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The application of the rate-window concept, familiar from deep level transient spectroscopy, to 
thermomodulation and photomodulation problems via lock-in detection has been investigated. 
Theoretical analysis of the newly adapted technique to these problems is presented and 
experimental photopyroelectric and photomodulated optical reflectance results are discussed. 
The utilization of the lock-in analyzer as a signal transient filtering system and as a dual-gate 
boxcar integrator equivalent with transient thermal wave signals is examined. Optimal 
instrumental conditions for use with thermal and electron-hole plasma analysis methodologies 
are presented, and experimental results with aluminum foil, crystalline and ion-implanted Si 
illustrate the potential of this measurement methodology for nondestructive thermal and 
electronic spectrometric evaluation of condensed phases and electronic materials. 

1. INTRODUCTION 

The technique of deep level transient spectroscopy 
(DLTS) has been successfully applied to the study of sev- 
eral types of semiconductors’ and has measured the ther- 
mal emission properties of deep levels of impurities and 
defects.ls2 In its conventional realization DLTS gives a 
measurement of the thermal electron population lifetime 
constant of, say, a junction by monitoring the capacitance 
transient following the application of an electrical2 or 
optica13*4 pulse across the junction. The time constant is 
determined by comparison with an electronically estab- 
lished “rate window,‘* using a dual-gated boxcar integra- 
tor, the gates of which are adjusted through synchroniza- 
tion with respect to the end of the excitation pulse. Thus, 
for an exponential decay of lifetime 7, such as the carrier 
recombination in a specific defect level in a semiconductor 

x(t) = e-“T. (1) 

Once the boxcar gates are fixed and set at times r1 and 
t2, the output signal can be written 

B(t) = e - h/7 - e - 12/T, (2) 

with a maximum occurring for a carrier decay time con- 
stant, rmax, such that d( AS)/& = 0, or 

t2 - 11 
r 

max = ln(t2/tl) * (3) 

In DLTS the external parameter which varies the physical 
decay constant r is the equilibrium temperature T of the 
junction. The inverse of r,,, is the “rate window.” An- 
other, less popular method for establishing rate windows is 
using the lock-in analyzer instead of a boxcar integrator.5-7 
This method has recently been recognized to be very at- 
tractive for use with thermomodulation and photomodula- 
tion-generated signals,’ as it is well suited for measuring 
the frequency content of thermal transients with a superior 

signal-to-noise ratio (SNR) to conventional transient pho- 
tothermal detection schemes, due to the extremely narrow- 
band filtering effected by commercially available lock-in 
analyzers. 

In this work we report an instrumental lock-in rate 
window analysis of thermomodulation and photomodula- 
tion transients in the form of preliminary experimental re- 
sults and theoretical analysis of the specific case of photo- 
pyroelectric (PPE) detection. Thus we obtain a 
quantitative understanding of the range of physical ther- 
mal and/or electronic transport lifetimes measurable by 
this methodology. 

II. TRANSIENT THERMOMODULATION SIGNAL 
ANALYSIS 

As a specific thermomodulation response, photopyro- 
electric (PPE) signal detection’ following optical pulsing 
of a homogeneous sample by laser irradiation is a proce- 
dure quite similar to optical DLTS signal generation.3*4*‘0 
With PPE detection the thermal conduction transient 
buildup (decay) is monitored during (after the end of) the 
excitation pulse. With DLTS detection the electrical tran- 
sient is always monitored after the end of the pulse. For a 
one-dimensional geometry as shown in Fig. 1, an optical 
impulse of fluence Io[W/cm2] and of the form 

I(x,t) = I,s(x)s(t) (4) 

has been shown” to produce in a thin polyvinylidene flu- 
oride (PVDF) pyroelectric film a general thermal transit 
impulse response T(x,t). In the special case where the 
sample is a good thermal conductor (such as crystalline 
semiconductor or some metals) and furthermore if the 
sample of thickness I and thermal diffusivity a2 is ther- 
mally thin, i.e., 
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FIG. 1. Schematic of a four-layer one-dimensional photopyroelectric sys- 
tem. 

