
The concept of waves is an integral part of our scientif-
ic culture and has nourished physicists, pure and

applied alike, for centuries. Many important discoveries
in physics, including quantum mechanics, have involved
wave phenomena. The wave concept owes some of its sci-
entific success to its mathematical tractability. Linear
wave equations—the sort that describe the transmission
of sound and radio waves through air—contain a nonzero
second-order time derivative, which gives rise mathemat-
ically to the rich and familiar array of properties we asso-
ciate with waves, such as wavefront propagation, reflec-
tion, and refraction.

There exists, however, a peculiar class of waves
whose time derivative is only first order. Called diffusion
waves, these wave-like disturbances involve the coherent,
always driven, oscillations of diffusing energy or particles.
They have complex wave vectors and do not exhibit
square-law behavior.1

Diffusion waves have been known about since the
days of Anders Jonas Ångström in the mid 19th century
(see box on page 30). However, significant progress in
their science and associated technologies has occurred
only recently.2 Now, their generation and detection in con-
densed and gaseous phases of matter form the basis of sig-
nificant advances in the measurement and understanding
of materials’ optical, electronic, and thermal properties.
Technologies based on diffusion waves have already
improved biomedical diagnostics and the fabrication of
optical and electronic devices. Diffusion waves have also
spawned novel high-precision analytical techniques.

The mathematics of diffusion waves
Mathematically, diffusion waves arise when the classical
diffusion equation is coupled to an oscillatory force function:

where the driving force q(r)eiwt generates oscillatory solu-
tions F(r,w)eiwt for the field’s wave function C(r,t). Here, D
is a transport property of the medium, usually a diffusiv-
ity. C(r,t) may be an oscillating temperature (such as a
thermal wave resulting from the optical heating of a medi-

um), or an oscillating charge carrier density (such as a har-
monically-photoexcited carrier plasma wave in a semicon-
ductor), or a multiply-scattered photon fluence rate (such
as a diffuse photon density wave in a turbid medium).

By applying a Fourier transform, we easily obtain a
sort of pseudo-wave Helmholtz equation:

where k(r,w) is the complex diffusion wavenumber.
The term F(r), which is usually a constant, is the

square of the characteristic decay length of the diffusion
wave. In a photoexcited electronic medium, this length is
the carrier diffusion length—that is, the distance a free
carrier travels before it recombines with a carrier of the
opposite sign (a hole with an electron) and disappears in
the medium (ceases to contribute to electrical conduction).
In a diffuse photon density medium (for example, milk
with a strongly scattered laser beam propagating in it),
F(r) represents the distance a photon will travel under
random motion until it is absorbed by the medium. For
thermal waves, there is usually no delay in the energy
conversion process, so F(r) = 0.

Much of the physics of diffusion waves is embodied in
the wavenumber. For thermal waves, k = (1 + i)/L(w),
where the diffusion length L(w) is given by (2Dt /w)1/2 and
Dt is the thermal diffusivity. For most other diffusion
waves, the real and imaginary parts of the wavenumber
are unequal—a fact that has important consequences in
the spatial distribution of the wave field. If the real and
imaginary components of the wave vector are equal, the
waves appear at all frequencies. But if they are unequal,
the imaginary part does not pick up enough strength to
appear until relatively high frequencies are reached. As a
result, at low frequencies there are no waves, and the
wave field is equivalent to a DC signal whose magnitude
oscillates in phase with the source everywhere in the
medium. Once a critical frequency is reached—such as the
inverse of the electronic recombination lifetime in a semi-
conductor—then the wave nature kicks in and a phase lag
in the spatial coordinate appears.

As you might expect, diffusion waves are heavily
damped—a feature they share with damped waves of the
nondiffusive sort, such as electromagnetic radiation in
dissipative (that is, conductive) media. For these waves,
k = (1 + i)/d(w), where d(w) is the skin or penetration
depth. Diffusion waves also resemble waves attenuated

∇2F(r,w) ⊗ k2(r,w)F(r,w) ⊂ Q(r,w),
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DIFFUSION WAVES

