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Computational aspects of a new matrix equation-based thermal-wave subsurface diffraction 
tomographic method for object field reconstructions of transverse slices (planes) perpendicular 
to a material surface are presented. The method can be implemented on conventional 
workstations and mainframe computers. It uses the photothermally measured backpropagation 
(front detection) or transmission (back-surface detection) scanned thermal-wave field data in 
the solution of the Helmholtz thermal pseudowave equation, by solving the equivalent integral 
equation. The numerical computations of the inverse problem used in the slice image 
reconstruction were satisfactorily carried out via the Born approximation. Simulated 
thermal-wave tomographic data/case studies were used to evaluate the imaging characteristics 
of large-scale computational thermal-wave diffraction tomography as a quantitative 
measurement and nondestructive evaluation imaging discipline. 

1. INTRODUCTION all, applicable in practice to computational TSDT. 

Thermal-wave slice diffraction tomography (TSDT) 
was introduced as a photothermal imaging instrumentation 
technique I-3 for the detection of subsurface defects in solid 
materials along cross-sectional planes perpendicular to the 
laser-beam scanned surface. The first TSDT instrument 
was based on contacting photopyroelectric tomographic 
detection2’3 followed by ray-optic reconstruction of the 
cross-sectional thermal-wave image of the thermal diffusiv- 
ity of the chosen slice.2 The one-dimensional ray-optic 
based reconstruction technique was quite successful in il- 
lustrating the TSDT principle. However, using only ray- 
optic methods has many limitations, especially in highly 
dispersive wave fields, such as thermal waves. For this rea- 
son techniques familiar from x-ray cross-sectional tomog- 
raphy, such as the recovery of a 2D image from an over- 
sampled 1D projection, cannot be applied to TSDT with 
satisfactory image contrast, spatial resolution, and low dis- 
tortion. 

Recently a full wave-field theoretical approach to 
TSDT was deveIoped,4 based on the spatial Laplace spec- 
tral decomposition of the thermal-wave object field. This 
approach is capable of deriving a Laplace slice theorem 
which links the transmission tomographic data in one di- 
mension (the detector scan line) to the two-dimensional 
spatial Laplace transform of the cross-sectional slice image 
in the region between the photothermally excited material 
surface and the detector-scanned back surface. A problem 
with the computational implementation of the Laplace 
slice theorem is the fact that the thermal wave number is 
complex and at 45” to the real axis, which renders the 
Laplace transform inversion contours ill-defined in some 
circumstances. Therefore, the regular tomographic recon- 
structions of propagating wave fields’ are not easily, if at 
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To circumvent the difficuhy with ill-conditioned La- 
place inversion contours, very recently we described a new 
rigorous matrix equation-based wave-field approach to the 
TSDT inversion problem.(’ Preliminary reconstructions of 
photopyroelectric thermal diffusivity tomograms showed 
that it is possible to obtain adequate reconstructions from 
a single column of thermal-wave data generated by a single 
laser position (sample front surface) and a scan of the 
localized detector (a metal pin capacitively coupled to the 
unelectroded pyroelectric element surface7) across a 
straight line on the back of the sample. In comparison, the 
matrix method yielded superior reconstructions to the ray- 
optic ones, obtained earlie?* by the algebraic reconstruc- 
tion technique (ART) used in x-ray tomography.8 For the 
matrix method we used the Born approximation applied to 
the thermal-wave field propagation.’ The method is further 
capable of solving the Helmholtz pseudowave equation4 
without recourse to Born’s approximation, but with a 
higher degree of computer labor. 

In this article we present a detailed comprehensive 
evaluation of computational slice diffraction tomography 
based on the matrix methodology of Ref. 6. The physical 
methodology is described and the computational technique 
allowing slice reconstruction and imaging is given for ex- 
perimental situations involving both backpropagation as 
well as forward (transmission) thermal-wave data numer- 
ically manufactured from the solution to the direct prob- 
lem (Helmholtz pseudowave equation4). A second gener- 
ation instrument allowing experimental implementation 
sequentially of both backpropagation and transmission to- 
mography by use of infrared radiometric scanning imaging 
is currently undergoing testing in our Laboratory and pre- 
liminary results will be reported in a near-future publica- 
tion. 
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II. MATHEMATICAL BACK@iOUND I I n &t.eion electronics 

In the case of a harmonic photothermal excitation of a 
region of space, the temperature oscillation is found to 
obey the Helmholtz pseudowave equation4’6’9 

W+Rr) I T(r) =o, (1) 
where 

i 1 
l/2 

&)=(1-i) & . (2) 

a(r) is the thermal ditfusivity and w is the angular-fre- 
quency of the modulation of the laser-beam intensity. k(r) 
is the complex thermal wave number. It was found that to 
be consistent with the experimental results, the thermal 
excitation should be described by the law 
T( r,t) = T( r)e’“‘. This sign selection of the exponent is 
important here, in contrast with conventional optical exci- 
tation, where the sign of the exponent is irrelevant due to 
the use of the second derivative with respect to time. 

Upon defining4 

(3) 

the diffusion (Helmholtz pseudowave) equation takes the 
form9 

(VZ+~)T(r)=--F(r)T(r). (4) 

In Eq. (3) we defined R to be the object region and 

y(r) = [addr) P (5) 
with 

k= (1-i) E InE~-id4. ( ) (6) 

a, is the ditIusivity of the homogeneous (reference) region 
surrounding the object region R. The full solution of Eq. 
(4) satisfies in three dimensions’O~l’ 

T(r) = Ti(d + Gob.1 pV’(p)Up)d3p 
+ GobI p) g (PI -Up) 2 dp. 

r r 1 
(7) 

The integration is carried over the spatial region S which 
includes R, and its boundary 8s. n, is the normal unit 
vector to a.!?. In this work we assume that the region S is a 
cross-sectional slice in 2D space.4 Moreover, we assume 
that S is a region of constant thickness, Fig. 1, and that the 
thermal excitation is on one side of the region (y =O), and 
the detection is either on the side of the thermal excitation 
(backscattering mode, u=O) or on the other side (trans- 
mission mode, y= Z=yf) . 

