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A self-consistent, semi-classical theory of the non-radiative capture and emission rates of carriers 
in defect semiconductors is presented. The lattice is treated in the configuration coordinate ap- 
proximation and thermal averages of transition rates and cross-sections are calculated in the 
experimentally important statistical limit. The semi-classical theory gives explicit expressions 
for the time-dependent transition rates following optical excitation of carriers initially trapped in 
defect states within the band-gap of the semiconductor. I n  the steady state and in the thermo- 
dynamic limit, the predicted rates are in agreement with experiment. The theory bridges the gap 
in the literature between rigorous but complex quantum-mechanical theories and rough but 
experimentally useful semi-classical calculations, while i t  makes apparent the connection to 
Shockley-Read statistics. 

Une thborie exhaustive et  semi-classique des taux d’absorption et d’bmission des porteurs dans 
les semi-conducteurs (de dbfaut) est proposbe. Le rbseau est btudib dans l’approximation de 
coordonnbes de configuration, les moyennes thermiques des taux de transitions ainsi que les 
sections efficaces Atant calculbs dans la limite statistique, importante experimentalement. La 
thborie semi-classique fournit des expressions explicites des taux de transition, dependant du 
temps, qui se produisent aprbs excitation optique des porteurs initialement pribgbs dans des 
btats en dbfaut dans le vide de la bande du semi-conducteur. Pour le cas indbpendant du temps et 
dans la limite thermodynamique, les taux prbdits sont en accord avec l’expbrience. Tout en faisant 
apparaitre la relation avec la statistique de Shockley-Read, la thborie effectue la transition entre 
la dbmarche rigoureuse, mais complexe, de la mbcanique quantique et les calculs semiclassiques 
grossiers souvent utilisbs dans l’expbrience. 

1. Introduction 
In  recent years, a number of theoretical attempts have been made by several authors 
[l to 61 to  develop expressions for non-radiative transition rates in semiconductors. 
The impetus for this activity has been twofold: the intrinsic theoretical interest in 
the multifaceted and complicated problem of non-radiative transition mechanisms 
[3 to 61; and the practical desire to understand the energetics of defect centres and 
degradation pathways in semiconductor materials used for the fabrication of direct 
energy conversion devices, such as light emitting diodes (LED’S) and semiconductor 
lasers [l to 71. 

I n  the recent literature, there is general agreement that multiphonon capture and 
emission processes are consistent with observed material behaviour [l, 2, 4, 7, 81, 
however, the calculated transition rates and cross-sections are dependent on the type 
of approximation used by individual authors to describe the non-radiative transition 
process(es). In  general, the adiabatic and the crude Born-Oppenheimer schemes have 
been popular for the description of the (lattice + defect state) Hamiltonian in crystal- 
line solids [9]. 
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Henry and Lang [l] introduced a combined approach for the description of semi- 
conductor non-radiative capture, which was very successful in predicting experimental 
capture cross-section data. They used adiabatic electronic wave functions away from 
the defect level-band edge crossing point in the configuration coordinate, and first- 
order time-dependent perturbation theory for values of the coordinate near crossing. 
Their semi-classical treatment was in agreement with a simple quantum-mechanical 
calculation in the Condon approximation, however, proper coupling of the bound defect 
state with the entire quasi-continuum of free states in the respective band was ignored. 
Purther, the emission rate to  the quasi-continuum was estimated using a formula 
due to Landau [lo] and Zener [ll], without further justification. The original deriva- 
tion of that formula was made for transitions between electronic states of diatomic 
molecules and the conditions of its applicability to  the solid state are not clear. These 
shortcomings of the semi-classical theory used by Henry and Lang have also been 
recognized by the authors themselves [l]. 

Piissler ([2] and references therein) developed a semi-empirical theory of Shockley and 
Read 1121 processes in semiconductors, in the static carrier-lattice coupling limit. 
He was thus successful in deriving explicit expressions for the non-radiative capture 
and emission cross-sections associated with deep, charged or neutral traps in semi- 
conductors. However, the static Condon approximations employed by that author 
have been shown to break down near the crossing point of the trap state and the respec- 
tive lattice band edge potential curves [13]. 