(5) 
(where d and a3 are the thickness and the thermal diffu- 
sivity of the PVDF detector), the Laplace transform of the 
thermal impulse is given by” 

f(s) = 25 y3 d ia2)“’ j, (e-‘2:“)q*i). (6) 

12 Eq. (6) s is the Laplace variable and q2 = (,s/cx2) ‘12, 
T(s) can be considered the transform of the Green’s func- 

tion for the system in Fig. 1 in the thermally thin limit. For 
an optical pulse of fluence I0 and duration r,,, its Laplace 
transform is 

T(s) = Io( 1 - e-S7P)/S. (7) 

Now the PPE voZtage response to a finite duration pulse is 
given by multiplying the Laplace transforms, Eqs. (6) and 
(7) and inverting. In order to obtain the PPE current re- 
sponse, our experimental quantity, the time derivative of 
the inverse transform must be obtained” 

pd d - 
i(t) = T ;isf T(t), (8) 

where p and E are the pyroelectric coefficient and the di- 
electric constant, respectively, of the PVDF detector, and 
T(t) is the detector thickness averaged temperature. The 
result is 

as, ,$!]o(l -e-S?p) 5 e-(g+‘y 
n=o 

or, upon inversioni 

’ 2 erfc(s); t<rp 
i(t) =A* y” 

z. l,,f,(qj$q -e+g$$=J]: t>r,, 

(94 

(9b) 

where Ill. LOCK-IN RATE-WINDOW METHODOLOGIES 

A. Transient signal input 

A = (pd/e)l(). (10) In thermomodulation and photomodulation experi- 
ments the input signal to the lock-in analyzer is a transient 
function, which in the PPE case above is given as 

Now let us consider the PPE transient of Eq. (9) for sev- 
eral values of the thermal characteristic time constant 

Tt= /2/4a2. (11) 

e’(t) = i(t). (12) 

In Fig. 3 the electronic circuitry of a standard lock-in an- 
alyzer is shown.13 et(t) is the transient signal input; ez( t) is 
the mixer drive input, a square wave given by 

Figure 2 shows the effect of rZ and rp on these transients 
Figure 2 (a) (i) shows the thermal transients (both rise 

and decay) with different thermal characteristic time con- 
stants TV and Fig. 2(a) (ii) shows the same thermal decay 
transients triggering at the end of the excitation pulse and 
normalized to the f = 0 value. Materials with different r1 
will have very different thermal transients. Figures 2 (b) (i) 
and (ii) show the thermal transients of the same material 
(a single rl) but with different excitation pulse widths TV. It 
can be seen that the excitation pulse width rp does not 
change the behavior of the thermal rise profile, but it does 
affect somewhat the thermal decay transient. 

I 1; T, - y- -I- t&t<& 

I 
,L 

eztt) = 

- 1; tg<+ &? 
(131 

where T, is the period of the square wave, related to the 
lock-in reference angular frequency w, by 

w, = 2rr/T, = 21rj+,, (14) 
and te is related to the lock-in phase setting 6,. by 

tg = T,( @/2n). (15) 

es(t) is the output of the heterodyning mixer: 
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FIG. 2. (a) Photopyroelectric current response of the system in Fig. 1 
with r, as a parameter; (i) Thermal rise profile and (ii) thermal decay 
profile after the end of the laser pulse: (-) 7, = lo-’ s; (---) r, 
= 10ebs; (-.-) 7, = IO-‘s;and (...) 7, = 10m4s. (b) Sameas (a) 

with 7p as a parameter: (-) rp = 0.1 s; (---) ~~ = 0.25 s; and (-.-) ~~ 
= 0.4s. 

e3(t) = el(t)e2(t), (16) 

and eJ( t) is the signal output past the lowpass filter of time 
constant ~~ = RC. This filter is assumed to have a transfer 
function H( a,~~). 

A Fourier series expansion of the thermal pulse may be 
written assuming excitation pulse repetition rate l/T,,, Fig. 
4(a): 

FIG. 4. (a) Optical excitation pulse-train of the photopyroelectric system 
of Fig. 1. (b) Transient photothermal signal-input to the lock-in analyzer. 
(c) Lock-in analyzer mixer weighing function with phase setting time 
offset t&O and period T, (d) Special case with T, = T, and tg = 0. 

i(t) = i(t + To), (17) 

(18a) so that 

1 
=p+ 2 cmsin(~+dm), 

m=O 
(18b) 

where: 

c,“= Jm, f$, = tan-’ F 
( 1 m 

FIG. 3. Phase-sensitive detection (PSD) of lock-in analyzer simplified 
circuitry, (Ref. 13) including detection signal sequence: input signal 
c,(t), reference signal e?(r), mixer output e,(t), and lock-in output, band- 
pass filtered signal, eJ( t). 

