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A rigorous calculation of the intensity dependence of the photoreflectance (PR) amplitude is present-
ed, and the derived relation is compared with published experimental results. The method utilizes a
Taylor-series expansion to determine the change in reflectance in terms of the modulation of the surface
electric field, and the Fourier-series technique is employed to explicitly develop the harmonic com-
ponents of the photoreflectance amplitude for square-wave excitation. In particular, it is shown that if
the photoreflectance amplitude depends upon the optical excitation intensity I as In(yI + 1), which is
normally the case experimentally, then the small-modulation PR signal should have a line shape propor-
tional to the first derivative of the sample reflectance with respect to the surface electric field. In the
high-field limit, the nature of the Franz-Keldysh oscillations is explained for both small- and large-
modulation conditions, and the theoretical predictions are correlated with recent experimental data.
Overall, this theoretical study of the photoreflectance effect clarifies certain issues regarding the connec-
tion between the observed intensity dependence of the PR amplitude and the PR line shape, and it also
illustrates how the nature of the PR line shape changes as one moves from low- to high-field conditions,
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in both the small- and large-modulation limits.

1. INTRODUCTION

In recent years, the photoreflectance (PR) effect has
been used quite extensively to probe the optical and elec-
tronic properties of semiconductors."> The basic
configuration used for measuring the PR signal is as fol-
lows. A semiconductor sample is illuminated with a
beam of super-band-gap photons (usually monochromat-
ic) which is chopped (modulated) at a frequency f; the in-
tensity of this pump beam is usually in the range
0.01-100 mW/cm? The pump beam creates a modula-
tion in the sample reflectance which is monitored via a
second unmodulated optical beam, the probe beam,
which is usually obtained from a lamp source. Phenome-
nologically, a small fraction of the reflected probe beam is
modulated as a result of its interaction with the optically
excited sample. The PR signal is strongly dependent on
the probe wavelength; therefore, the optical system for
the probe beam often contains a monochromator, making
the probe tunable over a significant wavelength range.

In physical terms, for a homogeneous sample, the
mechanism responsible for the modulation of the
reflectance by the pump beam is as follows.! When
super-band-gap pump photons are absorbed by the sam-
ple, they excite electrons from the valence band to the
conduction band. Due to the built-in electric field which
normally exists within the sample, the nonequilibrium
free carriers are spatially separated: For an n-type materi-
al, if the surface built-in field is associated with a de-
pletion layer, free electrons drift into the bulk, and holes
collect at the surface; on the other hand, if the surface
field is due to an accumulation layer, free electrons drift
towards the surface, and holes into the bulk. For a p-type
material, if the surface built-in field is associated with a
depletion layer, holes drift into the bulk, and free elec-
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trons collect at the surface; alternatively, if the surface
field is due to an accumulation layer, holes drift towards
the surface, and free electrons into the bulk. Overall, the
electrons and holes are separated by the built-in field, and
an opposing photo field is generated which decreases the
magnitude of the built-in field; therefore, the magnitude
of the surface field is modulated by the pump beam.
Since the optical properties of a semiconductor are
known to be a function of the electric field within the
sample (the Franz-Keldysh effect), especially near sample
critical points, photomodulation of the built-in field will
cause the reflectance of the sample to be modulated; this
is known as the photoreflectance effect.

It should be noted that the dependence of the PR sig-
nal upon the modulation frequency is, among other
things, a function of the surface-state density, and the
ability of the surface states to capture minority and/or
majority carriers. Shen et al.? have clearly described the
dynamics of the photoreflectance effect in undoped
GaAs. They point out that when the excitation beam is
on, one must consider the interaction of the surface traps
with both the minority and majority carriers, and when
the excitation beam is off, the interaction of the surface
traps with the majority carriers.

For example, consider the situation of a depletion layer
at the surface of an n-type material, with a large density
of electrons in surface states which can easily capture
minority hole carriers.® Therefore, when photogenerated
holes drift to the sample surface during a PR experiment,
the holes are captured efficiently by the surface-state elec-
trons, resulting in a localized positive charge at the sur-
face. When the optical excitation beam is turned off, the
built-in field will not relax to its dark value until the posi-
tively charged surface states capture excess electrons
from the conduction band; this process will occur within

14 228 ©1994 The American Physical Society



50 INTENSITY DEPENDENCE OF THE PHOTOREFLECTANCE . ..

the period of time 7, which is the electron-trapping
time.* Overall, when surface trapping is significant, the
PR signal should be independent of frequency until
o7, >1; then, at higher frequencies, the PR amplitude
will begin to decline.