Ridley also performed a detailed quantum-mechanical calculation of the non-radi- 
ative transition rate in semiconductors, using infinite-order perturbation theory in 
the non-Condon approximation 1141. The capture cross-sections which resulted from 
his treatment are higher a t  high temperatures than those calculated by Henry and 
Lang by a factor of p2/2S, where p is the number of accepting phonons corresponding 
to the zero-phonon line energy, and S is the Huang-Rhys factor. 

I n  this paper, a self-consistent semi-classical theory of the non-radiative capture 
and emission rates in defect semiconductors will be presented. The theory takes into 
account the dynamic response of the lattice following optical excitation, and results 
in time-dependent transition rates. Statistical averages depend on the density of 
states of the semiconductor, and lead to  a capture cross-section expression similar to 
that in [l] but enhanced by a factor of 2(p - S), thus bridging the absolute magnitude 
gap between the expressions in [l, 41. Explicit expressions for the net transition 
rates in the steady state will be derived. These fit reasonably well the experimental 
data a t  high temperatures and can be used to calculate true defect level depths within 
the band gap. 

Finally, it will be shown that the theory presented in this paper is consistent with 
the statistical formalism of Shockley and Read [12] in the long-time limit as the 
lattice-defect system approaches equilibrium. 

2. Lattice Relaxation and Non-Radiative Capture Rate 

Fig. 1 shows a configurational coordinate model of a semiconductor conduction band 
edge I c) and a defect state [ d) immediately after optical excitation of a trapped carrier 
from Id) to  Ic). The origin of the k-th mode of configurational space is coincident with 
the bottom of the (assumed harmonic) trapped state. The energies in Pig. 1 are given 
by c141 

uc(Q) = Eo + C m:&(Qk - O ~ C ) ~  9 (1 a)  
k 
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Fig. 1. Semiconductor configurational coordinate re- 
presentation. Qk is the accepting mode, E,, the zero- 
phonon energy, EM the lattice relaxation energy, EA the 
thermal barrier height, Ed the defect energy level, and 

ed carrier t o  the conduction band. An entirely analogous 
diagram can be drawn for defects which act as traps of 
carriers excitable into the valence band 

j C >  E~ the minimum energy required for excitation of a trap- 

where rnz is the effective mass of the free carrier in the k-th mode of configuration 
space. In  this work, it will be assumed for simplicity that the value of the effective 
mass jn the trapped state is also mf. wk is the characteristic vibrational angular 
frequency of the k-th mode, and A K  is the Prank-Condon displacement of the conduc- 
tion band with respect to  the equilibrium position of the trapped carrier, if captured 
a t  the cross-over of Ic) and Id). E, and E ,  are the zero-phonon energy and thermal 
activation energy for non-radiative decay, respectively. Assuming that modes j and k 
are affected to the same extent by the optical excitation, in the sense that 

A,(?; , (2 ) 
then it can be shown that Eo and E ,  are related by 

In  the harmonic approximation, we can set 

&(t) = [Q~(max)] cos wkt = d k  cos wet ,  (4) 
where the maximum vibrational excursion of the lattice from its equilibrium point 
was assumed to be A k .  Thus the level separation of the conduction band state Ic) 
and the defect state Id) can be written as 

AU(t )  3 U J Q ;  t )  - U,(Q;  t )  = Eo + E M  - 2 C f m&~&~l i  cos o k t .  (5)  

Equation (5)  can be simplified considerably using its average in the statistical limit 
[14], which is an excellent approximation in the case of optical excitations, where Eo 
is large compared to the lattice phonon energies: 

t 

AU( t )  x Eo + EM - 2EM cos at, (6) 
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I n  the statistical limit, also 

E ,  = Shw 1 (8) 

Equation (6) shows that the time z, after excitation, a t  which a carrier in the conduc- 
tion band will cross the defect state Id), and therefore is most likely to  be captured, 
is given by 

In  the semi-classical adiabatic approximation, which is valid for motion far from 
the crossing point Q* in Fig. 1, the Hamiltonian of the system can be written [l] 

H ( r ,  Q ;  t) = H(O)(r, Q )  + H(' ) ( r ;  Q )  . (10) 