Furthermore we consider only the volume integral in 
Eq. (7). In earlier work6 it was shown that neglecting the 
surface integral contribution to the transmitted photother- 
mal signal is a good approximation in reconstructing the 
object field function of the cross-sectional area. However, 
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FIG. 1. Geometry for thermal-wave slice diffraction tomography amena- 
ble to backpropagation (BP) and transmission (T) detection. For each 
position of the laser-beam waist on the line y=O, the photothermal de- 
tector measures the thermal-wave field characteristics (amplitude and 
phase) along the back surface (y= I line; transmission) or along the front 
surface in the vicinity of the laser beam spot (y=O line; backpropaga- 
tion). The region 0 <y <yf is the object region S. 

this has not been proven rigorously and therefore the in- 
fluence of the surface integral will be examined in more 
detail in an upcoming study. If the thermal-wave field 
T(xy=yf) is measured (transmission mode), and if 

T(r) =Ti(r) + T,(r) (8) 
then using Eq. (7) we obtain along the object region of the 
2D slice between y=O and JJ=Y~, and between x=xi, and 
x=x f ~SkYf) = xf Yf s s GoKwf> I p(G,rl) 1 xi 0 

x%-&91) 1 T[pGq) I& dq. (9) 
If the thermal-wave field T(xsy=O) is measured (back- 
propagated mode), then 

Ts(x,O) = 
xf 

s s 
” Go[rkO) I pGr1) 1 

xi 0 

xF[p(C,rl) 1 T[pGrl) IdCdv (10) 
Note that the surface integral contribution to the backscat- 
tered photothermal signal will also be neglected without 
proof. The adequacy of this approximation for the accu- 
racy of reconstruction of the object field function will be 
examined via the various artificial situations to be de- 
scribed in what follows. Thus, it will be shown aposteriori 
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that effective object field function reconstructions may be The proposed technique is based on a special method 
generated using only backscattered volume integral data in of discretization of Eqs. (9) and ( 10). The sampled region 
many situations corresponding to cases of practical interest (y=yf or y=O) is divided into n intervals, and the rect- 
and importance. angular region 

Although a rigorous justification of the omission of 
surface integrals in both backscattered and transmission 
modes still remains to be given, the physical plausibility of 
this approximation stems from the fact that the thermal- 
wave flux across the boundary, dT/&, and aGd&r, in the 
integrand of IQ. (7)) is essentially zero in the case where a 
solid sample is surrounded by air. Heat flux continuity 
across the solid/gas interface renders dT/dn,a k$k, 
ti-10e3 for the great majority of solids. Here kj is the 
thermal conductivity of medium ( j) . 

S==C(X,Y) IvaG+xY~fl (13) 

is divided into n2 cells. Since Eqs. (9) and (10) are double 
integrals, the choice of n2 points at the boundary is essen- 
tial in order to obtain a square matrix. 

Now, for l<j(n, E!q. (9) assumes the following form: 

T,*( jkYff = 
Xf 

s s 
” G[&,kw~f IP( 

In Eq. (10) Go is the two-dimensional thermal-wave 
Green’s function for the region S, with the property4,6 

xi 0 

xFIp(hf I TtpK,~) I@ h ( 14) 

and Eq. ( 10) can be written in a similar form. 
To obtain a discretized form of Eq. ( 14) we order the 

grid points in S, (kA&ZAq) in the following matrix order 
m(k,Z):6 

(1 2 6 7 15 16 * 

3 5 8 14 17 * 

4 9 13 18 * 

G&lp)=Gd I--PI 1 (11) 

provided that lo the thermal-wave source point p and/or 
the observation point r are not infinitesimally close to the 
boundary a,!? which encloses the spatial region 5’. 

In Ref. 6, we showed that Green’s function for the 
two-dimensional thermal diffusion Helmholtz pseudowave 
Eq. (4) is 

Go( Ir-pl )=~H~(P4kolr--pl f, 

where Hfj is the Hankel function of the second 
order zero. 

III. THE COMPUTATIONAL METHOD FOR THE 
INVERSE PROBLEM 

(121 

kind of 

The conventional techniques used in electromagnetic 
or acoustic tomography for solving integral equations of 
the type of Eqs. (9) and ( 10) are by Fourier transform 
methods.5 Usually one obtains the one-dimensional Fou- 
rier transform of T, for every position of the exciting laser, 
and by using the Fourier slice theorem’ it is possible to 
obtain a map of the inhomogeneity of the object. When 
thermal waves are involved, we deal with complex wave 
numbers, short paths of propagation of the waves leading 
to extreme near field approximations,9P’2 and the require- 
ment for a generalized two-dimensional spatial Laplace 
transform inversion,4 a nontrivial task. Furthermore, the 
fact that the movements of the laser and the detector ap- 
ertures are limited to straight lines makes it necessary to 
utilize other methods for solving Eqs. (9) and ( 10). The 
ultrasonic experimental geometry in Ref. 13 is similar to 
the one described in Fig. 1. However, the method described 
in Ref. 13 uses only real values for k. in order to avoid 
inversion of Laplace transforms, a situation which is un- 
avoidable with thermal waves. In this work we describe an 
efficient alternate computational technique for TSDT, 
based on matrix methods, rather than the well-known, but 
unwieldy in the thermal-wave case, Fourier transform 
methods. 
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11 20 * 

21 * 

t . 

We chose the scheme of the matrix order ( 15) as our 
method of counting the cells in the inner region because 
this method is independent of the number of cells, i.e,, it 
can be used for any value of n and it is easy to program. 

Discretizing Eq. (14) by the rectangular rule,14 we 
obtain 

2 
T,(khx,y,-f= 2 Go( Irk-pm1 )F(p,)T(p,), (161 

m=l 

where 

P,=Pmci,j~=((iA~)2,(jA?132) (17) 

and the right-hand side of ECq. ( 17) indicates the nom of 
a vector with grid components ihc and jAn measured from 
the origin. 

Formally the left-hand side of Eq. ( 14) is known from 
the photothermal tomographic measurement,2 where the 
amplitude and phase of the scattered field are measured. 
We use the complex form of T, : T,= I T, I e”‘. The thermal- 
wave Green’s function is also a complex quantity for the 
present problem and is given by Eq. ( 12).6 Therefore, the 
complex-valued linear system (16) can be solved for the 
matrix F’T (the multiplicity), which is the object function 
F multiplied by the complex temperature T. In this work 
we retain only the real part of the complex solution, At this 
stage we have the value of FT in the entire region S, so 
now we can calculate the scattered field in the entire region 
S, by 
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TABLE I. Computational fiowcart for the calculation of the object func- 
tion F(r). (Note: y/O indicates forward transmitted/backpropagated 
thermal-wave detection, respectively.) 