In the absence of surface trapping, one would expect
the relaxation of the surface field to its dark value to de-
pend upon the bulk recombination time of the carriers; in
this case, the PR signal would be essentially independent
of modulation frequency until w7>1, where 7 is the
band-to-band recombination lifetime of the free carriers.

Various groups have used the frequency response of
the PR amplitude to obtain the surface-state relaxation
time.*~7 The trapping times obtained at room tempera-
ture are on the order of 1 ms for Si and GaAs. There ap-
pear to be no reported PR experiments which show a fre-
quency response sensitive to the bulk recombination time.

Taking into account the PR signal generation mecha-
nism described above, the question of the PR magnitude
variation with the intensity of the pump beam arises. In
addressing this question, an expression for the PR ampli-
tude as a function of the pump-beam intensity will be
developed. The following theoretical treatment is appli-
cable to both the creation of a small perturbation in the
built-in electric field, as well as for strong perturbations,
in which case it will be shown that a substantially
different PR line shape is obtained. The above-mentioned
calculation was deemed to be important because, as will
be shown later, the experimental intensity dependence of
the PR amplitude has been found to have a variety of
functional dependences, including logarithmic and vari-
ous sublinear power laws. Also, there has been no clear
description of how the PR line shape should vary as the
equilibrium built-in field is increased from zero, and how
the line shape should change when the small-modulation
to large-modulation transition is made.

In 1990, Kanata et al.® presented a theoretical model
which accounted for the intensity dependence of the PR
effect. The main aim of their work was to determine the
dependence of the PR amplitude upon the surface voltage
of the semiconductor sample, and hence, to show that the
PR amplitude can be used to probe the surface voltage.
By measuring the temperature dependence of the PR sig-
nal for a number of samples, they determine the surface
voltage via an Arrenhius-type analysis. Although the
work of Kanata et al. is informative, it neglects certain
aspects of the PR problem. For example, the explicit
determination of the various harmonic components of the
signal was not performed for the assumed square-wave
excitation. More importantly, in the small-modulation
limit, a Taylor-series expansion was not employed, so the
nature of the PR line shape is not apparent. Therefore,
another theoretical analysis of the PR intensity depen-
dence will be presented, and a number of interesting ob-
servations will be made.

II. THEORY AND DISCUSSION

Consider that at equilibrium the built-in field of a semi-
conductor is confined to a layer of finite thickness at the
sample surface, the space-charge layer (SCL). For n-type
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materials, the SCL is termed a depletion layer when it is
positively charged, and an accumulation layer when it is
negatively charged; for a p-type material the SCL is
termed a depletion layer when it is negatively charged,
and an accumulation layer when it is positively charged.
The electric-field distribution in the SCL can be obtained
by solving the one-dimensional Poisson equation:

d*V(x) _ _ p(x)
dx? €4c€0

) (1)

where V(x) is the potential, p(x) is the net charge densi-
ty, x is the distance into the sample from the surface, €4
is the low-frequency dielectric constant (real), and ¢, is
the permittivity of free space.

Assuming that p is constant in the SCL, Eq. (1) can be
integrated once to yield

av(ix) __ _p

dx €4c€0

x+C1 ’ (2)

where C, is a constant. Since the SCL has a finite thick-

ness of W in the abrupt approximation, the electric field
must be zero at x =W. Thus, dV /dx =0 at x=W. Ap-
plying this condition to Eq. (2) gives

V_ P (w—x. 3)

Next, integrating Eq. (3) yields

Vix)=—=L—(x—-w) @)
2€4.€0
when it is assumed that V(W)=0. The voltage at the
surface can be found by letting x =0 in Eq. (4).

2

S 2ed060 ’

and then W can be expressed in terms of Vg,

172
Vs

W=(2€,.60)""2 .

(6)

Equation (6) is expressed explicitly in terms of — Vg /p
because this quantity is always positive; from Eq. (5),
—Vs/p is equal to a positive constant times W?, which is
positive.