AND THEIR USES
Diffusion waves lack wave fronts, can’t be beamed, and don’t

travel very far, yet they form the basis of several new
and revolutionary measurement technologies.
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diffusion waves can be generat-
ed in several ways. When a
modulated laser beam (shown
in green) strikes a surface, it
generates a thermal wave field,
which, in turn, causes a refrac-
tive index gradient to appear.
A probe laser beam traveling
parallel to the surface (pink)
will be deflected harmonically,
a phenomenon known as the
mirage effect or photothermal
deflection spectroscopy (PDS).
Another source of deflection is
the thermoelastic deformation
bump generated by intermit-
tent laser heating and thermal
expansion. A probe laser beam
directed at the surface (purple)
will be deflected by the bump.
Blackbody radiation (red) may
also be intercepted from the
thermally oscillating surface, a
technique called infrared pho-
tothermal radiometry (PTR).
A thermal wave field is gener-
ated inside the medium with
characteristic skin depth L(w).
This wave can be detected with
a pyroelectric sensor made
from a material such as
polyvinylidene fluoride—a
technique known as photopy-
roelectric spectroscopy (PPES).

Anders Jonas Ångström (shown
here) was the first to publish, in

1861, an experimental and theoretical
study of diffusion waves.11 In this pio-
neering work, he calculated the thermal
diffusivity of solids as measured by peri-
odically heating a long bar and then
detecting the alternating temperature
field at a point in the bar some distance
away from the heat source.

In 1880 Alexander Graham Bell
observed that intermittently chopped
sunlight incident on a strongly absorb-
ing substance causes audible sound to
emanate from the substance.12 But he did
not connect his discovery, dubbed the
photoacoustic effect, to Ångström’s
mathematical treatment of the heat dif-
fusion wave. Bell subsequently devel-
oped an instrument, which he named
the photophone (a differential spectrom-
eter of sorts), to investigate the audibility of various sub-
stances in the solar spectrum. He used a sewing machine to
construct the driver of the light chopper. Much activity fol-

lowed the early excitement and the
effect was attributed to the generation of
sound by the thermal bending of a solid.

It was not until almost a century
later that the photoacoustic effect was
put on the correct theoretical founda-
tion by Allan Rosencwaig and Allen
Gersho, who explained the audibility by
means of an acoustic piston in the gas
surrounding the optically absorbing
solid.13 The acoustic oscillation is gener-
ated by the expansion and contraction
of a boundary layer created by thermal
diffusion waves from inside the solid,
following the absorption and optical-to-
thermal (nonradiative) energy conver-
sion of harmonically chopped radiation.
The physical picture of the effect was
completed by Allan McDonald and
Grover Wetsel Jr, who showed that the
piston-like motion of the gas boundary

layer adjoining the sample is superposed on the mechanical
vibration of the sample surface to give a composite piston dis-
placement.14

Early Studies



by absorption, such as acoustic waves propagating in vis-
cous media, whose complex wavevectors have unequal
real and imaginary parts.

However, despite these similarities, diffusion waves
differ in one very important respect from the more famil-
iar sort of wave: Their transport, which takes the form of
spatial diffusion gradients, obeys a linear law, rather than
a square law. In general, if the energy density or particle
concentration generated by a source oscillating at angular
frequency w in a medium of diffusivity D is designated
r(r,w), and if the field gradients are not too large (so that
a linear approximation can be used), the resulting current
density J(r, w) is given by Fick’s law of diffusion:
J(r,w) = ⊗D∇r(r,w).

The simple fact that the diffusion wave field propa-
gates according to a linear law affects the waves’ behavior
at interfaces. When they encounter an interface, diffusion
waves obey an accumulation–depletion law, rather than the
reflection–refraction law of normal waves. Because detect-
ing diffusion waves almost always involves the waves’
crossing an interface of some sort, and because diffusion
waves, being heavily damped, don’t travel very far, their
behavior at interfaces is of great practical importance.

Further exploration of the diffusion-wave equations
yields the physical artifact of infinite speed of field propa-
gation, though with vanishingly small amplitude at
remote locations away from the source. This strange prop-
erty, which correlates very well with experiments,2 results
in sudden perturbations over entire domains.

Even stranger properties emerge. Because propaga-
tion is instantaneous, the equations yield no traveling
waves, no wavefronts, and no phase velocity. Rather, the
entire domain “breathes” in phase with the oscillating
source. In the world of diffusion waves, there are only spa-
tially correlated phase lags controlled by the diffusion
length. And in isotropic media, no field directionality
exists; unlike ultrasonic or laser beams, diffusion-wave
beams cannot be launched in a particular direction.

Although the physics of diffusion waves differs fun-
damentally from that of conventional waves, the substan-
tial deviations from the conventional reflection and
refraction laws mostly occur at large angles away from
normal incidence.1,3 As a result, theoretical developments
to date have been largely built on assumptions borrowed
from conventional square-law behavior.2,4 However,
regardless of the often misleading conventional-wave lan-
guage used to describe diffusion waves, these distur-
bances always take the physical form of coherent diffusive
flow of energy and particles in condensed or gaseous
media—like, for example, a periodically switched-on
flashlamp that generates diffuse photon waves of scat-
tered light in thick fog.