Known (input) fields Equation # Computed field 

T,(kA-w/O) (expt) 
Wlr-pi) (theor) 1 ---+ (16) - F(p)T(p) 

[F(p) T(p)] (camp) 
G&l+pl) (theor) t - (18) - T,W.dAy) 

T,(kbx.lA~) (cow) 
Ti(r) (theor) / - (8) - T(r) 

T(r) (mmp) 
Gd Ir-pII (theor) 

> 
-(16)-----+ F(p) 

T,Ww//O) (apt) 

TJkAdb) = i i Go( 1 rk,r-Prn(i,j) I 1 
is1 j=l 

XF(Pm(i,j)) T(Pm(i,j))* (18) 

Carrying out the double sum (18) for O<k,Z(n results in 
obtaining the scattered field T, in the entire cross-sectional 
region. Experimentally, a tomographic measurement pro- 
vides the amplitude and the phase data of the transmitted 
field T and using Eq. (8) we obtain the scattered field T,. 
Therefore inserting the newly calculated thermal-wave 
field T, into Eq. (8) enables us to solve Eq. ( 16), now for 
the object function F. The solution of the complex linear 
system (16) is a complex function whose real part is the 
required object function F and its imaginary part is theo- 
retically 0. Numerically it is not exactly 0 and its magni- 
tude may serve as a measure for successful reconstruction. 
The computational flowchart is shown in Table I. The use 
of an n2X n2 matrix requires considerable computer re- 
sources. However, in the current state of computer devel- 
opment it is not a severe restriction. For example, the so- 
lution of Eq. (8) for n = 25, which means a system of 625 
equations with 625 unknowns, takes about an hour on the 
Sun4 workstation and it would take (without vectoriza- 
tion) about 300 s on the Convex 110. 

In the flowchart of Table I the theoretically obtained 
fields are the Green’s function, Eq. ( 12), and the incident 
field Ti(r). The solution of the homogeneous Helmholtz 
pseudowave equation 

O”+e) T,(r) =O (19) 

for a point source on the y=O boundary of the experimen- 
tal configuration of Fig. 1, and for the thermal-wave prop- 
agation similar to a spherical wave, has been shown6 to be 

TiW =+f,2&,r), 
where I& is the Hankel function of the second kind of 
order 1/2.15 In this work we adopted the first Born 
approximation,’ namely, in Eq. ( 14) we used Ti( r) instead 
of T(r). Therefore, although it is entirely possible to solve 
the inverse problem exactly by following the flowchart of 
Table I, we solved Eq. ( 14) directly for F(p), in order to 

simplify the large-scale computation and save computer 
time. In what follows it will be seen that the Born approx- 
imation allows for good quality tomographic reconstruc- 
tions in a number of cases of interest for subsurface slice 
nondestructive defect imaging in solid materials. The ade- 
quacy of the Born approximation in TSDT was shown 
earlier in Ref. 6 by the reconstruction quality of the ther- 
mal ditIusivity cross-sectional images. Nevertheless, no rig- 
orous proof of the sufficiency of this approximation in 
TSDT has been constructed. The use of the first Born ap- 
proximation is widespread in the related field of ultrasonic 
diffraction tomography.5 In object field reconstruction us- 
ing that technique, Mueller ef al. l6 investigated the fidelity 
of the Born and Rytov approximations as functions of the 
relative size between the ultrasonic wavelength A and the 
radius of a circular inhomogeneity (defect). They found 
that the Born and Rytov approximations give identical re- 
sults for an inhomogeneity with radius equal to A, and that 
excellent reconstruction fidelity holds for inhomogeneities, 
the ultrasonic velocity variation of which is up to, and in 
excess of, 10% of the velocity in the uniform surrounding 
medium. The Born approximation, however, exhibited sig- 
nificant distortions on object field reconstruction for object 
radius equal to 3i1.16 From the point of view of this relative 
size criterion, the application of the Born approximation to 
TSDT is also justified, as the sizes of the examined subsur- 
face defects in this work ( - 1 mm radius holes) are w_ell 
within the thermal wavelength ranges pt=2?r/ [ k. 1 
=2r/ko= (2radf )1’2 in the surrounding material (alu- 
minum) : typically in the 10-100 Hz modulation frequency 
f range and with ao=0.82 cm2/s,” one obtains 0.23 
cm&<0.72 cm. 

On the other hand, the literature lacks a universal 
and/or rigorous criterion for the threshold of the Born 
approximation breakdown with increasing magnitude of 
the perturbation in the measurable parameter, which may 
be introduced by a scatterer (defect). The method usually 
adopted in ultrasonic diffraction tomography is the ad hoc 
assumption of either the Born or the Rytov 
approximation,‘8”9 and the a posteriori verification of the 
validity by comparing the reconstructed field with the (of- 
ten known) geometry of the scatterer. To a certain extent 
this is the philosophy adopted in the present work. A forth- 
coming comparison between our TSDT reconstructed im- 
ages with the exact methodology, Table I, and with the 
Born approximation is expected to produce the desired 
criterion for the justification of the use of perturbative ap- 
proximations in thermal-wave diffraction tomography. 

Now, let L be the following complex matrix: 

&,=Go( Irk--Pm1 1, (21) 

where m = m (i,j) according to the scheme ( 15). 
When calculating the solution of Eq. ( 16) we usually 

use the trapezoidal rule for integration because it has 
higher numerical accuracy (order 2) than the rectangular 
mle. 

As a result of this calculation we obtain a matrix B 
defined as 
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I L km(i,j) 9 1 < i,j <n 

Bkm=Bkm(,j,= I tLkm(i,j) 9 l<i<n, j= 1 V j=n; l<k<n2 

I 
fL,(,j), l<j<n, i=lVi=n. 

In some cases we use Simpson’s rule for integration. l4 This rule has numerical order of accuracy 4 and hence we need fewer 
computer resources when using it. However, then we must consider only odd values of ..6 

Using Simpson’s rule and some tedious algebraic manipulations, we obtain a matrix D as follows: 

$Lkm(i,j) 3’ i=2i,, j=2j,, I<i,,j,<f~--l)/2 

%km(i,j), i=%+ 1, j=2jo+ 1, l<io,jo<(n-3)/2 

$Lkm(i,j) 3 i=2i,, j=2jo+ 1, l<&i(n-l)/2, l<jo((n--3)/2 

%km(i,j) s j=2i0+1, j=2j,, l<jO<(n--3)/2, l<j,<fn-1)/2 
Dkm=Dkm(i,j)= 

$Lkm(i,j) s i=% l</<fn-1)/2, j=lV j=, 

%km(i,j) I j=2Z, l<Z<(n- 1)/2, i=l Vi=n 

$Lkm(i,j) 9 k21-k 1% l<Z<fn--3)/2, j=l V j=z 

$Lkm(i,j) t j=Z+ 1, lgZ<(n-3)/2, i=lVi=n. 