Finally, the electric field £(x) can be determined from
Eq. (3))

§(x)=—M=———&—(x —W)

, 7
dx €4.€0 ( )

and the surface value of the field is

—_ PV
Es e (8)

Next, assume that when the probe beam is reflecting from
the sample surface, it does not penetrate into the bulk;
therefore, the sample reflectance R only depends upon
the value of the built-in electric field at the surface, £5. If
this is not the case, then the field modulation must be
averaged over the penetration depth of the probe beam
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(see Appendix A). Taking into account that R =R(&g),

an expression for the photoreflectance component of the
reflectance modulation can be written as

oR 1 3"R

ARpg=7T—AEc+ -+ +—

PR 3 gs §S n! 9 §g<

(AEG)"+ -+, (9)

where Eq. (9) is the Taylor-series expansion for ARpg. If
it is assumed that the modulated surface field has as its
minimum the dark value, then

Afs=E&s1— 850> (10)

where £, is the surface field under illumination, and &g,
is the surface field in the dark. All of the derivatives in
Eq. (9) are evaluated using the dark value of the surface
field. In general, the derivatives of Eq. (9) are not easy to
calculate, and they depend strongly on the model used to
describe the optical properties of the sample. The deriva-
tion of a relation for Afg is somewhat easier. First, it is
convenient to express &g in terms of Vg; using Egs. (5)
and (8):

_y 12
£s=C, |—| (11)
where
172
C,=—p |2 (12)
€4c€o0

Furthermore, an expression for the surface voltage in the
presence of N photogenerated carriers is readily avail-
able:$

Vi=Vsot
sT™Vso e

In(bN +1) , (13)

where Vg, is the equilibrium surface voltage, kp is the
Boltzmann constant, T is the absolute temperature, e is
the electronic charge, b is a constant, and N is the photo-
generated free-carrier density. For an n-type material,
the + (—) sign applies to a depletion (accumulation) lay-
er, and the opposite is true for a p-type material. Next,
substituting Eq. (13) into (11) yields

Vs kyT 1/2
£1=C, —~ F ——In(bN +1) . (14)
' P ep
Under small-modulation excitation conditions,
|VS,O| >> e In(bN +1) . (15)
Therefore,
1+ ks T In(bN +1) (16)
§s,1~§s,o = 2eVs, n .
Furthermore, if
c,=x2T (17)
3— 2eVS,0 gS,O ’
then
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§SY1z§S,0+C3ln(bN+l) . (18)
Finally, using Eq. (10)
Afs=CiIn(bN+1) . (19)

Next, it will be assumed that the sample is excited with
an optical beam for which the intensity is modulated in a
square-wave manner between O and I, at the angular fre-
quency w. Also, it will be assumed that the frequency is
low, so that the period of the exciting beam (27 /w) is
much longer than the relaxation time of the photovol-
tage; thus, when the light is on, Afg achieves the value
C;In(bN +1), and when the light is off, Af¢ goes to zero.
In addition, under low-level modulation conditions it is
likely that N is a linear function of I, so

Afs=CiIn(yI+1), (20)

where y is a constant which is proportional to . Taking
into account the above conditions, the time history of
A& is the simple square wave depicted in Fig. 1.

A (t) can be written as

AE(()=Cyln(yI+1)f (1), 21

where f(t) is a square-wave modulation function with a
range (0,1). When Eq. (21) is substituted into Eq. (9), the
result is

ARpe(=F (1) | 2R Cotn(y 1+ 1)+ -
s
1 o'R
L DY+ L@
+ Y [C3ln(yI+1)] (22)

From Eq. (22) it should be clear that for square-wave
modulation, the PR line shape is completely determined
by the terms within the curly brackets; thus, all harmon-
ics of the PR signal should yield the same line shape.

The function f (z) of Eq. (22) will now be expressed as a
Fourier series, so that the various harmonic components
of AR pg(?) can be rigorously obtained:

f(t)=g2£+ i a,cos(kot)+ E" bysin(kwt) ,  (23)
k=1 k=1

where
A&g

C3ln(yI+1)

0 2/ ® 4r/ ®

FIG. 1. Time history of A§s for square-wave excitation.
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a = % foz”/“’f(t)cos(kwt )t (24)

and
be="2 [*“f (t)sin(kat )dt . (25)
m*Yo

When Eq. (23) is evaluated up to the fifth harmonic, the
result is

f(t)=%+%—[sin(mt)+%sin(3wt)+%Sin(5wt)+ .

(26)

Clearly, the magnitude of the nth harmonic tends to de-
crease as n increases. Overall, all of the information con-
tained in the PR signal can be obtained by measuring the
first-harmonic component of the signal.

