape of configurational energies and
adiabatic electronic wave functions.
It is easy to prove that d ! =G, since the matrix d ! satisfies the relation [corresponding to Eq. (A9)]

ad~" Q)

a0
One can check Eq. (A18) using relations (A17) and adiabatic functions (A 16) to obtain the matrix A. In such cases the
initial basis of the electronic functions ¢.(q) and ¢,(g) creates the diabatic basis of the system. In Eq. (A18) the opera-
tor 8/0Q instead of d /dQ has been used to avoid misunderstanding when the same symbol describes the function and

the derivative operator. In this manner the vibrational problem in the diabatic representation can be described by the
Hamiltonian

— A(Q)d YQ)=0. (A18)

v, +Q*/2—E
H'(Q)

H'(Q)
—ivy,+02/2+(28)?Q +AE+S —E

x4(Q)

Here the diagonal elements correspond to the diabatic manifolds presented in Fig. 1(b). Similar to the adiabatic approx-
imation, one can use the perturbation method and, as a first approximation, assume H'=0. One can see immediately
that, since the electronic energies in both manifolds are given by parabolas, the vibronic problem is reduced to the har-
monic oscillator. Moreover, since the initial basis has been defined for constant Q,, performing calculations in the dia-
batic limit, one operates with electronic wave functions not dependent on the configurational coordinate. One can see
that for all cases when the crystal-field base is adequate to describe the system, the problem of finding the diabatic base
is, in fact, trivial.
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