We have the following n2 x rz2 system of linear equations 

Af=t, (241 

where A is either L, B, or D, f=PT, and t= T,. 
The main problem with this method, from the compu- 

tational point of view, is that the matrix GoTi is in many 
cases almost singular. To overcome this problem we can 
use either the Tykhonov regularization method or we can 
solve the system using 
decomposition) .” 

SVD (singular value 
In this work we use mainly the 

Tykhonov regularization,21v22 which amounts to minimiz- 
ing the functional 

wz)=II~-tll2+dw, (251 

where 0 is the regularization parameter and Q(z) is a pos- 
itive convex functional.22 For simplicity and ease of com- 
putation, we chose fI (z) to be 

I I( 
w4=11z112=\I c IZi129 

where 11 * 11 2 is the usual Euclidean norm. 
Minimization of the functional a(z) is equivalent to 

minimization of 

where bars indicate complex conjugation. 
Differentiating with respect to the components of z we 

find that the minimum is obtained as the solution of the 
linear system (starred quantities denote adjoint matrices) 

(uI+A*A)z=A*t. (28) 

3552 Rev. Sci. Instrum., Vol. 64, No. 12, December 1993 

(23) 

I 

The fact that in Green’s function, Eq. (12), we have a 
complex argument which has a small absolute value (be- 
cause of small thermal-wave numbers) becomes the source 
of the ill posedness of the linear system. Hi has an essential 
singularity at the origin causing uncontrolled behavior of 
the function. 

The initial field Ti, which is the solution of 

(V2+&T(r)=0 

is given by Eq. (20). 
C-1 

To solve the system (28) we use the eispack library23 
to compute the eigenvalues and the eigenvectors of the 
matrix M=aI+ A*A. Let V be the matrix whose columns 
are the eigenvectors of M, and let E be the diagonal matrix 
of the corresponding eigenvdues. Then, M- ’ =VE- ‘V*. 
The elements of E>o. Therefore, as long as cr is kept within 
the computer accuracy one obtains a good inversion. This 
puts some constraints on the possible values of cr. However, 
when (T=: lo-” we obtain quite accurate inversions. The 
minimal values that we tried for the SVD method of solu- 
tion were much larger, on the order of lo-“. 

IV. SIMULATED TOMOGRAPHIC INVERSIONS 

We produced simulated results by using the integrals, 
Eqs. (9) and (lo), where we substitute Tj for T according 
to the Born approximation. To study various aspects of our 
TSDT reconstructions we used a known object function, 
usually an ellipse 

FkYf = 
I 

4; kJ2+ (Y -YJ2( 1 
a2 b2 (30) 

0; otherwise. 
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Here x, and y, are the foci of the ellipse and a,b are its axes. 
The ellipse represents a hole drilled in aluminum, the latter 
being a rectangular sample. 

The value 4 was chosen because it is approximately the 
ratio of the thermal diffusivities of aluminum and air ac- 
cording to Eq. (3). Ti was calculated using Eq. (20). As a 
result we obtained the scattered field at both (upper and 
lower) edges of the rectangular sample field R. We used 
these values of the scattered field as input data for the 
reconstruction of I;; the object function. In this work we 
refer to the surface where the laser was positioned as the 

front surface. The measurements taken on the front surface 
are referred to as the backpropagation thermal-wave sig- 
nal. The measurements taken at the opposite side to the 
front surface are referred to as the transmitted thermal- 
wave signal. The depth of the hole location is measured 
from the front surface. In all the presented results we used 
a low density grid, usually 10X 10, which means that the 
number of equations in our linear system Eq. (24) was 
100. This number was chosen to minimize computer time 
and still obtain good reconstructions. The particular sets of 
object functions and their reconstructions chosen for pre- 
sentation and discussion in this work address the following 
fundamental aspects of TSDT: 

(i) Back-propagation (BP) and transmission (T) ob- 
ject function tomograms from a (thermally) thick sample 
with one ellipsoidal defect close to the front surface, or 
with one defect close to the back surface; Figs. 2-7. 

(ii) BP and T object function tomograms from a (ther- 
mally) intermediate sample with one subsurface ellipsoidal 
defect; Figs. 8-10. 

(iii) BP and T object function tomograms from a 
(thermally) thin sample with one ellipsoidal defect close to 
the back surface, or with one ellipsoidal defect close to the 
front surface; Figs. 11-16. 

(iv) The effect of varying laser beam intensity modu- 
lation frequency (i.e., thermal wave number) on the qual- 
ity of the reconstruction from a fixed thickness sample; 
Figs. 14-20. 

(v) BP and T object function tomograms from a sam- 
ple with two ellipsoidal defects close to each other and at 
the same depth, and comparison with tomograms from two 
other ellipsoidal defects farther away from each other at 
the same depth; Figs. 21-26. 

(vi) Finally, BP and T object function tomograms 
from two elliptic defects in different depths and locations 
such that there is a partial overlap with respect to the line 
of sight between the thermal-wave source and several de- 
tector positions. In this configuration two sets of such de- 
fect pairs were examined: one close to the front surface, 
Figs. 27-29, and another one close to the back surface, 
Figs. 3C32. 

In most figures we present both a three-dimensional 
relief of the reconstructed (or the input) object function 
field and a two-dimensional top-down view of the field 
(tomogram). 

In Fig. 2 we present the simulated object function 
F(x,v) in a thick (6.4 mm) cross-sectional strip, Fig. 1, of 
aluminum (flat region) with an ellipsoidal hole (air gap) 

(a) 

(b) Length (mm) 

FIG. 2. (a) Three-dimensional relief of a simulated cross section of an 
aluminum strip of thickness 6.4 mm and width 8 mm, with an ellipsoidal 
hole centered at (x,,yJ = (6 mm, 1.6 mm); dimensions (a,b) = (1 mm, 
0.8 mm). (b) Top-down view of the cross section, showing isometric 
contours. 