From Egs. (22) and (26), the magnitude of the first har-
monic of the PR signal is

® [Ciln(yI+1)]" g»
ARpg =2 s — a1: . 27
’ T |2 n! 13
Note that when n =1, the following term is obtained:
2 3R
AR PR,a)(n =1 ) = C3ln( 'yI+ 1 ) —ags . (28)

This term provides a PR signal component which is pro-
portional to the natural logarithm of the excitation inten-
sity when yI >>1, which is normally the case.

The type of intensity dependence indicated by Eq. (28),
AR xIn(yI+1), with yI>>1, has been observed by
several groups during PR measurements on homogeneous
semiconductors. For example, Stossel, Colbow, and
Dunn’ found a In(I) dependence during PR measure-
ments on CdS. Also, Shen et al.® observed a In(I) depen-
dence over three orders of magnitude during PR mea-
surements on Si.

On the other hand, several other reports dealing with
the PR effect concluded that the PR amplitude was pro-
portional to the laser pump intensity to the J power, for
example, Shay,'° Nahory and Shay,!' and Broser,
Hoffmann, and Schulz.!? It is interesting to note that the
functions In(x) and x!/® increase in a similar manner
over the range 15 <x <200 [Fig. 2(a)]; therefore, it is pos-
sible that these groups were actually observing a PR in-
tensity dependence of the form AR «In([).

Finally, Bauer et al.!* observed an intensity depen-
dence of the form x!/? over a limited range of pump
power, with the PR signal appearing to saturate at higher
intensities. It is interesting to note that the functions
In(x) and x!/? increase in a similar manner over the
range 4=<x <20 [Fig. 2(b)], and that the In(x) function
decreases more slowly with x for x >20. In fact, the
In(x) function can be fitted very well to the date present-
ed by Bauer et al. over the entire measurement range of
two orders of magnitude, while the x'/? function only
matches the data over half the intensity range. There-
fore, it appears that the PR vs intensity data of Bauer
et al., are better described by the In(x) function than by
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the x !/? function, consistent with the present theoretical
considerations.

Judging from the selection of experimental data dis-
cussed above, the intensity dependence of the PR ampli-
tude is best described by a function of the form
In(yI+1), or In(I) when yI>>1. Thus, in the small-
modulation limit, it appears that the line shape of a PR
spectrum is usually determined by the first derivative of
R with respect to the surface electric field [Eq. (28)].
Since no experimental PR data have been obtained which
show an intensity dependence of the form [In(yI+1)]"
(n>1), it can be concluded that the n >1 terms of Eq.
(27) do not contribute to the PR line shape. There are
two possible reasons why the n>1 terms are not
significant: First, the partial derivatives of Eq. (27) may
decrease dramatically in magnitude for n > 1; and second,
the factor [C;Iln(yI+1)]"/n! may decrease quickly for
n > 1. Note that the line shapes expected from the n > 1
partial derivatives of Eq. (27) are calculated in Appendix
B.
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FIG. 2. (a) Comparison of the functions F(x)=Inx (O) and
F(x)=x'3(0), over the range 15 <x <200. (b) Comparison of
the functions F(x)=In(x) (O) and F(x)=0.7x!/2 (0), over the
range 4 <x <20.
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The nature of R /9§ will now be considered. In the
previously identified, zero-optical-penetration limit, the
following expression can be written for R (£):'*

R(£5)=Ry{1+Re[(a—iB)Ae(&g)]} (29)

where R, is the zero-field reflectance, Re denotes ‘“the
real part of,” Ae is the change in the dielectric constant
induced by the electric field, and «,B are the Seraphin
coefficients; '’

a=2d,/(d?+d?%), (30)
B=2d,/(d3+d3), 31
where
d,=2-(n2—3k*—n,) , 32)
ng
— k 2 2
d,=—03n?—k?—n,) . (33)
no

Here n and k are the refractive index and extinction
coefficient, respectively, of the sample under no-field con-
ditions, and n is the refractive index of the nonabsorbing
medium of incidence (e.g., air or vacuum).
Differentiating Eq. (29) once, the following expression is
obtained:

dR d(Ae)

SR =RoRe [(a—iB) 22
ag,  RoRel(@amiB) T,

The actual form of Ae depends upon the type of model
used to describe the optical properties of the sample. For
a single electron in a periodic potential, and neglecting
Coulomb effects (electron-electron interactions), Ae can
be written'*

(34)

, 1 @
577 Al
E- 3E
when the “low-field” limit is valid. E is the probe photon
energy. The low-field limit only applies when the surface
electric field has a magnitude less than about 10° V/cm.!®
Unfortunately, the equilibrium built-in electric field at
the surface of a typical semiconductor is more likely to be
around 10° V/cm.!” Therefore, a high-field relation must

often be used in place of Eq. (35).