But perhaps the most intriguing aspect of diffusion
waves—and the one that lies at the heart of their applica-
tions—is that they offer a relatively simple tool for creat-
ing spatial coherence out of random ensembles of diffusive
energy or particles.

In the 1970s, after the advent of the laser, sensitive

new diffusion-wave methodologies for investigating con-
densed and gaseous matter were introduced. Laser
beams—thanks to their spectral selectivity, spatial coher-
ence, resolution, and enormous range in fluence—proved
ideal for putting diffusion waves to work.

Today’s most important and popular diffusion-wave
methodologies fall into three major classes: photothermal
spectroscopies and microscopies (which include photo-
acoustic beam-deflection,5 photopyroelectric spectroscopy,6

and infrared radiometric techniques7; see figure 1); laser
pump-probe methods (known as photomodulated ther-
moreflectance8); and diffuse photon density waves (see
Arjun Yodh and Britton Chance’s article “Spectroscopy
and Imaging with Diffusing Light,” PHYSICS TODAY,
March 1995).

These techniques have been the cornerstones of diffu-
sion-wave investigations throughout the last 25 years and
are credited with significantly improving the dynamic
range of optical, electronic, and thermal measurements of
condensed and gaseous media compared with convention-
al methods. Below, is a fin de siècle selection of a few key
diffusion-wave applications that best exemplify how their
unique physics leads to significant new advances in mate-
rials and metrology. 

Ultra-low absorption in photonic thin films
When light propagates across a refractive index gradient
caused by a temperature gradient, it is deflected. Known
as the mirage effect, this phenomenon forms the basis of
photothermal deflection spectroscopy (PDS). In PDS, two
laser beams are used: a probe that sends photons into the
medium being studied and a modulated pump, usually
placed at right angles to the probe, whose photons are
absorbed by the medium (see figure 1). Inside the absorb-
ing medium, the modulated pump creates a thermal diffu-
sion wave field following the conversion of optical energy to
thermal energy. The optically generated thermal oscillation
penetrates the surrounding gaseous or fluid medium with-
in a thermal diffusion length and causes a modulated
change in its refractive index right above the optically
pumped region. The amplitude and phase of the deflected
probe beam carry information about the optical and ther-
mophysical properties of the absorbing solid or liquid.
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FIGURE 2. ABSORPTION SPECTRUM of a 10.4-nm-thick single
quantum well of gallium arsenide at room temperature derived
from photothermal deflection spectroscopy. The clear spectral
resolution of the peaks attests to the high quality of the quan-

tum well and its potential use in laser fabrication.
(Adapted from ref. 9, Penna et al.)



PDS is a popular and important technique because it
can probe surfaces irrespective of the size of the sample.
PDS is also free of the limitations of the photoacoustic cell
enclosure. Moreover, samples can be studied in the open
air, in gases, solids, or liquids, without contacting the
sample and without microphonic noise limiting the signal-
to-noise ratio.

Since the introduction of PDS in 1979 by Claude Boc-
cara, Daniele Fournier, and their collaborators,5 the tech-
nique has been widely adopted as one of the most sensi-
tive solid-state spectroscopies for probing ultralow
absorptances (absorptance is the product of a sample’s
absorption coefficient and its thickness). In particular,
PDS is used to study electronic-defect-dominated spectral
regions well below the optical gap of amorphous thin-film
semiconductors. For such samples, the signal amplitude is
proportional to the absorptance, so ultralow absorption
spectra can be obtained directly from the amplitude of the
thermal wave signal induced in the thin films upon non-
radiative conversion.

PDS has also been successful in studying the exciton-
ic structures of quantum wells in spectral ranges where
optical spectroscopy has proven inadequate due to its high
background level. Figure 2 shows the absorption coeffi-
cient spectrum9 (proportional to the PDS thermal-wave
signal amplitude) of a single-quantum-well gallium
arsenide sample grown by molecular beam epitaxy. The
well consists of a 10.4-nm layer of GaAs sandwiched
between 40-period superlattices of GaAlAs/GaAs. The two
peaks are related to the heavy-hole and light-hole excitons,
resulting from the lifting of the degeneracy of the valence
band in a two-dimensional system.