4 

2 
% 

2.3 

-0.G 6.4 

Length (mm) 
Depth (mm) 

I L 8 

I Length (mm) 

FIG. 3. (a) TSDT backpropagation reconstruction of the object function 
F(x,y) of Fig. 2. Laser-beam position at xf= 5 mm (point source). Beam 
intensity modulation frequency: 30 Hz. Trapezoidal rule of integration 
using the Born approximation. (b) Top-down view showing isometric 
contours. Regularization parameter o= IO-“. 
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FIG. 4. (a) TSDT transmission reconstruction of the object function 
F(x,y) of Fig. 2. Parameters similar to Fig. 3. (b) Top-down view show- 
ing isometric contours. Regularization parameter cf= 10m6. 

close to the front surface. The defect region does not re- 
semble an ellipse, but rather a pyramid due to the low grid 
resolution. This distortion is not inherent to our TSDT 
technique and can be readily rectified with finer grid reso- 
lution. The image contours in Fig. 2(b) and similar sub- 
sequent figures indicate isometric regions of the input ob- 
ject function, or of the reconstructed object function. 
Different grades of gray correspond to specific ranges of 
object function values, with brighter regions imaging 
higher values of the object function. Figure 3 shows the 
Born approximation based reconstruction, FkB”’ (xg) , 
from the backscattered (BP) thermal-wave signal at 30 
Hz. Although a single laser beam position was used, the 
reconstruction quality is very good when compared to Fig. 
2 in both defect size, location, and magnitude (contrast). 
This is a remarkable improvement over the rather primi- 
tive, qualitative reconstructions of similar, near-front- 
surface hole defects we were able to perform previously2 
using the ray-optic algorithm ART.8 The superior nature 
of the present wave-field approach is further strengthened 
upon noting that the data array required for a satisfactory 
Born reconstruction involves only a single laser position, 
(1 xm multiplexed data points) as opposed to a Iarge 
number, k, of laser positions required by the ART algo- 
rithm [(kxm) multiplexed data points]. This feature re- 
duces dramatically the total experimental scan time of 
TSDT. The same object function shown in Fig. 1 recon- 
structed from the transmitted (Tf signal is shown in Fig. 
4. Here, the quality of the tomogram is worse than under 
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FIG. 5. (a) Three-dimensional relief of a simulated cross section of an 
aluminum strip of Fig. 3 with an ellipsoidal airgap hole centered at 
(x,,v,) = (6 mm, 4.8 mm); dimensions (a,b) = (1 mm, 0.8 mm). (b) 
Top-down view of the cross section, showing isometric contoursS 

l3P reconstruction, especially concerning the depth (y di- 
mension) of the defect. This is mainly due to the thickness 
of the sample (6.4 mm), which, at f = 30 Hz, makes the 
sample thermally thick24 

~2Ik~I-‘=9.3~10-~ cm<l=6.4X10V1 cm. (311 
This condition implies a drastic decrease in the 
photothermal-wave disturbance magnitude due to the pres- 
ence of the hole, especially since the defect lies near the 
laser-irradiated surface and far from the detector. For this 
reason the regularization parameter o was 10n6 under T 
reconstruction, whereas we only needed C= 10-l’ under 
BP reconstruction, Fig. 3. Large values of D imply that the 
inverse problem is essentially ill conditioned, involving a 
substantial number of eigenvalues in the system (28), 
which are either zero or smaller than the computer’s 
round-off error. 

To study the effects of the depth position of a defect on 
the reconstruction, the ellipsoidal bole was subsequently 
located near the back surface of the 6.4 mm thick alumi- 
num sample as shown in Fig. 5. Figures 6 and 7 are the 
reconstructions from the BP and T signals, respectively, It 
can be seen that the quality of these slice tomograms is 
seriously compromised as the result of the very deep loca- 
tion of the defect. The magnitude (contrast) is also de- 
graded, while a number of artifacts appears in the near and 
extended neighborhood of the defect, especially in the BP 
case. It is important to note that, however degraded the 
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FIG. 6. TSDT backpmpagation reconstruction of the object function 
F(xg) of Fig. 5. Laser-beam position at x1= 5 mm (point source). Beam 
intensity modulation frequency: 30 Hz Trapezoidal rule of integration 
using the Born approximation. Regularization parameter o= lops. 

PIG. 7. TSDT transmission reconstruction of the object function F(xg) 
of Fig. 5. Parameters similar to Fig. 6. Regularization parameter 
(I= IO-‘, used for the best possible result. 

(a) 

FIG. 8. (a) Three-dimensional relief of a simulated cross section of an 
aluminum strip of thickness 4.8 mm and width 8 mm, with an ellipsoidal 
airgap hole centered at (x,,yJ = (3 mm, 3.2 mm); dimensions (a&) = (1 
mm, 0.8 mm). (b) Top-down view of the cross section, showing isometric 
cQntours. 

1.5 

2% 
g 0.5 

- 0.5 

FIG. 9. TSDT backpropagation reconstruction of the object function 
F(x,y) of Fig. 8. Laser-beam position at x,= 2 mm (point source). Beam 
intensity modulation frequency: 30 Hz. Trapezoidal rule of integration 
using the Born approximation. (b) Topdown view showing isometric 
contours. Regularization parameter (r= 10W9. 

quality of the BP tomogram may be, the subsurface loca- 
tion of the airgap defect is reconstructed quite accurately. 
On the other hand, the T tomogram gives a reconstruction 
with the defect position shifted upwards and sideways. A 
comparison of tomogram reconstructions of shallow and 
deep defects in thick solids, Figs. 2-7, clearly shows that 
the BP mode is better than the T mode and produces high 
quality, high contrast tomograms of shallow defects. This 
mode also requires the lowest value of the regularization 
parameter o. 

An intermediate thickness sample (2=4.8 mm) has 
also been considered in Figs. 8-10. The input cross- 
sectional object function which includes one ellipsoidal de- 
fect at intermediate depth is shown in Fig. 8. The BP re- 
construction of Fig. 8, shown in Fig. 9, is of good quality 
and satisfactory contrast, despite the artifacts which ap- 
pear in the background. A comparison between the input 
and reconstructed top-down views, Figs. 8 (b) and 9 (b), 

FIG. 10. TSDT transmission reconstruction of the object function F(x,y) 
of Fig. 8. Parameters similar to Fig. 9. Regularization parameter 
o= 10-7. 
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FIG. 11. (a) Three-dimensional relief of a simulated cross section of an 
aluminum strip of thickness 2.4 mm and width 6.4 mm, with an ellipsoi- 
dal airgap hole centered at (x,,yC) = (4 mm, 1.6 mm); dimensions (a$) 
= (0.8 mm, 0.4 mm). (b) Top-down view of the cross section, showing 
isometric contours. 

reveals the accurate reproduction of the hole location and 
boundaries. The good quality of the BP tomogram is fur- 
ther corroborated by the small CT value needed for recon- 
struction. The T reconstruction, Fig. 10, exhibits very high 
contrast of the defect, but is overall degraded, surrounded 
by several artifacts constituting noise. The fact that the 
sample thickness is less than that of Fig. 7 by 1.6 mm 
apparently makes an enormous difference in the ability of 
the T tomogram to reconstruct deep defects. The main 
reason for that is, of course, the existence of a high enough 
thermal-wave signal amplitude in the case illustrated by 