Considering only the rising component of the signal 
[i.e., I < rP in Eq. 9(a); the decay profile, Eq. (9b), can be 
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treated identically and contains entirely equivalent infor- 
mation], we may write for the situation described in Fig. 
4(b): 

.o,z i 
s 

To 

To n=O 
erfc JT~ dt, 

0 

ao=2 2 n=O erfcJze--+ ($) (e2 

- jherfcJ7,7?;1; )I , 

(204 

(20b) 

& (21a 

or 

am=kT .zo ImP’~)(Tdlj (21b) 

b, = $ nzo JoTo erfc &?? sin(F) dt, (22a) 

or 

6, = & ,i, -OWF?( To) I - 2 erfc m>, 
(22b) 

where integration by parts of Eqs. (20a), (21a), and (22a) 
results in the representations (20b), (2 1 b), and (22b) of 
the Fourier coefficients (See Appendix I). Furthermore, 
the rest of the symbols in the above equations are: 

P’( To) = e-‘n’To[ W(z,) + W(z2) 1. m 
Here the complex function U’(z) is defined as 

W(z) Eexp(z2) e&(z) 

and 

(23) 

(24) 

q=(q)m,n= (25af 

Z2=(z2)m,n = 
\i 

g - ( 1 Jr- i) $G* (2%) 0 
Finally, 

7,s (2n + 1)%-t, (26) 

where ‘r is the thermal time constant of Eq. ( 11). 
Appendix II gives algebraic expressions and ranges of 

validity for W(z) across the complex plane ranges covered 
by all possible values of z1 and z2. Figure 5 shows the 
excellent fidelity of the reconstruction of i( t) from its Fou- 
rier expansion, Eq. (18). For this reconstruction direct 
numerical integrations of Eqs. (ZOa), (21a), and (22a) 
were found to give better results than Eqs. (20b), (21b), 
and (22b), respectively, which exhibited an oscillatory en- 
velope due to the accumulated round-off errors over all the 
terms n (nmax = 35), for each of which a number mmax 
- 0( 100) was required for the W(z) values to become 
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FIG. 5. Fourier series reconstruction (curve 2) e,(t) = i(f), Eq. (9a), 
with t < 7p (curve 1). Parameters chosen for the simulation: I= lOOpm, 
a> = 0.82 cm2/s, -r, = 3.048 x IO- 5 s,fO = 5 Hz. Number of Fourier 
coefficients: mmax = 35; number of terms used in the numerical calcula- 
tion of each Fourier coeficient: nmJI = 35. Curve (3) shows the behavior 
ofe,(t),Eq. (33),withrL = lms. 7’, = T,, = IGOms. 

independent of m. It was thus found that ns35 was needed 
to improve the reconstruction fidelity, which made numer- 
ical integration attractive in terms of computer time for 
this particular situation. 

B. Heterodyning mixer output 
The mixer drive input, Eq. ( 13), is a square wave as 

shown in Fig. 4(c) with Fourier series expansion13 

dt) = $ j. g-& sin[(h + l)(wf+ @,)I, (27) 

where 6, is the lock-in phase setting, appearing in Eq. ( 15). 
Conventiona11y,5~7~‘7-‘9 the lock-in analyzer has been used 
with DLTS signals as a rate-window instrument upon set- 
ting the transient pulse duration frequency ( T; ’ ) equal to 
the reference frequency f, = T,- ‘. Therefore, the lock-in 
rate window consists of selecting the fundamental Fourier 
component of the input signal transient. In a more general 
sense, it is important to investigate the effects of T,.#T, in 
transient thermal wave spectrometry, since slow, diffusive 
transients can produce time-dependent lock-in outputs, 
which may be affected advantageously by the low-pass fil- 
tering action of the instrument, in terms of SNR. It is 
well-known that the lock-in does not normally comprise 
the optimum SNR filter for transient signals,” but a cor- 
relation method does.” In view of the above remarks, we 
consider the form of the entire input transient el (t) at the 
mixer output, after mixing (i.e., multiplication) with the 
fundamental Fourier component of the reference waveform 
@2(t): 
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q(t) =f(0csin(gt+O,) + i, c, (,os[F (mz 

- *)t+q,-e,] -ms[,-(m;+ I), 

(28) 

C. Band-pass filtered output 

Two kinds of low-pass filters will be considered for the 
lock-in analy.zer:13 an ideal, infinitely sharp cutoff filter 
with noise bandwidth fiv = fL, and a real filter with fN 
> fr ( fL = 1/2~r~ is the signal bandwidth). Assuming 
filter transfer function H(w,~~), the lock-in output e4(t) 
can be written as a convolution integral: 

e.+(t) = e3(t)*F- ’ [WWTL) I, (29) 

where the inverse Fourier transform of the H(w,~~) indi- 
cates the impulse response of the filter. For ideal filtering 