In  (lo), r and Q(t)  are the electronic and nuclear coordinates, respectively. Non- 
radiative transitions occur due to the presence of the non-adiabaticity (perturbation) 
operator H ( l ) ( r ;  Q ) ,  which mixes the states Ic) and Id). H(O) denotes the kinetic energy 
operators of the electrons and nuclei, and vibrational potentials. The wave function 
y( t )  describing the system (quasi-continuum + defect state) a t  all times, including 
t - z,, is assumed to be expandable in terms of eigenstates of H(O)(r, Q )  evaluat.ed a t  
Q = Qi(t 1 ti) [I]: 

t t 

0 

where y(t) satisfies the Schrodinger equation 
(11) 

0 

and u,(t), vd(t) are eigenstates of H(O) describing the motion of carriers in the conduc- 
tion band quasi-continuum and in the defect state, respectively. The coefficients 
AJt )  and Bd(t) can be calculated using the orthonormality of the states Ic) and Id). 
They are given by the coupled equations 

t 

and 

d3r . 
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Equation (13a) can be extended to include other possible defect levels upon sum- 
ming over the index d, however, we are assuming here for simplicity that, only one 
non-degenerate level of the state Id) can be occupied by a carrier trapped at the 
defect. Equation (13b) can then be solved by using the initial conditions [15] 

Bd(t = O + )  = 0 

Ad(t 2 O+)  = 6,., , 
and 

where Of indicates any positive time, including t = 0, after optical excitation. Equa- 
tions (6), (13b), and (14a), (14b) give 

Equation (15) can be writt'en more compactly using (8) and the definition [14] 

With these definitions, (15) becomes 

where 
wt 

B',,(z; w t )  3 I exp [ i ( z  sin z - vz)] dx . 
0 

The transition probability, Wc+d, for capture within one vibrational period by the 
defect state is equal to \Bd(t)12, or 

The experimentally important quantity is, however, the capture transition rate, 
Rc-->d, as it can be simply related to the experimentally measurable capture cross- 
section oc. The transition rate can be determined from (19) as follows: 

I n  (20), use of Leibnitz's rule [16] for the time derivative gives 

and, for long times after the optical excitation, i.e. for t > w-1 
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where jv(z)  and ev(z) are Anger’s and Weber’s functions, respectively 1171. Equations 
(21 a), (21 b) show that the non-radiative transition rate increases linearly with time 
immediately following the excitation, then becomes oscillatory, and finally saturates 
a t  long times. In  the special case that p + S equals an integer, (21 b) reduces to the 
rate expression derived in [l]. Using Schliifli’s representations of Bessel’s and Neu- 
mann’s functions 1171, we can write a more tractable form of (21 b) in the limit of 
large, but otherwise unrestricted p ,  

where JP+s and N P + s  are Bessel and Neumann functions, respectively. 

3. Non-Radiative Emission Rate 

In  principle, an exact expression for the emission rate can be obtained from combining 
(13 a), (13b) and solving for A,(t). The mathematical difficulty involved in that straight- 
forward procedure suggests that an alternative solution method would be desirable. 
I n  this section, we present such a method, which is consistent with the assumptions 
used in Section 2. In  the limit of large t(-  “lo), i.e. for times near those required for 
thermodynamic equilibrium in the electron system both in the conduction band 
states and in the defect state, equation (15) can be written 

where 
Hi1)(.) = J,(z) + iNY(z) 

is the first Hankel function, and Schlafli’s representations of J, and N, were used. 
Appendix A shows that for phonon energies ho - k,T, equation (22) becomes to  
within a phase factor 

where Ed is the particular defect level considered, cf. Fig. 1. 

lattice energy is slow, we find 
Inserting (23) in (13a) and keeping in mind that for t > 0 - l  any change in the 

The transition probability, Wd+c, for emission within one vibrational period to the 
conduction band is equal to ]&(.t)Iz, or for t - Z/W 

where 
ot 

0 
G,(z; wt) = J exp [ - i ( z  sin z - vz)] dz . 
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The emission rate, Rd+c, can be calculated in a manner similar to  that used for 
(21 b). Using Schlafli’s representations of J, and N,, we can write 

From ( 2 1 ~ )  and (27), using the Hermitean property of the matrix element H S ) ,  

we find 

Equation (28) shows that the infinitesimal adiabatic, Frank-Condon emission and 
capture rates are in agreement with the principle of detailed balance [I21 for large 
times after excitation. 