(4 

.4 

epth (mm) 

04 Length (mm) Length (mm) 

FIG, 12. (a) TSDT backpropagation reconstruction of the object func- FIG. 14. (a) Three-dimensional relief of a simulated cross section of an 
tion F(x,y) of Fig. 11. Laser-beam position at xf= 3 mm (point source). 
Beam intensity modulation frequency: 30 Hz. Trapezoidal rule of inte- 

aluminum strip of thickness 2.4 mm and width 6.4 mm, with an ellipsoi- 

gration using the Born approximation. (b) Top-down view showing iso- 
dal airgap hole centered at (x,,v,) = (4 mm, 0.8 mm); dimensions (u,b) 

metric contours. Regularization parameter C= 10e9. 
= (0.8 mm, 0.4 mm). (b) Top-down view of the cross section, showing 
isometric contours. 
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W Length (mm) 
FIG. 13. (a) TSDT transmission reconstruction of the object function 
F(x,y) of Fi8. 11. Parameters similar to Fig. 12. (b) Top-down view 
showing isometric contours. Regularization parameter o=O. 

Fig. 10 for our computational algorithm to discriminate 
signal elements successfully against the background, as was 
the case in Fig. 7. 

Finally, we considered a narrow strip of aluminum of 
thickness f--2.4 mm and located an ellipsoidal airgap de- 
fect close to the back surface, Figs. 11-13, and subse- 
quently close to the front surface, Figs. 14-16. The object 
function of the strip with the deep defect is shown in Fig. 
11. Figure 12 shows the BP tomogram exhibiting good 
contrast. It is interesting to note in Fig. 12(b) that the size 
of the reconstructed hole is bigger than its actual size, Fig. 
11 (b). This distortion (broadening) may be due to the 
omission of the surface integral term in Eq. (7), which 

4 

$2 

0 

(a) 
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FIG. 15. (a) TSDT back-propagation reconstruction of the object func- 
tion F(xy) of Fig. 14. Laser-beam position at x/=3 m m  (point source). 
Beam intensity modulation frequency: 30 Hz. Trapezoidal rule of inte- 
gtation using the Born approximation. (b) Top-down view showing iso- 
metric contours. Regularixation parameter o= 10m9. 

may have a nonvanishing contribution in thin strips, where 
thermal-wave reflections from the back surface after a sin- 
gle transit through I may have an effect on the value of the 
thermal-wave field in the front surface. It should be noted 
that the T tomogram of the cross section, Fig. 13, is much 
better than the BP tomogram and gives the actual contrast 
and size of the defect, as seen from comparing Figs. 13 (b) 
and 11 (b). It can be argued that the surface integral term 
in Eq. (7) is much less important in transmission,*’ since 
the reflected and heavily dumped thermal waves will have 
to cover twice the distance, 21, in order to contribute to the 
thermal-wave field at the back surface. Therefore the omis- 
sion of the surface integral in FZq. (7) may be said to be a 

(4 

@I Length (mm) 

FIG. 16. (a) TSDT transmission reconstruction of the object function 
F(xy) of Fig. 14. Parameters similar to Fig. 15. (b) Top-down view 
showing isometric contours. Regularixation parameter (T= 10m9. 
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FIG. 17. Similar to Fig. 15 with beam intensity modulation frequency 
equal to 80 Hz. Regularixation parameter o= 10e9. 

posteriori justified, with the volume integral representing 
the pseudopropagating field satisfactorily. A review of the 
tomograms in Figs. 12 and 13 leads to the conclusion that 
in thin samples for which inequality (3 1) does not hold 
rigorously, reconstructions of deep defects from T data are 
superior to those from BP data. The object function of the 
same thickness aluminum strip including a shallow defect 
is shown in Fig. 14. In this situation the reconstruction 
results exhibit opposite trends to those shown in Figs. 12 
and 13: The BP tomogram, Fig. 15, is of very good quality 
and contrast, as expected from this tomographic mode’s 
ability to reproduce accurate shallow defects (see also Fig. 
3). On the other hand, the T reconstruction, Fig. 16, is 
only of fair quality, with adequate contrast, but with dis- 
torted (broadened ) dimensions. The degree of distortion is 

2 0.325 

-0.85 

(4 

3.2 
Length (mm) 

FIG. 18. Similar to Fig. 16 with beam intensity modulation frequency 
equal to 80 Hz. Regularixation parameter cr= IO-‘. 
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FIG. 19. Similar to Fig. 17 with beam intensity modulation frequency 
equal to 10 Hz. Regularization parameter o= 10-9. 

lower than that observed with a thick sample [compare 
Figs. 16(b) and 4(b)], and the cause of it must be sought 
in the large distance between the location of the defect and 
the back surface of the sample. 

In another simulation set we investigated the effect of 
the laser-beam modulation frequency variation on the to- 
mographic reconstruction. Figure 17 is the BP reconstruc- 
tion of Fig. 14 when the frequency is raised to 80 Hz. Only 
slight changes can be discerned in the higher frequency 
image. The degree of quality, contrast, and size reproduc- 
tion is essentially the same, with a noticeable noise in- 
crease, as seen from comparing Figs. 15 (a) and 17 (a). The 
quality of the T reconstruction, Fig. 18, however, has un- 
dergone dramatic deterioration in all aspects of reconstruc- 
tion, as seen from comparing Figs. 18 and 16. Therefore, 
shallow defects appear to require low frequencies to yield 
improved tomograms, in effect relaxing the thermally thick 

(4 

0 3.2 6.4 
@I Length (mm) 

FIG, 20. Similar to Fig. 18 with beam intensity modulation frequency 
equal to 10 Hz. Regularization parameter (T= 10m9. 
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FIG. 21. (a) Three-dimensional relief of a simulated cross section of an 
aluminum strip of thickness 2.7 mm and width 5.4 mm, with two ellip- 
soidal airgap holes centered at (x: ,yf)=( 3.6 mm, 0.9 mm) and 
(2 ,vf) = (1.8 mm, 1.2 mm). Dimensions of both holes: (a$) = (0.6 mm, 
0.3 mm). (b) Top-down view of the cross section, showing isometric 
contours. 

condition of inequality (3 1). When the frequency was de- 
creased to 10 Hz, Fig. 19, an improvement in the BP re- 
construction was observed, especially the background noise 
suppression. On the other hand, the T reconstruction, Fig. 
20, has broadened considerably with comparison to the 30 
Hz reconstruction, Fig. 16, with an overall degradation in 
image quality. It is clear that the defect can be delineated 
better under T reconstruction with the use of high enough 

45 

1 
x 
22 2 

0.5 
2.7 

(a) Length (mm) Depth (mm) 
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FIG. 22. (a) TSDT backpropagation reconstruction of the object func- 
tion F(x,y) of Fig. 21. Laser-beam position at xf=2.4 mm (point 
source). Beam intensity modulation frequency: 20 Hz. Trapezoidal rule of 
integration using the Born approximation. (b) Top-down view showing 
isometric contours. Regularization parameter o=O. 
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FIG. 23. (a) TSDT transmission reconstruction of the object function 
F(x,y) of Fig. 21. Parameters similar to Fig. 22. (b) Top-down view 
showing isometric contours. Regularixation parameter o=O. 

frequency to contain thermal-wave diffraction effects9”’ 
This frequency must be at the same time low enough to 
overcome degraded signal-to-noise ratios, Figs. 16, 18 and 
20. 