1; wcot27rfr. 
Hidcal(W,TL) = 0. w>wL I> ’ (30) 

In terms of the rectangle function II(x), defined by*’ 

1 1; lx1<1/2 
n(x)= 0; 1”1>1/2’ 

we may also write 

(31) 

~ideal(~,~LL) = n[ ( f1f.L) - 1121. (32) 

The convolution operation in Eq. (29) shifts the origin 
of the filter frequency-domain window for each component 
of the e3(t) expansion, so that finally we obtain for the 
&-proportional (odd Fourier) series: 

(odd) _ 2 
e4(t) (ideal) - ~ 2, k(ni (+ 1) g-f] 

x ..,[? (+ I),-e,] 

-II[(mg+l)g-;] 

x COSE (r++ 1)t+e,1). (33) 

Similar expressions can be obtained for the rest of terms in 
Eq. ( 18a). When real filtering is considered, it is most 
convenient to use a Lorentzian filter: 

1 
Keal(WTL) = 1 + iwrL ’ 

such that 

1 e-‘/rL; t>o 
~-‘[f&eaI(~~~L)l =z 0; t<() * I 

After convolution in the time-domain we obtain: 

e,(t){$$ =z i b, Re 
7-r m=l 1+27ri/m~+l\Z I 

(36) 

\ \ ‘0 

where 

cosx+ysinx 
1+y* ’ (37) 

with similar expressions for the rest of the (even and con- 
stant) terms. 

D. Special cases 

Here we will consider two important special cases of 
lock-in outputs, depending on the filter time-constant set- 
ting rL. 

1. Short filter time constant: rL 4 T, or fL s fr 

In this case the entire frequency content of e3(t) passes 
unattenuated through the filter, Fig. 2. In the limit rL 
= 0, 11( - l/2) = 1 and Re[eix/( 1 + iy)] = cosx;x 
= (2r/T,)[m( T/T,) f l]t f 8, Equation (28) shows 

that the lock-in outputs the entire time-dependent wave- 
form e3(t). For actual instruments (e.g., EG & G lock-in 
Model No. 5210) the minimum time constant is 
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\ 10 J’r / 

I 

(rL),in = 1 ms. Using this value, Fig. 5 curve (3) shows 
the shape of the waveform e4( t) = e3( t) for 0 < t 
< To/2, with e,(t) given by curve ( 1) of the same figure. 
The maximum of the curve Fig. 5 curve (3) contains in- 
formation about the transport time 7,. Figure 6 shows a 
sequence of lock-in outputs representing thermomodula- 
tion transients with different thermal transport time con- 
stants r,, 0 < t ( To/2. A monotonic increase in the tem- 
poral position of tmax with rt indicates that, upon 
calibration, the lock-in output may be used to measure 
rt. The advantage of lock-in detection lies in the ability to 
vary TL so as to eliminate higher frequency components 
from Eq. (33) or Eq. (36) and thus substantially improve 
the SNR. 

Due to the diffusive nature of thermomodulation sig- 
nals, the energy content of the PPE response is heavily 
weighed towards the low frequencies. Therefore, the lock- 
in output is expected to vary dramatically with T, changes, 
as the bandpass filter is centered at fl”. Figure 7 shows 
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FIG. 6. Input thermomodulation wave- 
forms (solid lines) and lock-in outputs 
(dashed lines) showing the maximum of 

experimental results from an aluminum foil sample using 
the geometry of Fig. 1 as described earlier.** The severe 
signal attenuation (pulse decay) with increased reference 
frequency is evident in that figure. 

An alternative rate-window methodology with fast 
transient thermomodulation signals compared to the min- 
imum lock-in filter time constant, (r,,)min, is to use con- 
ventional DLTS-type detection of the rise or the decay 
portion of the transient without the lock-in, and with the 
computer setting up narrow rate windows, i.e., replacing 
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FIG. 7. PPE decay curves from a 30-pm-thick aluminum foil, following 
an optical pulse of duration TV = 20 ms, using an EG & G Model 5210 
lock-in with T[, = 1 ms. Reference frequency: (1) 400 Hz, (2) 600 Hz, 
(3) 800 Hz, and (4) 1 kHz. 
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the output response dependence on TV 
when eJ(t) = e>(t). Q = 1 ms, T, 
= T, = IOOms. 