4. Calculation of Hi:) and Rate Statistical Averages 

A more realistic evaluation of the matrix element H$) than the one presented in [l] 
can be made using an extension of the method described in [l]. 

Defining effective wave vectors Kd and k for the trapped and free carriers, respec- 
tively, and assuming the same effective masses for both kinds of carriers, we can write 

and 

From Fig. 1, it can be seen that for the capture 0- a carrier a t  a level U ,  in the con- 
duction band, the quantity &d + U ,  will be the energy of the trapped carrier 

I n  the special case that the defect level Ed lies close to the bottom of the conduction 
band, and the optical excitation does not raise the carrier much above the conduction 
band edge, we can approximate 

K: = k2. (31) 
I n  this case, the bound well method of [l] and (29 a), (29 b) yield the following expres- 

sion for the matrix element responsible for non-radiative transitions : 

Equation (32) reduces to the matrix element of Henry and Lang ([l], equation (88)) 
upon setting U ,  = Eo, i.e. for excitations to  the bottom of the conduction band. 

Experimentally, it is extremely difficult to know with reasonable certainty the 
exact quantum levels in a solid between which non-radiative transitions occur, 
especially a t  elevated temperatures (e.g. room temperature). High temperatures are 
25 physica (b) 1 2 2 / 2  
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efficient in inducing thermally activated transitions to and from many levels in the 
quasi-continuum of the conduction band. Therefore, any semi-classical formalism 
which considers transitions solely between two specific energy levels tends to under- 
estimate the magnitude of the transition rate which can be observed experimentally. 
To be interpreted properly, the infinitesimal rates obtained in (21 c) and (27) must be 
thermally averaged over the entire distribution of the quasi-continuum excited states. 

The processes involved are non-equilibrium, though for times t - n/w,  it is reason- 
able to assume that internally the conduction band states, as well as the defect states, 
have achieved equilibrium and can therefore be described by quasi-Fermi levels or 
imrefs [18]. 

Then, the statistically averaged non-radiative capture and emission rates are given 
by [121 

where g(Uc) is the density of states in the semiconductor, given by 

f F D  is the Fermi-Dirac statistical distribution for free and trapped carriers. Using 
the assumption of local equilibria, we can write 

(35 a) 

for conduction band states with F, the imref for free electrons; and 

for electrons trapped at defect levels with no degeneracies. The captured electron 
iniref is Fd. In (33a, (33 b), Nd(Ed) is the defect density. It has been assumed that only 
the level Ed can be occupied by trapped carriers. This assumption is generally valid 
for deep impurities in the ground state, as well as for shallow, isolated, square-well 
type traps [19]. 

The expression (33 a) for the statistically averaged non-radiative capture rate can 
be integrated explicitly in the case of non-degenerate semiconductors with U ,  - F ,  > 
> kBT with less than 10% error [18], 
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where 

and 

In&,,&,, weused equation (A2) of Appendix A. Details of theintegrations (37a), (37 b) 
are found in the Appendix B. Upon insertion of (B8) and (B12) in (36) and use of the 
iden t itv 

cos [n(p + X)] + sin [n(p + S)] tan ~~ r(p:S)l = 

we find the capture rate statistical average 

(39) 
The statistically averaged emission rate (33b) can also be written in terms of the 

int,egrals Q1 and Q2, 

The emission rate statistical average can be found in a manner identical to the proce- 
dure above which led to (39), 

5. Discussion and Conclusions 

The experimentally measurable capture cross-section crc can be obtained from the 
theory presented above, upon taking the thermal average of the statistical rate (39), 

(42) 
(Rc+d(Ed; E A ) )  . ~ 

(Rc--td(Ed; E A ) ) T  = ~ 00 

Nd(Ed) I1 - fFD(Ed)l .f g(uc) f F D ( U ~ )  dUc 
Eo 

The capture cross-section per unit volume is given by [l] 

Equations (39), (42), and (43) give the following expression for the capture cross- 
section : 

46 * 
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where (3) was used in the form 

hw(p - S)2 
4 s  

E A  = (45) 