The ability of PDS to reconstruct density-of-states
spectra from ultralow photothermal absorption spectra
has led to the effective control of electronic defect popula-
tions and energetics. The fabrication of devices based on
amorphous thin films, and very recently on porous silicon
nanostructures, has been largely accomplished with the
aid of precision measurements based on photothermal
techniques (Ref. 2, volume IV).

Inverse problems
The heart of mathematical physics has always included
inverse problems, a field in which one is called upon to
reconstruct the cow from the hamburger meat, so to
speak. When applied to square-law wave fields, inverse
methods have created several important physical and
medical breakthroughs in the 20th century, such as com-
puter assisted tomography (CAT), ultrasonic imaging, and
magnetic resonance imaging. What kind of inverse prob-
lems are diffusion waves capable of solving?

Because of their mathematical peculiarities, diffu-
sion-wave fields belong squarely in the realm of the so-
called ill-posed or ill-conditioned problems. For such prob-
lems, reconstructing the scatterers involves the discrete
approximation of a Fredholm integral equation of the first

kind, for which small perturbations in the data can lead to
large-amplitude fluctuations and nonphysical artifacts in
the reconstruction. The spatially damped nature of diffu-
sion waves, however, presents two major advantages over
conventional tomographic imaging techniques. Not only
do diffusion waves provide high near-surface feature res-
olution, but they are also far less susceptible to ghosting—
that is, the appearance of spurious signals from remote
interfaces. For these reasons, physicists, mathematicians,
biophysicists, and engineers turned their attention in the
1990s to tomographies that use diffuse photon density
waves and thermal waves.3,10

A diffuse photon density wave is readily generated by
sinusoidally modulating the amplitude of an optical point
source (delivered through an optical fiber, for example) in
a turbid medium, such as tissue or milk. Injected photons
are elastically scattered following a random walk toward
a detector (another optical fiber), and some are absorbed
in midstream. The resulting oscillation limits the random
walk and has been shown to be a spherical diffusion wave
with a wavenumber k(w) given by k2(w) = (va ⊗ iw)/Dg.
Here, v is the speed of light in the medium, a is the
absorption coefficient and Dg is the diffusivity of light.

Physically, the collective motion of coherently driven
and randomly scattered and absorbed photons creates a
diffuse optical field with well-defined spatial phase lags
with respect to the source phase and a characteristic dif-
fusion length =+2/+k(w)+ of about 10 cm. Typical modulation
frequencies are on the order of a few hundred MHz.

Phase sensitive demodulation of the received signal is
possible with heterodyning instrumental schemes or,
directly, with today’s high-frequency lock-in amplifiers.
The inequality of the wavenumber’s real and imaginary
parts and the very high speed of light require high-fre-
quency operation to create a diffusion wave.
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FIGURE 3. SLICE TOMOGRAPHIC IMAGES of diffusion-wave
fields. (a) A diffuse photon density wave from a 1.2-cm diame-
ter, highly scattering resin sphere situated 2.6-cm deep in a tur-
bid intralipid solution. The image was obtained at modulation

frequency of about 200 MHz (from ref. 3, Zhu et al.). (b) A
thermal wave from a defect (hole) of 0.635-mm diameter, situ-

ated 1.5 mm deep in a mild steel obtained at 15 Hz.
(From ref. 10, Nicolaides and Mandelis).



Tomographic techniques based on diffusion waves
have been developed to solve the inverse problem of
obtaining the shape of an inhomogeneity in a turbid medi-
um. Even though the algorithms used to analyze the data
are not conventional CAT-scan algorithms, the instru-
ment is operated in a CAT-scan mode. To stabilize the
inversion for a given level of accuracy, elaborate computa-
tional signal conditioning procedures known as regular-
ization techniques have been developed.10 At present,
objects of about 1 cm in diameter can be imaged (see fig-
ure 3a), but new methodologies are being developed to
improve the spatial resolution for clinical applications.

Thermal-wave tomographies operate on similar prin-
ciples, but with important differences. Because the two
parts of their wavenumber are equal, thermally driven
diffusion waves can be manifested at any frequency. More-
oever, their much smaller wavevector magnitude allows
the identification of sub-surface features in the submil-
limeter range, such as the one shown in figure 3b.

Charge-plasma waves in semiconductors
When a semiconductor is optically excited with a harmon-
ically modulated beam of monochromatic photons of ener-
gy greater than the solid’s bandgap, several dynamic
processes can occur that give rise to diffusion waves. In
particular, the illumination creates energetic electron–hole
pairs, which collide with each other and with lattice
phonons until, on a picosecond time scale, thermal equilib-
rium is achieved. Called direct lattice heating, this phenom-
enon is a source of thermal waves in the semiconductor.

But another process occurs. Excess photogenerated
charge carriers diffuse away from the source of the heat-
ing until, after an average lifetime t, they recombine with
carriers of the opposite sign or defects. The modulated
densities of these randomly moving carriers constitute a
charge plasma diffusion wave for which F(r) = ⊗1/Dnt and
kn

2(w) = (1 + iwt)/Dnt. Here, the subscript “n” is used for
electrons, and the subscript “p” for holes. In a p-type
medium, Dn is the minority (electron) diffusivity.

Because the wavenumber’s real and imaginary parts
are unequal, it is only when wt � 1 (that is, when the
imaginary part becomes as large as the real part) that this
type of carrier oscillation behaves like a diffusion wave. 

Several experimental techniques have been devel-
oped in recent years to detect carrier diffusion waves.
Among them, photomodulated thermoreflectance has
offered valuable physical insights into the interaction of
radiation with the excited electronic states in semicon-
ductors.8 In this technique, a harmonically modulated
pump beam generates thermal and carrier waves that, in
turn, modulate the solid’s optical reflectance. A second,
CW probe laser measures the reflectance.

Plasma waves are increasingly used to investigate
defects in electronic solids that are destined for high-den-
sity micro- and nano-devices. Under the general term
infrared photothermal radiometry, various techniques
have been developed that capture the oscillating black-

body radiation emitted by optically excited semiconduc-
tors.7 This oscillation, which is superposed on the black-
body emission from direct lattice heating (also in the
infrared), is the plasma wave created optically. When car-
riers recombine they emit an infrared photon. In effect,
each recombining carrier acts as a discrete blackbody
radiator. Recombination lifetimes in silicon are a few
microseconds or longer, so the plasma diffusion wave
appears when the incident photons are modulated at fre-
quencies of 1 kHz and higher.

The amplitude and phase of the collected blackbody
radiation flux measures not only the recombining free car-
rier density, but also the dynamics of the incoherent
recombination process that creates the plasma diffusion
wave. The superposed thermal wave from direct lattice
heating is easily separated from the plasma wave because
heat diffuses more slowly than the carriers.

When silicon crystals of normal quality are examined
with this technique, the radiometric signals above
200–500 Hz are completely dominated by the de-exciting
electronic blackbody radiators. The frequency dependence
of the plasma wave involves the recombination lifetime, t,
in the bulk of the semiconductor and the electronic diffu-
sivity, Dn (or Dp). It also involves the rate of recombination
at the surfaces (or surface recombination velocity), which
depends on the surface-state density and is an indicator of
the preparation, cleaning, and processing of the sample.
At low frequencies, the amplitude of the plasma wave is
directly proportional to the photoinjected carrier lifetime
(Mandelis, in ref. 7). As a result, an image of the laser-
beam-scanned radiometric amplitude is, in effect, an
image of the recombination lifetime (subject to a multi-
plicative calibration constant).

Because carriers diffuse rapidly to the back surface of
the sample, depletion conditions there can affect the
entire spatial density gradient. Taking advantage of this
property, a novel technique has emerged that uses plasma
diffusion waves to image the minority recombination life-
time, thereby probing conditions in the bulk of the sample
(see figure 4). This nascent technology, which is unusual-
ly sensitive to electronic defects across the thickness of Si
crystals and industrial wafers, has revealed that electron-
ic defects in a substrate exert their influence on the local
quality of micro- and nano-electronic devices over materi-
al regions much broader than anyone thought possible.

Looking ahead
The applications described here demonstrate what can be
accomplished with diffusion wave physics. In the 21st cen-
tury, we are bound to see many of these applications
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transferred to industry, where they will lead to advances
in materials, photonic devices, fundamental materials sci-
ence, biomedical physics, and manufacturing yield. And
thanks to their power to exert spatial control over dynam-
ic diffusion processes, diffusion-wave technologies will
have an important role to play in difficult cases where
today’s other leading diagnostic techniques, such as
optics, x rays, and ultrasonics, cannot be used. As their
spatial resolution improves, diffusion wave tomographies
and inverse methodologies will be used in such applica-
tions as cancer diagnostics, dental imaging of caries, and
the nondestructive evaluation of critical and valuable
manufacturing components. For diffusion-wave research-
ers and users alike, the coming years will be very exciting!
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from the Natural Sciences and Engineering Research Council
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