the dual-gated boxcar integrator. In the PPE current rise 
response case, Eq. (9a), the equivalent of Eq. (3) is 

(rrhax = 1 5 ( ) ln(t2hl), 1 (38) 

assuming that r, > max( tl,t2). Similarly, for the decay por- 
tion, Eq. (%I, ~~~~~~~ = 7 can be found numerically from 
the maximum condition: 

t, - 1/2e - T/II _ (f* _ Tp) - 1/2e - r/(t) - Tp’ 

=2 
t-l/2e-r/r2- (t2-T~)-1/2e-r/(t*-Tp). (39) 

Figure 8 shows a thermomodulation rate-window proce- 
dure for the decay portion of the aluminum foil PPE re- 
sponse of Fig. 7, without lock-in processing, which simu- 
lates the rL = 0 case. It is convenient to notice that a pure 
exponential decay model fits the thermal decay curve [Fig. 
8(a)] and the rate-window [Fig. 8(b)] very well. Thermal 
transit time rl measurements can be easily obtained from 
Fig. 8(b). At this time it appears that lock-in detection 
with short rL using the rate-window concept will primarily 
be qualitative (quantitative after proper calibration) in 
measuring rl, due to the experimentally observed strong 
effect of the value of T,. on the temporal peak position of 
the rate-windowed response. 

Further qualitative insights into the usefulness of short 
filter time-constant lock-in thermomodulation and photo- 
modulation rate-window transient detection have been de- 
rived using the modified photomodulated optical reflec- 
tance (PM0R) scheme22-24 of Fig. 9, adapted for rate- 
window detection. An electrical pulse of duration r, mixed 
with an ac ripple in the 2-100 kHz frequency range, de- 
scribed by 

F(t) = I 1 i- meiwg; O<t<T 
0; t>r I (40) 
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FIG. 8. PPE decay curve (a) and rate- 
window signal processing (b) of the 
thermomodulation signal from a 30- 
pm-thick Al foil without the lock-in 
analyzer. The solid lines are the data. 
The dashed line is the fit of the purely 
exponential decay model 100 exp( - f/ 
48.09 ms). Time windows are set at 
t2/t, = 1.5. 
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with rn<l, is used as the input to the acousto-optic mod- 
ulator (A/O). The 5 14-nm line of an Ar + ion laser is thus 
an intensity-modulated pulse of duration 7, typically 100 
ms. Both pump and He-Ne 632.8-nm probe beam are fo- 
cused collinearly on the sample surface. The detected re- 
flected probe beam is directed to a Si photodetector in the 
conventional manner.22-24 The detector output is con- 
nected to a phase-sensitive, two-channel lock-in amplifier 
with fast (ms) time constant and an electronic filter with 
frequency tracking capability. The lock-in is referenced at 
f, = w,./2n and tracks the temporal evolution of the Fou- 
rier components of the photothermal response of the sam- 
ple after the end of the optical pulse. The experimental 
system is controlled by an IBM PS/2 computer, which acts 
as a dual-gate integrator on the transient frequency signals. 
Using this “rate-window” method,2 the transient in-phase 
or quadrature magnitude is sampled at two different times 
t, and t2 after the pulse. The difference between the two 

signal levels at ti and t2 is the output ASI. For a given 
rate-window, signal (ASI) scanning as a function of mod- 
ulation frequency ( f,) produces a maximum at a charac- 
teristic frequency, w,, which depends on the thermal diffu- 
sivity and the pump beam spot size. This can be shown by 
direct analysis of the Fourier content of the thermal-wave 
problem with a laser source temporal behavior given by 
Eq. (40). Consideration of the three-dimensional thermal- 
wave problem gives25 

w, = const. X a/ W2, (41) 

where as is the thermal diffusivity and W2 is the beam 
spotsize, assuming a Gaussian profile: 

A(r) 2&2~2~w2. 

s 

IBM/PC 

I Pump 
Laser 

Detector 

Filter 

Lock-in 
Amplifier 

Waveform 
Generator 

A/O 
Modulator 

I 

Beam 
Expander 

FIG. 9. The experimental setup for rate- 
window transient photomodulated opti- 
cal reflectance (PMOR) spectrometry. 
An acousto-optically (A/O) modulated 
laser pulse is used as a pump beam and a 
two-channel lock-in analyzer with a fast 
filter t ime constant is employed to track 
the temporal evolution at the ac ripple 
frequency produced by the waveform 
generator. &I -El - 