Equation (44) is similar to equation (91) of [l], however, the present capture cross- 
section is larger than that derived by Henry and Lang by a factor of 2(p - 8). This 
factor can be quite large in the case of strong electron-phonon coupling (p> 8). The 
cause of the discrepancy between (44) and [I] is that Henry and Lang considered only 
transitions between two definite states and ignored the energy level distributions in 
the conduction (or valence) bands. The result of their approximation was an under- 
estimation of a, by 2(p - S) x 20 for typical values of p and S in the strong coupling 
limit [a]. In  that same limit, the semi-classical equation (44) underestimates the 
infinite-order perturbation quantum-mechanical capture cross-section by a factor of 

PIS 141. 
The net rate of capture at  temperature T is 

(46) 
Equation (46) is applicable to non-degenerate semiconductors. It reduces to an 

explicit form of the general result of the statistical theory by Shockley and Read 
([El, equation (2.10)) for the special case Ed - F d >  kBT. If the system (lattice + 
defect) is in thermodynamic equilibrium, then the imrefs are equal, 

(FAeq  = (Fd)eq (47 ) 

( r )  = 0 .  (48) 

At, or near, steady state (i.e. for t 2 nlw),  the net capture cross-section is given by 

and 

Using (39), (40), and (42) in (49), and the following approximations, which are valid 
for shallow defect states with effective masses equal to those of free carriers [12, 181 

Fc (Eo + Ed) 9 (50a) 

F d  Ed 7 (50b) 
we obtain 

where 
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and 

697 

&*(T) E k,T In exp ~ [ (2i:T)-1]' (53 b) 

Equations (52) and (53) are the results of the self-consistent semi-classical theory 
presented in this work and should be compared with [l], equations (90) to (94) and 
(111) to (113). The main differences are (i) the 0, in (53a) is a function of T, whereas 
omc of [ l ]  is not; and (ii) the exponent of (52) is a complicated function of T due to 
the inclusion of the emission component. The shape of the data curve for the electron 
capture cross-section of level B in n-GaAs versus T-1 given in Fig. 2 (Fig. 3 of [l]) 
indicates that the temperature dependence is not purely exponential. The slight curva- 
ture observed could be due to either the T-dependence of the pre-exponential factor, 
or some more complicated behaviour. The solid line A in Fig. 2 is a fit of (52) to the 
data, and the dashed line B corresponds to (91) of [l]. The parameters used for the 
two theoretical lines were p = 20 [4], X = 1 [4], &d = 0.06 eV [l], E A  = 0.28 eV 
(from the average slope of the data curve). At T = 300 K, equation (53 b) gives E* = 
= 0.019 eV. This value is to  be compared with 0.012 eV calculated from the Landau- 
Zener model in [l]. Fig. 2, curve B shows that the T-l-dependence of the pre-ex- 
ponentials in (52) and (91) of [l] has little effect on the curvature of these lines. The 
observed departure from linearity of the solid curve A in the direction of the data 
points is due to the presence of &*(T) in (52) and is most pronounced a t  T < 250 K. 
This curve deviates significantly from the data line a t  T 5 200 K, which is expected 
in view of the semi-classical approach adopted in this work. Nevertheless, the fit is 
good a t  higher temperatures, and resolves the consistency problem presented in the 
fit of [a], Fig. 1 of a quantum-mechanical formula strictly valid a t  low temperatures, 
fit to  the high-temperature data of Fig. 2. 

The present theory has the advantage over static theories [2,21] that it treats the 
dynamic transition rates a t  the crossing points in a self-consistent manner, i.e. without 
resorting to the Condon approximation in a configurational coordinate region of rapid 
wave function change. It is also valid for shallow defect levels and yields relatively 
simple, analytical expressions for electron capture and emission cross-sections a t  room 
and higher temperatures. The static theories, however, have successfully treated the 
possibility of charged centers as a straightforward extension of the transition rates 
involving neutral traps in the thermodynamic equilibrium limit [21]. This task is, in 
principle, feasible using the present theory, albeit mathematically more involved. 