Under certain conditions the low-field approximation
may indeed be valid; in this case, using Eq. (34) one ob-
tains

OR o §s,oRo
9 E?

When Eq. (36) is substituted into (28), AR is found to give
the traditional third-derivative line shape14 (i.e., the third
derivative of € with respect to E, the probe photon ener-
gy). It is also interesting to note that in the low-field lim-
it, ARpg appears to be independent of the equilibrium
surface field. This is not really the case, since the con-
stant b in Eq. (13) is actually a function of Vg As Vs is
increased from zero, b also increases from zero. In other
words, as Vg, is increased, the photovoltage becomes

Ae(&g)e E%(E)], (35)

. 9’
Re (a'—lﬂ)'gE—}[EZG(E)] . (36)
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larger for a given value of N.

Instead of using a low-field expression for Ae, a high-
field relation should often be employed; for instance,
again ignoring Coulomb effects one may write'*

Ae(gs)«é L3(G(2)+iF(2)] 37
where
z=p(E)Eg?? (38)
and
2 1/3
p(E)=(E,~E) %’;—h% : (39)

where E, is the energy gap of the semiconductor, p is the
interband effective mass, and h is Planck’s constant.
Note that the expressions used in this paper are for an
M, critical point (such as the direct fundamental gap),
and that broadening has been ignored. Expressions simi-
lar to Egs. (37)-(39) are available for other types of criti-
cal points, and have been given by Aspnes.'®

With regard to G(z) and F(z), these are given by
Aspnes:M

F(z)=m[Ai"Yz2)—z AiXz)]— (—2)"%u(—2z) (40)
and
G (z)=7[Ai'(z)Bi'(z)—z Ai(z)Bi(z)]+z%u(z) , (41)

where Ai and Bi are Airy functions,'® the prime denotes a
derivative with respect to z, and u(z) is the unit step
function [i.e., u ( —z) is zero when z >0, and u (z) is zero
when z <0; otherwise, u is 1]. At this point we can write

d(Ae€)

——
s

where the primes indicate derivatives with respect to z.

Making use of Egs. (40) and (41), and the differential
equation for the Airy functions:

E1E5? UG +IF)—2pEs (G +iF")] , 42)

w(z)"'—zw(z)=0, (43)
it is easy to show that the range — 0 <z < «:

F'=—7 A (2)+ (=27 u(~-2), (44)

G'=—mAi(z)Bi(z)+ 1z "ul(z2) . 45)

Finally, Eq. (42) can be evaluated using the series solu-
tions for Ai(z) and Bi(z), and their derivatives. For in-
stance, in the range —3.2<z <3.2, Ai(z), Ai'(z), Bi(z),
and Bi'(z) can be calculated using relations 10.4.2 to
10.4.5 given by Antosiewicz.!® Also, in the range
z < —3.2, relations 10.4.69, 10.4.70, and 10.4.78-10.4.81
can be used to evaluate the various Airy functions.'

Using the methodology described above, it is possible
to determine the PR line shape in the high-field limit. In
order to probe the change in line shape as the field is in-
creased, a simulation will be carried out for the PR signal
in the vicinity of the fundamental absorption edge for
GaAs, a direct-gap semiconductor.

Utilizing the theoretical relations given by Aspnes and
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Bottka,? it can be shown that for a direct-gap semicon-
ductor, the conduction-band—valence-band contribution
to the dielectric constant is

e(E>E,)=¢+ %[2E;/2—(Eg+E)’/2] : (46)

e(E<E,)=¢+ EAZ—[zE;/Z—(Eg—E)‘”—(Eg+E)”2] :

(47)

and
QE2E)=-E~E,)", 48)

where A is a positive constant, and ¢ has a theoretical
value of one. Kudman and Seidel*' have measured the
absorption coefficient for GaAs in the vicinity of E, (1.39
eV); they found that

(E—E, )172

E2

where the numerical prefactor is the quantity A[J3/%],
and E,E, have units of [J]. Although the value of 4 in
Eq. (49) yields an accurate value for €, in the range
1.4<E <1.7 eV, when the same value of A4 is used to
determine €, via Eqgs. (46) and (47), €, is grossly underes-
timated. This is not surprising since Egs. (46) and (47)
are based on a relation for €, which is only accurate near
E,. Therefore, the theoretical relations for €, will be
made more realistic by letting the constant ¢ in Eqgs. (46)
and (47) be equal to 12.

When the low-field approximation is valid, Egs.
(46)—(48) can be used to evaluate Eq. (36); when E 2 E_,

€E2E,)=2.6X10"% , (49)

—R
g?i « —E"f” [(E,+E)">*—BE—E,) "] . (50)
Likewise, when E < E,,

—R
a_Roc—"g%ﬂa[(Eg+E)‘5/2—(E3—E)‘5/2]. (51)

ol E?

In fact, the unbroadened line shapes given by Egs. (50)
and (51) are far sharper than found experimentally; there-
fore, the PR line shape is usually found by using a rela-
tion for € which includes broadening through the phe-
nomenological parameter I':!¢

€(E)xE"%E—E,+il"'*. (52)

In the classical framework of the optical absorption mod-
el, I is related to the damped harmonic oscillator. Sub-
stituting Eq. (52) into (36) yields the broadened, low-field
line shape function:
oR R0§S,0 . c\—5/2
—_— O —— 2 —_ —_
T £ Re[(a—iB)E—E,+iT) ]. (53)
Equation (53) is plotted in Fig. 3 for I'=10 meV; the
sample is assumed to be GaAs with E;, =1.39 eV, and
(a,B) are calculated via Egs. (46)—-(48).

If the Franz-Keldysh theory is used to determine the
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FIG. 3. The low-field PR line-shape function [Eq. (53)] vs the
photon energy, in the vicinity of the GaAs direct energy gap
(1.39 eV). The broadening parameter I is 10 meV.

high-field PR line shape, the result is quite different from
that shown in Fig. 3. For instance, Fig. 4 shows the
GaAs PR line shape assuming that u is 0.1 times the
free-electron mass; the equilibrium surface field is 5X 107
V/m; and the modulation of the surface field is small rel-
ative to its equilibrium magnitude, in which case Eq. (42)
gives the PR line shape. With regard to the nature of the
high-field line shape of Fig. 4, it should be apparent that
the PR spectrum displays the characteristic Franz-
Keldysh oscillations, and that the amplitude of the en-
velope does not decay as E becomes much greater than
E,; such behavior has been observed experimentally by
Bhattacharya et al.> Note that Cardona, Shaklee, and
Pollak? have considered a related type of behavior, albeit
to a lesser extent, for electroreflectance experiments.
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=] W
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Lineshape Function

n
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FIG. 4. The high-field, small-modulation PR line-shape func-
tion [Eq. (42)] vs the photon energy, in the vicinity of the GaAs
direct energy gap (1.39 eV). The effective mass is 0.1 times the
free electron mass, and £5,=5X10" V/m.
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With regard to the results of Bhattacharya et al.?, they
obtained PR and electroreflectance (ER) data for an InP
Schottky barrier. Of further interest, they found that the
nature of the PR Franz-Keldysh (FK) oscillations
changed when the magnitude of the surface field was in-
creased. In particular, the FK oscillations were not
damped significantly when the surface field was largest
(bias >9 V), which corresponds with the behavior depict-
ed in Fig. 4. On the other hand, when the surface field
was lower (bias < 1.5 V), the FK oscillations were
damped heavily as the probe photon energy was in-
creased. This type of damped behavior cannot be ob-
tained if one assumes that the optical beam is only per-
turbing the sample electric field by a small amount; in
fact, heavily damped FK oscillations can only be ob-
tained if the optical beam is modulating the surface field
between low- and high-field conditions. This point is il-
lustrated in Fig. 5, which shows the FK oscillations ex-
pected for GaAs if the surface field is modulated between
0 and 5X10% V/m. It should be noted that a strongly
damped FK line shape has been observed for GaAs at 82
K by Bottka et al.!

Another interesting result due to Bhattacharya et al.>
is that the ER and PR spectra were somewhat different
when the surface field was largest. For instance, for the
same applied bias (10 V), the ER line shape showed con-
siderably more damping than was observed for the PR
spectrum.

Overall, although there is not a wide variety of pub-
lished PR data showing clear Franz-Keldysh oscillations,
it appears that under the highest-field conditions, Eq. (42)
is valid. On the other hand, when the surface field is
smaller (but still in the high-field limit) the FK oscilla-
tions do not follow the pattern predicted by Eq. (42); in
fact, the damped oscillations can only be theoretically ob-
tained if it is assumed that the optical beam is modulating
the sample between low- and high-field conditions.
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FIG. 5. The high-field, large-modulation PR line-shape func-
tion vs the photon energy, in the vicinity of the GaAs direct en-
ergy gap (1.39 eV). The surface field is modulated between O
and 5X10° V/m. Using Eq. (29, AR=R(&50)—R,
=Re[(a—iB)Ae(&sp)].
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III. CONCLUSIONS

This work has contributed to the theory of the
photoreflectance effect in several ways. First, a general
expression for the PR signal was written as a Taylor-
series expansion, Eq. (9), in terms of Ay, the modulation
of the surface electric field. Next, an expression was ob-
tained for A& in terms of the modulated carrier density,
assuming that the field modulation is much smaller than
the steady-state electric field. Then, the Fourier-series
method was employed in order to rigorously find the har-
monic components of the reflectance modulation, for
square-wave excitation. Earlier treatments did not em-
ploy a full Taylor-series expansion, and did not explicitly
consider the time dependence of the exciting beam.®**

When the above procedure was followed, the first-
order term of the Taylor-series expansion for AR yielded
a In(yI+1) dependence upon the optical excitation in-
tensity I. Since this type of dependence has been widely
observed in experiment, it was concluded that higher-
order terms in the expansion are not significant under the
majority of experimental conditions. Although the PR
intensity behavior has previously been linked to the in-
tensity dependence of the surface photovoltage,® the
present work rigorously shows that the PR signal should
indeed have a In(yI+1) dependence. A brief review of
the literature was carried out in order to identify to what
degree the PR intensity dependence has been experimen-
tally determined. It was found that the theoretical loga-
rithmic dependence fits the available data quite well, thus
providing a unified theoretical basis for approximate
dependences proposed by earlier authors.

Another result of this paper is that the small-
modulation PR signal should have a line shape propor-
tional to AR /3d&, due to the apparent domination of the
first-order term in the Taylor-series expansion. There-
fore, in the high-field limit, the Franz-Keldysh oscilla-
tions should be undamped, as shown in Fig. 4. Although
the behavior depicted in Fig. 4 has been seen by Bhatta-
charya et al. ,2 they observed a different high-field line
shape under zero-bias conditions. In summary, this pa-
per clearly points out that under high-field conditions,
the PR line shape is strongly dependent upon the steady-
state field in the sample, and upon the degree of field
modulation.

Finally, this work suggests that it would be worthwhile
to study more deeply the changes in PR line shape ob-
tained when the surface field is increased into the high-
field limit. Also, the effects of a steady auxiliary beam
upon the PR line shape should be considered, because
this auxiliary beam (additional to the modulated excita-
tion beam) is capable of decreasing the magnitude of the
surface field without the application of an external bias
voltage.
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APPENDIX A: THE EFFECT OF THE NONUNIFORM
ELECTRIC FIELD PERTURBATION
UPON THE PHOTOREFLECTANCE LINE SHAPE

Although a full Taylor-series expansion, Eq. (9), was
used earlier to determine the PR line shape in the uni-
form field limit, a simpler relation will be used to explore
the effect of the nonuniform electric field upon the PR
line shape:

ARpg =Re %—‘:%A ] (A1)
where
2
_|1=e2

Note that Re denotes “the real part of,” and that R is the
complex reflectance. Also, € is the (complex) dielectric
constant, which is a function of the probe wavelength,
and £ is the electric field, which is a function of depth
into the sample. This approximate relation for ARpg
neglects the higher-order Taylor-series terms, but its em-
ployment allows us to see the effects of the nonuniform
field by comparing the results of this appendix with Eq.
(28). Also, since the PR effect has been observed experi-
mentally to have a logarithmic intensity dependence, it is
very likely that the higher-order terms do not contribute
significantly to the PR signal.

Following the work of Aspnes and Frova,* when the
electric field is nonuniform, Eq. (A1) can be written as

—Re | OR [ | 8
where
< de A§>=—i2K [ “explizkx) |2 | Ag(x)dx
ag 50 o a§ §0 .

(A4)

In this case, K =(27/A)(n +ik), where A is the probe
wavelength, and n and k are the refractive index and ex-
tinction coefficient, respectively, of the sample under
equilibrium conditions. Also, x is the distance into the
semi-infinite sample. Since &(x)=E&g+(p/€4.€0)x, it is
easy to show that except in the narrow range x =W, to
W,, A&(x)=AEg, which is independent of x.!° There-
fore,

de . ) . de
— | AE)=—i2KA exp(i2Kx) | — | dx ,
< ¢ ¢ §> s fo P 9 1)
(AS)
where
Eo(x)=Eso+—L—x . (A6)
€4c€o
In order to evaluate Eq. (AS5), consider that
€(£)=€(0)+Ae(£), where Ae(£) is given by Egs.

(37)-(39). Thus, in the high-field limit,

14 235

e

Y; « E [ 16520 G +iF)—1p(E)e; (G’ +iF")] ,

$o

(A7)

where the functions F and G are evaluated at z,, and
20=p(E)E5 2.
The final relation required to determine AR py is

R _2l—e?) (A8)

de (1+ El/ 2 )3
One problem with evaluating Eq. (AS5) is that the deriva-
tive term de/d§ blows up as x increases towards W,
since it has an & Ltype dependence, and £,—0 as
x—W,. In fact, when Eq. (AS) was employed to evalu-
ate the effects of the nonuniform field, the results were
not consistent with Fig. 4. It is conceivable that Eq. (AS5)
can be evaluated as a bounded form by taking its princi-
pal value excluding the point x =W,. In that case, the
line shape to replace Fig. 4 is expected to be quite
different from the one resulting from the assumption of
uniform field perturbation. For instance, when Eq. (A5)
was evaluated within the range x =0 to x =0.9W,, the
resulting line shape was similar to that of Fig. 4, except
for the presence of a high-frequency modulation en-
velope, an envelope which is consistent with the decreas-
ing electric field magnitude within the bulk of the sample.
It appears that the assumption of uniform field modula-
tion in the SCL [A&(x)=A§,] is not capable of yielding a
bounded result when Eq. (A4) is employed. Overall, the
mathematical analysis of the nonhomogeneous line shape
is beyond the scope of the present work; furthermore,
this kind of predicted behavior is not consistent with the
existing experimental data,? and therefore, it will not be
considered further here.
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FIG. 6. The high-field, small-modulation, » =2, PR line-
shape function [Eq. (B2)] vs the photon energy, in the vicinity of
the GaAs direct energy gap (1.39 eV). The effective mass is 0.1
times the free electron mass, and £5,=5X 10’ V/m.
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APPENDIX B: HIGHER-ORDER (n > 1)
LINE-SHAPE FUNCTIONS

In this appendix, the n > 1 partial derivatives of Eq.
(27) will be examined for both the low- and high-field lim-
its. These terms are of importance because they may
determine the small-modulation PR line shape when non-
logarithmic intensity dependences are obtained for the
PR amplitude.

For the low-field limit, the n > 1 partial derivatives are
obtained via Eq. (36). In particular, it is easy to show
that

R Ry oy O

'a—g'g—OCEZ—Re (a—lﬂ)EE[EZG(E)] . (B1)
Thus, the n =2 derivative yields the same line shape as
the n =1 derivative. Finally, the n > 2 derivatives are all
Zero.

For the high-field limit, the n > 1 derivatives are ob-
tained via Egs. (29) and (42). For example, the n =2 line
shape is given by
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d%(Ae)
3%

o %555%‘2[ —(G+iF)+3p&sA(G'+iF")

+2p2Eg G +iF")] (B2)
where

F'(z)= =27 Ai(2) Ai'(z2) + H(—2) 3 u(—z)  (B3)

and
G'"(z)=—m[Ai(z)Bi'(z) + Ai'(z)Bi(z) ] — 4z “32(z2) .
(B4)

Figure 6 depicts the small-modulation, high-field, n =2
line shape obtained for GaAs using the parameters previ-
ously used for Fig.4. The Franz-Keldysh oscillations
continue to grow in amplitude as the probe photon ener-
gy is increased, a type of behavior which has not been do-
cumented in the literature, to the best of our knowledge.
In summary, it appears that the PR line shape is not
affected by the n > 1 terms of Eq. (27).
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