Beam 
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In Eq. (42), 9 is a nonradiative energy conversion et% 
ciency, i0 is the incident laser intensity, and k, is the ma- 
terial thermal conductivity. An in-phase transient signal 
from a crystalline Si wafer sample off, = 50 kHz can thus 
be obtained. In the case of good thermal conductors, such 
as crystalline semiconductors, the frequency transient de- 
cay time constant is limited by the lock-in filter response 
time constant ( 1 ms); therefore., the time-gated signal pro- 
duces information about the thermal diffusivity only 
through the magnitude of the transient. Results are shown 
in Fig. 10. Figure 10(a) shows in-phase experimental re- 
sults from c-Si with the laser beam focused to different 
spotsizes. The frequency f, = w/JZrr, which corresponds to 
the maximum ASI signal, is 50 kHz when the pump beam 
is focused through a microscope objective to 1-,um-diam 
spot. The peak shifts down to 32 kHz when lens focusing is 
used to 30-pm beam spot size, in agreement with Eq. (41). 
Figure 10(b) shows similar in-phase results with the pump 
beam fixed at a spot diameter of 1 ,um. The solid curve 
represents results from a P + implanted Si sample with a 
dose of lOI6 cm - 2 at 150-keV ion energy. The frequency 
f, (16 kHz) is seen to be approximately one-third of that 
obtained with crystalline Si (50 kHz). In view of Eq. (41) 
these data can be interpreted that the thermal diffusivity 
a, for our implanted Si sample is one-third of that for c-Si. 

2. Long filter time cons tan t: rL ) T, 

For either ideal or real-filter behavior, only the term 
m ( T,JT,) = 1 in the expression(s) for e4( t) will survive 
[See Eqs. (33) and (36)]. If the ratio T,JT, = q/co, is not 
an integer, then the closest term to Int( 7’dT,) will be 
output by the lock-in analyzer. In the conventional DLTS 
applications T, = To, so that the lock-in outputs the de- 
modulated m = 1 term of e4(t) only, which is constant in 
time (a dc-level signal). For ideal filtering, 
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FIG. 10. (a) Rate-window PMOR 
spectra of crystalline Si with pump 
beam diameter 1 pm (dashed 
curve), and 30 pm (solid curve): 
(b) similar spectra of crystalline Si 
(dashed curve), and ion-implanted 
Si (solid curve). Pump laser beam 
diameter: 1 pm; Time window 
t,/t, = 1 ms; ~~ = 1 ms. 

101 

Frequency (kHz) 

102 

II[ (-s&l) E--f]--+0 as rLecO, 

except for m = Int( T,,/T,), for which Il(0 - l/2) + 1. 
Therefore 

2 
e4( t)ideal = G %t( T,,/T,) COS or (43) 

The expression for e4( t),,,t is the same as can be easily 
verified from Eq. (36). It can be shown that Eq. (43) is 
also the result of the conventional DLTS lock-in rate win- 
dow treatment:’ In DLTS the lock-in output is taken to be 
the integral of the product of the square-wave (reference) 
weighting function [Fig. 4(c)] and the fundamental Fou- 
rier component cl of the input signal. For PPE detection 
and assuming that T, - To, so that m = 1, Eq. (43) indi- 
cates that 

e4( t) = const. X cl (TV) (time-independent). (44) 

Figure 11 (a) shows the frequency scanned thermal wave 
signal during the photothermal pulse buildup of Fig. 
2(a) (i). A minimum for the amplitude output of the lock- 
in occurs when (l/T,),,, = 8 x lo- 5 l/rp Therefore, 
the thermal characteristic time constant T, can be obtained 
from the frequency (l/T,),,, corresponding to the maxi- 
mum thermomodulation signal. 

Figure 11 (b) is the frequency scanned thermomodula- 
tion signal after the end of the photothermal pulse, corre- 
sponding to Fig. 2(a) (ii). This signal exhibits a maximum. 
As shown in Eq. (9b), this thermal transient is dependent 
on the value of r,,. Therefore, for different rp, the transient 
behaves differently, Fig. 2(b). Figure 11 (b) shows that the 
maximum of the frequency scanned thermomodulation sig- 
nal varies with photothermal pulse width TV Figure 12 
shows the dependence of the maximum rJ( To),,, of Fig. 
11 (b) on the pulse width TJT,. Since the ratio T/T,, is 
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FIG. 11. (a) PPE signal fundamental 
--%___ Fourier component dependence on ther- 

: ,I’ 
_ I/ 

--%_\ ma1 (or electronic) transport time rl, 
‘._ ---.: during the build-up part of the transient 

:’ r,/T, - 0.2 in Fig. 2(a)(i). The minimum is ob- 
served upon scanning the lock-in refer- 
ence frequency at r/T0 = 8 X IO- ‘; 

known from the experiment, one can obtain the thermal photomodulation (electron-hole plasma recombination 
characteristic time constant rI using Fig. 12. Once a refer- time constants) lock-in rate-window measurements: differ- 
ence sample is used to calibrate this plot, measurements of ent signal origins, such as PMOR generation, will only 
the characteristic time constants ~~ of any other sample can change the cl(rt) functional dependence and a different 
be made using the same experimental method and the same plot from Fig. 11 will thus ensue. As far as PPE detection 
lock-in rate-window setup. Adjustment of the lock-in is concerned using the present methodology, Fig. 11 shows 
phase for maximum signal output may be effected, which that upon using a long lock-in time constant rL, even with 
sets 8, = 0 in Eq. (43). The importance of Figs. 11 and 12 long pulse repetition periods and very low reference fre- 
lies in their general validity for both one-dimensional ther- quencies, fairly short system physical time constants TV can 
momodulation (thermal diffusion time constants) and be accessed, with strong lock-in response levels, superior 

5, I 

2' I 
0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 

2.5,) 

FIG. 12. Calibration curve of lock-in dc maximum output locus of Fig. FIG. 13. Numerical curve (-) and polynomial fit (---) of the argument 
11 (b). rp and r,, are experimentally set. ( T,),,, is the pulse repetition IzI which produces the least error in making the transition from the 
time which achieves the maximum lock-in output. r1 can be readily de- Taylor formulas to the asymptotic expansions, Eqs. (A9), for the func- 
termined from the curve. tion W(z) = exp(t) erfc(z). First quadrant is shown only: 0”$0<90”. 

- 

tr/To - 0.1 
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I 

0.5 1 

5 ,/To (x10-') 

(b) similar plots for the decay part of the 
transient in Fig. 2(a) (ii). The maximum 
is a function of pulse duration rp 
T/C ho),,, is equal to 2.5 X 10 - ’ (-); 
3.3 x  lo-’ (---); 3.9 x IO-’ (-.-); and 
4.3 x  10m5 (...). The ratio r/‘fo is, 
respectively, 0.1, 0.2, 0.3, and 0.4. Lock- 
in constant rL > T, 
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noise rejection, and excellent resolution down to a few ,us. 
This ability of lock-in rate-window instrumentation meth- 
odologies is, therefore, very promising for semiconductor 
optoelectronic defect assessment, using sub-band-gap opti- 
cal probing26V27 for monitoring plasma kinetics [--O@s) 
reIaxations] into defect states following super-band-gap ex- 
citation. Experimental implementation of this methodol- 
ogy to semiconductor diagnostics is under way and will be 
reported in a future publication. 
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APPENDIX I 

The integral ~$(f)=.@Yx/~‘* exp( -a*/~-ib*x): 

The above integral occurs in the theory of Fourier ex- 
pansions of diffusive signals, suc.h as that generated in ther- 
momodulation (heat diffusion) and photomodulation 
(carrier diffusion). As an example, Eq. (22a) when inte- 
grated by parts gives 

bm=$ z, (Re[ JoTo $exP( -:-iy)] 

-(--I) m erfc J-i . I (Al) 

The integral on the right-hand side is the generalization to 
the complex plane of the integral 

the closed-form of which was given by Horenstein.14 To 
evaluate 4(t) let 3 = x - I, which yields 

J 
o) 4(t) = 2 
I/J 

exp( - a2y2 - ib2/y2)dy. C-42) 

Let czt- *‘2 and complete the square in the parentheses of 
Eq, (A2) thus obtaining: 

#(t) = exp[\/z( 1 + i)ab] 

X Jcm expj -a2[ [y+&) +i&]’ dy. 

J r x - 3/2 exp dx I 0 

(A3) 

Set g = ib/&y, so that 

5-2 

ib/bZUC J ( ib = - exp[vQ( 1 + ilab] 
fu 

(1 -i) -pj-g 
1 

Xexp 

Xexp[VT( 1 + ijab] 

x J~20cexp[ -a”(-&+(‘--i)E)?]dl. 

Making the variable change x = a( 1 - i)[ + ib/v?( we fi- 
nally obtain 

4(t) = exp[fl( 1 + i)ab] 5 II Oc ,-$dx 
nc + ( 1 + i)b/z Ik 

+(1-i) 

x JT’“’ exp[ -a2 (&+ (1 -i)g)2]dg/. 

(A4) 
Note that Eq. (A3) may also be written as 

(p(t) = exp[ - ti( 1 + i)ab] Jcm ew( -a2[ (y--y&) 

Manipulations similar to those leading to Eq. (A4) yield: 

4(t) =exp[ --a(1 -f-hbl -J a~e,I+i)b/,2e e-2dx IS 
- (1 -i) JT’“’ exp[ -a’(--$& 

(A61 

Adding Eqs. (A4) and (A6) gives the expression: 

6 4(t) = 4a I exp[fi( 1 + i)ab] erfc 
[ (-$-blk) 

+ ib 
{I 

f + exp[ - v?!( 1 + i)ab] erfc 
I( % 

(A7) 

Using the parameters 

) with Eq. (A7) when evaluated at t = To yields Eq. (22b 
the definitions (23)-(25). 

APPENDIX II 

The function bV(z)=exp(2) erfc(z): 

For numerical implementation of Eqs. (20b), (2 lb), 
and (22b) the complex function W(z) was constructed 
and studied as a series expansion, a function of the complex 
plane angular coordinate 8. Using polar coordinates 

z= fzle” (448) 
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FIG. 14. Reliefs of Re[W(z)] and Im[W(r)] 
in the first and fourth quadrants: 
- 90”<&90”. The curve/criterion of Fig. 13 

was used for smooth transitions from Taylor 
to asymptotic expansions at all 0 values. 

for small values of the argument ]z] the Taylor expansions were constructed, while for large values of ]zI asymptotic 
formulas were used.‘* We summarize the pertinent formulas here and simplify earlier expressions:15 

Re[ W(z) I 

exp()z12cos28) cos(]z]“sin28)- 
I 

z 2”+1cos[)z]2sin28+ (2n+ l)e] 
j+ to (- 1)” I I n!(2n + 1) (Taylor) 

I 

-;;; i, (- 1)” 
(2n - 1) !! cos[(2n + l)e] 

2”]zl2n+l (Asymptotic), 

Im [ W=) 3 

= 

(A9a) 

exp( ]z/* cos 28) 
I 
sin( ]z]* sin 28) - 

z *“+isin[]z\*sin28+ (2n+ 1)6] 
; 5, ( - lln I I n!(2n + 1) 1 

(Taylor) 

(A9b) 

-+ 2, C-1)” 
(2~ - 1) !! sin[ (2n + i)e] 

2”]z]2”+l (Asymptotic). 

A complete investigation of the ] z/ min values at which the 
transition from Taylor to asymptotic expansions minimizes 
the difference between the two expressions was performed 
for the first time. An earlier approximate calculation15 had 
yielded the point ] z] = 3.9 at 8 = 0. Figure 13 shows the 
results for 0”$8<90”. A polynomial fit to the numerical 
curve was then produced and stored in the computer as the 
transition criterion for any 8. In view of the nature of the 
variables z, and z2 in Eq. (25), negative values of the imag- 
inary part of the argument corresponding to 8 ~0 were 
easily handled by noting that 

W( -z) = exp(z2) [2 - erfc(z)] = 2el- W(z). 
(A101 

Therefore, 

Re[W( -z)] =2exp(]z]*~os28)cos(]z(*sin2f3) 

- RetWz)l, (Al la) 
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I 

Im[W( -z)] =2exp(]z(2c0s28)sin(]z)2sin28) 

- Im[ W(z)]. (Al lb) 

Figure 14 shows reliefs of real and imaginary parts of 
W(z) in the first and fourth quadrants, covering the range 
- 90”<8<90”. This range is completely adequate for all 

zt and z2 values in Eq. (25) and represents the first well- 
behaved such relief over half of the complex plane, to the 
authors’ best knowledge. Earlier formulas for W(z) exhib- 
ited continuity problems in switching expressions between 
adjacent sectors15 ( - 45”<8<45” and 45”<8< 135”) due to. 
the lack of a continuous transition criterion as a function of 
8, such as shown in Fig. 13, or the function became 
unboundedI for negative values of 8. The specific expres- 
sions in Eq. (A8) for the zl, z2 functions, Eqs. (25a) and 
(25b) are 

12~1 ={[(~,/T~)“*~(m~)“*]*+m~}“~ (A12) 

and 
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e,,2 = &tan-’ 
(mn-)"2 

(7,/T0)1'2*t.m7r)1'z (A13) 
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