We further explored the ability of computational 
TSDT to reconstruct multiple defect structures within the 
thermal wavelength A,(w). This amounts to defect inter- 
actions and the conditions of resolving neighboring defect 

FIG. 25. (a) TSDT back-propagation reconstruction of the object func- 
tion F(xy) of Fig. 24. Laser-beam position at x,=2.4 mm (point 
source). Beam intensity modulation frequency: 2 Hz. Trapezoidal rule of 
integration using the Born approximation. (b) Top-down view showing 
isometric contours. Regularization parameter o=O. 

geometries. Figure 21 shows the input object function: an 
aluminum sample of thickness 2.7 mm with two ellipsoidal 
defects in close proximity to each other. BP reconstruction 
under an f = 20 Hz laser thermal-wave excitation is shown 
in Fig. 22. No nonzero regularization parameter was used 
for this reconstruction, which resolves the two defects 
fairly well, even though only a single source position was 
used. All three: magnitude (contrast), size, and depth are 

FIG. 24. (a) Three-dimensional relief of a simulated cross section of an 
aluminum strip of thickness 3 mm and width 6 mm, with two ellipsoidal 
airgap holes centered at (xi ,yi) = (4 mm, 1.4 mm) and (xf ,$) = (2 mm, 
1.6 mm). Dimensions of both holes: (a&)=(0.5 mm, 0.3 mm). (b) 
Top-down view of the cross section, showing isometric contours. 

03 Length (mm) 

FIG. 26. (a) TSDT transmission reconstruction of the object function 
F(x,y) of Fig. 24. Parameters similar to Fig. 25. (b) Topdown view 
showing isometric contours. Regularization parameter o= IO-“. 
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FIG. 27. (a) Three-dimensional relief of a simulated cross section of an 
aluminum strip of thickness 1.8 m m  and width 5.5 m m  with two ellip- 
soidal airgap holes centered at (x:,yl)=(4 mm, 0.4 mm)  and 
(g,,A) = (3.5 mm, 1 mm). Dimensions of both holes: (a$) = (0.5 mm, 
0.2 mm), (b) Top-down view of the cross section, showing isometric 
contours. 
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FIG. 28. (a) TSDT backpropagation reconstruction of the object func- 
tion F(x,y) of Fig. 27. Laser-beam position at x/=2.4 m m  (point 
source) II Beam intensity modulation frequency: 2 Hz. Trapezoidal rule of 
integration using the Born approximation. (b) Top-down view showing 
isometric contours. Regularization parameter (T=O. 

Depth (mm) 0 

FIG. 29. TSDT transmission reconstruction of the object function F(x,y) 
of Fig. 27. Parameters similar to Fig. 28. Regularization parameter o=O. 
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FIG. 30. (a) Three-dimensional relief of a simulated cross section of an 
aluminum strip of thickness 1.8 m m  and width 5.5 mm, with two ellip- 
soidal airgap holes centered at (xf,yi)=(3.5 mm, 1 mm) and 
($d) = (4 mm, 1.6 mm). Dimensions of both holes: (a$) = (0.5 mm, 
0.2 mm). (b) Top-down view of the cross section, showing isometric 
conzours. 

reconstructed with high fidelity, owing to the shallowness 
of the defects. In contrast to the good quality of the BP 
reconstruction, the T reconstruction, Fig. 23, is very un- 
satisfactory, with severe distortions, including defect merg 
ing and obliteration of the interdefect boundary, 

It is interesting to note that when the defect pair moves 
deeper into the bulk of the sample and their relative dis- 
tance increases, as shown in Fig. 24, then both BP and T 
reconstructions yield sufficiently good images, Figs. 25 and 
26, respectively. In this set of reconstructions the fre- 
quency f was lowered to 2 Wz to allow for thermal thin- 
ness of the imaged subsurface slice.24S25 As a result the 
resolution of both BP and T tomograms is adequate, with 
the latter exhibiting more background noise, as well as 
some depth distortions of the defects, Fig. 26 (b) . The BP 
image, however, is depth-distortion-free, Fig. 25(b), In 
summary, Figs. 21-26 indicate that in both cases ofshallow 
and deep defect pairs, which are otherwise at approximately 
the same depth, BP tomography yields superior reconstmc- 
tions. 

The final set of tomograms that we studied in this work 
is related to subsurface defect pairs at different depths, 

Length (mm) 5.5’0 Depth (mm) 

FIG. 31. TSDT backpropagation reconstruction of the object function 
F(x,y) of Fig. 30. Laser-beam position at x,=2.4 mm (point source). 
Beam intensity modulation frequency: 2 Hz. Trapezoidal rule of integra- 
tion using the Born approximation. Regularization parameter cr=O. 
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FIG. 32. (a) TSDT transmission reconstruction of the object function 
F(xg) of Fig. 30. Parameters similar to Fig. 31. (b) Top-down view 
showing isometric contours. Regularization parameter a=O. 

with partial spatial overlap along the “line of sight” be- 
tween a single laser source position and some position of 
the detector coordinate, xl. One such input object function 
F(xg) is shown in Fig. 27. In Fig. 28 we show the BP 
reconstruction from a laser source position to the left of 
both defects (note the relief-plot rotation in this case, com- 
pared to earlier figures, to show the interdefect “valley”). 
It is seen that the depth, sizes, and magnitudes of the de- 
fects are reproduced satisfactorily, with the magnitude 
(contrast) of the deeper defect being marginally degraded 
compared to that of the shallower defect, as expected. It is 
further interesting to note that the low frequency used (2 
Hz) does not severely limit spatial resolution of the de- 
fects, which might be expected due to the considerable 
thermal-wave diffraction present at low f. Contrary to the 
BP reconstruction, the T reconstruction exhibits severe 
loss of resolution, defect merging, and almost complete 
screening of the shallow (upper) defect by the dominant 
deep (lower) defect, Fig. 29. The size, position, and mag- 
nitude of the lower defect, however, are well reconstructed. 
It is clear that transmission tomography yields a weighted 
defect image with the dominant defects being those close to 
the back surface. If the pair of defects is located very close 
to the back surface, Fig. 30, then the opposite situation 
arises. The BP reconstruction is almost entirely dominated 
by the shallow defect, whereas defect merging and screen- 
ing of the deeper defect is observed, Fig. 31. On the other 
hand, the T reconstruction, Fig. 32, is quite good and ac- 
curately reproduce the depth, size, and contrast of the two 
defects, with some distortion in the back shadow of the 
upper defect. Clearly, this tomographic mode should be 
used with samples involving deep defects in close proxim- 
ity. 