Fig. 2.  Temperature dependence of the electron capture 
cross-section of level B in n-GaAs for various electron 
concentrations (after Fig. 3 of [l]). A: fit of (52)  to the 
following data: p = 20, S = 1, &d = 0.06 eV, E A  = 
= 0.28 eV. B: (91) in [l]. The discrepancy between the 
two lines is due to (i) the statistical approach, and (ii) 
the self-consistent consideration of the emission rate from 
the defect level in solid line A. A 4.2 X 1016, o 4.5 x 

rn 9.5 x l O l 6  

0 2.0 X lo1', 0 2.2 X lo1', A 3.0 X lo", 0 6.0 X lo*', 

I 
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The main advantage of the static [2, 211 and fully quantum-mechanical [4] theories is 
their ability to treat consistently low-temperature non-radiative processes. This is 
not feasible within the framework of a semi-classical formulation, as purely quantum 
effects become important a t  low-temperatures (e.g. quantum-mechanical tunnelling 
of the lattice oscillators [2]). The substantial deviation of the experimental data curve 
from the theoretical line A below x 200 K in Fig. 2 is a practical manifestation of the 
non-quantum nature of the present semi-classical theory at  low temperatures. 

Appendix A 

Derivation of expression (23) for Bd(t - d w )  

Equation (3) can be written in terms of p and S as follows: 

where U(=_ E M )  is the conduction band energy level to which the optically excited 
carrier has been raised. For the usual experimental case where EA > U ,  we can 
simplify (Al): 

For thermal emission to take place, a carrier must have enough thermal energy to 
cross the thermal barrier height EA, i.e. 

EA kBT 
and 

U 2 U ,  - Ed 

for shallow defect levels. Equations (A2) to (A4) give 

In  (2.2), 2 5  < p + S in view of (A5), so that the first Hankel function HFis(2S) 
can be written in its asymptotic form ([17], Chapter 7.13.2): 

x exp [ - ( p  + S )  ( 1 - '::$)"" + ( p  + S )  cosh-l ( UckFTE)1/2j * 
(A6) 

For ( U ,  - Ed) /kBT  < 1, the expression jn the exponent of (A6) can be written 
approxj mately 



Dynamic Theory of Non-Radiative Capture and Emission Statistics 

and, upon expanding the logarithm and inserting back into (A6), we find 

699 

Finally, substituting (A5) in (A8) and using the fact that along each configurational 
coordinate of Fig. 1 the Huang-Rhys factor S corresponds to one residual vibrational 
degree of freedom [4] 

Shw % LBT --* S x 0.5 

we can write 

The average of Bd(t - nlw),  equation (23), can be obtained upon squaring (22), 
using (32) and (A9), and weighing (multiplying) by an integral over the entire djstribu- 
tion of conduction band states : 

m 

\ I  

Thus 

to within an arbitrary phase factor. U ,  = U,(t > w-l) is the value of the excited 
carrier energy long after excitation, when the conduction band states are close to 
internal equilibrium. 

Appendix B 
The integrals Q1 and Qa of (37a) and (37 b) 

1.  The integral Q1 can be simplified using the approximations 

Uc - Eo = &d (B1) 
and 

which are valid for low excitation energies and for shallow defect levels. Under these 
conditions, 

m 

Q1 =5: (kBT)3/2 

or, for &d <kBT as is the case for shallow defects, 
00 

Q1 x 2(kBT)3/2 .4/2063/2 y2 e-au2 J,,s(y) dy , 
0 

where 
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Using the equality [ZO] 
m 

0 

where Il /2(p+~) is the modified Bessel function of order ( p  + S)/2,  we can express Q1 
as follows: 

Q~ = - 2 ( k g ~ ) 3 / 2  E:/2n3/2 2 M,(&) = (B5) aa 

Equation (B6) can be simplified further, upon writing the modified Bessel functions 
in their asymptotic forms ([17], Chapter 7.13.2) for ( p  + S)/Z > 1 : 

2. The integral Qz can be handled in exactly the same manner as Q1: 
a 

aor Q~ = - 2 ( k , ~ ) 3 / 2  & y O 1 3 / 2  - M 

with [ZO] 
a3 

M2(a)  = J e-ayP N P + ~ ( y )  dy = 
0 

where Klp( ,+~)  is Basset’s function, or the modified Bessel’s function of the third 
kind of order f ( p  + S) .  

Differentiating (B10) and retaining only terms consistent with the ( p  + X)/2> 1 
condition, we can write the asymptotic form for Kl/2(,+s) [17]: 

From (B l l ) ,  (BlO), and (B9), we obtain 

Q % ( E ~ ,  E A ;  T) % -2(EA&d)112 k,T tan 
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