V. INHERENT FEATURES OF COMPUTATIONAL TSDT 
T’he extensive simulations and tomographic recon- 

structions presented above lead to the following set of em- 
pirical “rules” governing thermal-wave slice diffraction to- 
mography: 
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( 1) T’he Born approximation seems to yield a large 
number of satisfactory results, even for defects with ther- 
mal dithrsivities very different from that of the background 
solid material. 

(2) Shallow defects in thermally thick samples are im- 
aged better with BP reconstruction. Deep defect BP recon- 
struction is also of higher fidelity than T reconstruction, 
albeit in the presence of considerable background noise. 

(3) In thermally intermediate samples, deep defects 
appear distorted under both reconstruction modes, how- 
ever, T reconstruction produces higher contrast. 

(4) In thinner samples than those of case (3) above, 
deep defects close to the back surface are imaged better 
with T reconstruction. Shallow defects are imaged much 
better with BP reconstruction. 

(5) Increasing the laser-beam source modulation fre- 
quency causes small changes in the BP reconstruction, 
while it leads to marked deterioration of the T reconstruc- 
tion of shallow defects. 

(6) Pairs of defects in close proximity and at the same 
(approximate) depth in a thin sample are only imaged 
with satisfactory spatial resolution using BP reconstruc- 
tion, when they are shallow. There is a trade-off between 
increased interdefect distance and increased depth in pre- 
serving spatial BP tomogram resolution; BP tomogram re- 
constructions gradually degrade, whereas T reconstruc- 
tions improve with increased depth. 

(7) Shallow defect pairs at different depths reconstruct 
only with BP tomography. Deep defect pairs at different 
depths reconstruct only with T tomography. 

ACKNOWLEDGMENT 

The authors wish to acknowledge the partial support 
of the Natural Sciences and Engineering Research Council 
of Canada (NSERC), which made this work possible. 

‘A. Mandelis and M. Mieszkowski, U.S. Patent No. 4,950,897, August 
1990. 

*M. Munidasa and A. Mandelis, J. Opt. Sot. Am. A 8, 1851 (1991). 
‘M. Munidasa, A. Mandelis, and C. Ferguson, Appl. Phys. A 54, 244 

(1992). 
4A. Mandelis, J. Phys. A 24, 2485 (1991). 
‘A. C. Kak and M. Slaney, Principles of Computerized Tomographic 

Imaging (IEEE Press, New York, 1988). 
60. Padt and A. Mandelis, Inverse Problems (in press). 
‘M. Mieszkowski, K. F. Leung, and A. Mandelis, Rev. Sci. Instrum. 60, 

306 (1989). 
*G. T. Herman, A. Lent, and S. W. Rowland, J. Theor. Biol. 42, i 

(1973). 
9A. Mandelis, J. Opt. Sot. Am. A 6, 298 (1989). 

“P M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill, New York, 1953), Chap. 7. 

” K. J. Langenberg, Applied Inverse Problems, Notes on Summer School 
on Applied Inverse Problems (Fachgebiet Theoretische Elektrotechnik 
der G-thochschule, Kassel, GhK-TET, Kassel, 1986) Chap. 3. 

“L. D. Favro, P. K. Kuo, and R. L. Thomas, in Photoacoustic and 
Thermal Wove Phenomena in Semiconductors, edited by A. Mandelis 
(North-Holland, New York, 1987), Chap. 4, p. 75. 

“D. Nahamoo, S. X. Pan, and A. C. Kak, IEEE Trans. Sonics Ultrason. 
su-31, 218 (1984). 

“E. Kreyszig, Advanced Engineering Mathematics, 7th ed. (Wiley, New 
York, 1993), Chap. 18. 

“M. Abramowitz and I. Stegun, Handbook of Mothemoticai Functions, 
9th ed. (National Bureau of Standards, Washington D.C., 1970). 

Thermal-wave slice tomography 3561 
Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp



‘6R. K. Mueller, M. Kaveh, and G. Wade, Proc. IEEE 67, 567 (1979). 
t7Y. S. Touloukian, R. W. Powell, C. Y. Ho, and M. C. Nicolaou, 2%~ 

tttQ/ Dzyisiv& ( IFL’PIenum, New York, 1973). 
‘*M. Kaveh, M. Soumekh, and R. K. Mueller, in Acoustica! Imaging, 

edited by J. Powers (Plenum, New York, 1981), Vol. 10. 
‘9M. Kaveh, M. Soumekh, Z. Q. Lu, R. K. Mueller, and J. F. GreenleaF, 

in ACcn.S?ica~ Imaging, edited by E. A. Ash and C. R. Hill (Plenum, 
New York, 1983), Vol. 12, p. 599. 

“G. Hammerlin and K. H. Hoffman, Numerical .&ritematics (Springer, 
New York, 1991). 

” R. Kress, Linear lnregrui Equarions (Springer, New York, 1989). 
22B. Hofmann, Regularization for AppIied Inverse and III-Posed Problems 

(Teubner. Leipzig, 1986). 
23B. T. Smith, J. M. Boyle, J. J. Dongara, B. S. Garbow, Y. Ikebe, V. C. 

Klema, and C. B. Moler, Matrix Eigensystem Routines-EISPACK 
Guide, 2nd ed., Lecture Notes in Computer Science Vol. 6 (Springer, 
New York, 1976). 

24A. Rosencwaig and A. Gersho, 3. Appl. Phys. 47, 64 (1976). 
*‘A. Mandelis and K. F. Leung, I. Opt. SOC. Am. A 8, 186 ( 1991). 

3562 Rev. Sci. Instrum., Vol. 64, No. 12, December 1993 Thermal-wave slice tomography 3562 

Downloaded 18 Jul 2008 to 128.100.49.17. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp


