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Detailed analytical models of signal-to-noise ratios (SNR) of the conventional frequency domain 
(FD) and time domain (TD) photothermal measurement methodologies are developed and compared 
to the rate-window photothermal method, both theoretically and experimentally. The conclusions of 
this study demonstrate that the lock-in amplifier (LIA) rate-window measurement mode in general, 
and the digital LIA mode, in particular, exhibits superior SNR to both the conventional 
frequency-scanned LJA FD method and to the transient, time-averaged TD method. Between the 
pulse-duration-scanned and pulse-repetition-period scanned rate-window methodologies, the former 
clearly exhibits superior SNR. The theoretical conclusions are in agreement with experimental 
SNRs using the implementation of the foregoing measurement methodologies with simple infrared 
photothermal radiometric setups. 

I. INTRODUCTION 

Photothermal rate-window detection’ has proven to be 
very effective in the measurement of thermal diffusivities of 
ultrahigh thermal conductors such as diamond8 and of elec- 
tronic carrier recombination lifetimes in the presence of 
deep-level defects.374 An experimental comparison between 

. the conventional frequency-domain (ED) infrared photother- 
ma1 radiometric method and the lock-m amplger (LIA) rate- 
window method using an identical setup was recently 
performed.’ That study concluded experimentally that the 
rate-window method gives superior signal-to-noise ratio 
(SNR) for materials with very short thermal transport times 
such as metal foils, which otherwise require high-frequency 
FD scans with low SNR. The rate-window measurement 
SNR became substantially superior to the FD measurement 
SNR with increased thermal-wave modulation frequency, es- 
pecially in the pulse duration scanned mode. Furthermore, it 
has been shown” that the LIA rate-window SNR is superior 
to that resulting from a boxcar integrator. The two SNRs 
become equal as the boxcar detection approaches monotoni- 
cally the lock-m SNR when the boxcar time-gate width in- 
creases towards To/Z. Here T0 is the transient signal repeti- 
tion period. The foregoing comparisons between the 
photothermal LIA and boxcar integrator rate-window 
methodsa showed that the SNR of the former is approxi- 
mately a factor of two better, a fact supported by Miller 
et al6 in studies of the relative SNR performance of these 
two methods as applied to the well-known semiconductor 
diagnostic technique called deep-level transient spectroscopy 
(DLTS). 

In view of the increasing body of evidence regarding the 

SNR advantages of rate-window photothermal measurements 
over the conventional FD and TD techniques, a complete 
theoretical study of this parameter was undertaken in this 
work, backed by the appropriate experimental results. To the : 
author’s best knowledge the existing literature on lock-m 
analyzer instrumentation analysis and signal generation is 
concentrated in the presentation of dynamic aspects of spe- 
cific detection principles [e.g., heterodyne lock-in 
amplifiers,7’8 pulsewidth modulation (PWM) lock-in 
amplifiers’] or in mainly qualitative descriptions of the gen- 
eral lock-in configurations originating in phase-sensitive 
detectors.” The most comprehensive treatise on lock-in am- 
plifier principles and applications has been written by 
Meade;” although some quantitative SNR results were pre- 
sented, the approach was mostly practical and qualitative 
with emphasis on component design, specialized circuit con- 
figurations, and applications using lock-m detection. Con- 
versely, an excellent treatise on signal recovery from noise 
with mathematical considerations of the effects of various 
filters has been presented by Wilmshurst.” His treatment in- 
cludes a very clear diagrammatic presentation of the 
frequency-domain view of the phase-sensitive detector 
(PSD), the principle on which LIA operation is based. Un- 
fortunately, the actual treatment of the LIA, which requires 
the presence of a low-pass filter (LPF) past the PSD stage, is 
qualitative and does not generate a thorough understanding 
of the instrument’s operation. 

The most rigorous study of electronic signals, noise, and 
measurement analysis to date using a communications sys- 
tems approach has been presented by Cova and Longoni.‘3 
These authors have outlined the theoretical foundations of 
the various measurement techniques and signal processing 
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methods from the fundamental viewpoint of deterministic 
and random variables, signals, noise, and background. The 
mathematical and physical aspects of linear filtering methods 
for the extraction of signals from noise have been treated 
including the important topic of optimum filtering. In the 
context of Cova and Longoni’s work, the LIA was discussed 
qualitatively as a common example of a correlation filter, or 
PSD, but no specific SNR analysis was given. In many ways 
it is surprising that no rigorous generalized mathematical for- 
mulation of lock-in signal and SNR has been developed to 
the present. This state of affairs may be largely attributed to 
the fact that most of the developments in this area have been 
made in industrial laboratories, in which the emphasis was 
(and still is) on the relative instrumental advantages of spe- 
cialized lock-in analyzers over other existing commercial in- 
struments. As a consequence, the existing technical manuals 
are based on specialized circuitry and practical demonstra- 
tions, at the expense of a generalized, unified signal process- 
ing approach. Similarly, the systems aspects of lock-in am- 
plifiers have been confined, for the most part, to the 
manufacturer’s data sheets and application notes.” 

In this review article, a generalized communications sys- 
tems approach to signal and noise processing by the basic 
circuit of two-phase lock-in amplifiers has been developed. 
The resulting general SNR expressions were then applied to 
rate window and FD modes in the specific case of photother- 
ma1 signal generation. Finally, detailed comparisons with 
time-averaged transient photothermal SNRs were made un- 
der conditions which allow the direct comparison among all 
three signal generation modes. Even though the nature of the 
following presentation is of a review type, the resulting LIA 
SNR expressions are largely new, including the photothermal 
signal SNRs as well as several experimental results. 

II. LOCK-IN AMPLIFIER OUTPUT SIGNAL 

A. Qualitative 

Multiple time averaging (MTA) and LIA filtering are 
routinely used in signal processing as effective techniques 
reducing instrumental drift error and background white 
noise, mainly thermal and shot noise. In MTA using repeti- 
tive pulses leading to signal transients it is well-known’” 
that, if the number of signal traces averaged is IZ~, the 
amount of time available for noise averaging is increased by 
the factor IZ~ and the final error for each of the transient data 
points decreases by n, - “‘, thus offering a similar noise im- 
provement to the MTA TD signal. In Sec. IV C it will be 
shown that as the number of signal traces increases to infin- 
ity, one obtains the mean value of the signal over the fre- 
quency bandwidth of the signal processing instrumentation. 
Given that this bandwidth must, by necessity, be broad 
enough to pass the Fourier components of the generated sig- 
nal relatively undistorted, it is intuitively easy to see the 
built-in SNR advantage of narrow-band detection such as 
that afforded by LIAs. The main strengths of MTA, there- 
fore, lie in drift error correction of signal base lines12 and in 
the powerful simplifications of physical interpretations asso- 
ciated with the time evolution of physical TD signal genera- 
tion processes, compared to time-multiplexed FD scans. 

Furthermore, LIA detection has the distinct advantage of 
depending on PSD operation which itself tends to reject drift. 
In addition, the possibility of using ac-coupled signal ampli- 
fication stages (rather than the docoupled MTA amplifier) 
can act as an effective tilter to drift. Owing to the LPF stage 
of the LIA, extremely narrow-band detection can be realized, 
so that white noise rejection can be far superior to MT.A 
noise output, leading to much higher SNR. Wilmshurst” has 
given a thorough discussion of the relative MTA/LIA behav- 
iors in reducing or eliminating l/f noise error. Although the 
treatment of this type of noise is beyond the scope of the 
present review, its main characteristic is that, unlike white 
noise which has a zero mean, l /f noise has the tendency to 
wander away from the mean. Therefore, the advantages of 
using a larger measurement period T are less than for white 
noise. Wilmshurstr2 has shown that both MTA and PSD 
(LIA) methods can, in principle, effectively remove l/f 
noise error. Nevertheless, there appear to be more severe 
practical limitations with the MTA method, mainly associ- 
ated with large time interval T. Of course, the white-noise 
reduction advantages of the LIA remain after (hypotheti- 
cally) all l/f components have been removed from both 
MTA and FD methods (Sec. III). 

Beyond the LIA SNR advantages over the TD MTA 
scheme, there exist further “intra-FD” SNR advantages re- 
garding the LIA rate-window signal generation mode, com- 
pared to harmonic (i.e., 50% duty cycle) inputs to the LIA. 
One can generate LIA rate-window scans simply by continu- 
ously varying the duty cycle over one signal repetition pe- 
riod. This can be done either by pulse duration rp or by pulse 
repetition period To scans. The result is that, instead of the 
conventional sinusoidal or square-wave system generation 
and LIA detection, an entire repetitive transient is sampled 
by the LIA each To. 

Qualitatively, the SNR advantage of this mode can be 
understood by considering that the lock-in amplifier captures 
the signal energy contained in the first (fundamental) Fourier 
coefficient of the rate-window transient; accordingly, in the 
FD case it monitors the mndamental Fourier coefficient of 
the harmonic signal. To focus attention to a specific signal 
generation process, it is well-known from time- and 
frequency-domain analyses of photothermal signals that in 
the thermal transient the optically imparted energy distrib- 
utes itself in such a manner that it provides the strongest 
response at times immediately following the pulse cutoff. 
This is, precisely, the range of scanned times involved in the 
rate-window technique which therefore yields a strong fun- 
damental coefficient magnitude of the Fourier series repre- 
sentation of the repetitive pulse. Conversely, in harmonic 
photothermal analysis the fundamental Fourier coefficient of 
the repetitive 50% duty cycle pulse decreases in magnitude 
in inverse proportion to the strength of the first Fourier co- 
efficient of the time-domain pulse, due to the inverse rela- 
tionship between time- and frequency-domain and the Parse- 
val theorem.13 Therefore, fast photothermal phenomena are 
expected to yield fundamental Fourier coefficients of supe- 
rior strength in the transient repetitive pulse mode to the one 
allotted to the respective high frequency fundamental com- 
ponent under harmonic excitation, and the higher the fre- 
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FIG. 1. Layout of transient signal pathway through a lock-in amplifier (LL4). The various symbols are defined in the text. 2, represents summing stage and 
X represents mixing (.multiplying) stage. 

quency, the higher the strength contrast of the fundamentals 
in the two transform domains. The result is, of course, higher 
SNR for the transient response (commonly observed as a 
strong early-time response of pulsed laser photothermal 
systems’“). Similar arguments concerning nonphotothermal 
systems can be made based on the nature of the basic Fourier 
transform pair. A detailed theoretical analysis of the forego- 
ing qualitative discussion will be presented in Sec. IV. 

B. Quantitative 

An experimental detection system using lock-in filtering 
is illustrated in Fig. 1. An input time-dependent (nonstation- 
ary) signal F(t) in the presence of noise n(t) is multiplied 
with a reference wave form e,(t; wa) and introduced into the 
low-pass filter of transfer function H(W). In the case of a two 
phase/vector LIA there exists a second channel, the reference 
phase of which is shifted by 90” with respect to eR(t;wo). 
The output of the mixer of this stage is introduced to an 
identical low-pass filter H( 0). The two outputs constitute the 
in-phase (IP) and quadrature (Q) components of the LIA sig- 
nal, respectively. All lock-in detection schemes can be de- 
composed into the basic system structure shown in Fig. 
1.14-17 Since the output signal f(t) is periodic with period T,, 
corresponding to reference angular frequency w. = 2 a-IT0 , 
the output power SNR is given as18 

SNR= 
average spectral power of signal output 
average spectral power of noise output ’ (1) 

P(t) 
=P,o* (2) 

The experimental recorded SNR is simply the square root of 
the power SNR of Eq. (1). It is appropriate to use the mean- 
square value of the noise amplitude, since it is a random 
signal with zero mean value. The periodic output signal fo(t) 
can be decomposed into a Fourier series. It is convenient to 
use the complex series expansion 

m 

fo(t)= C &einoOt, 
n=-CO 

because it includes “negative frequency” components, which 
can be interpreted as the low-passband components below 
the dc-shifted filter bandwidth center of the LIA. The Fourier 
transform of the output signal is 

m 
F;o(o)=27r c c$J,s(w-mJo), (4) 

n=-01 

where S is the Dirac delta function defined in the particular 
representation 

““’ =;hIl( k S&h))) 
,!?a(.~) is the sampling function18 

sin x 
&z(x)= -y--. 
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Owing to the fact that fo(t) becomes aperiodic by truncating 
it outside the interval t<T where T is some time interval 
T -+a. 

it can be shown that the Fourier transform of fOT(t) is 

~oTW=TO 5 (b S n=--m n a( [O-yo)T). (8) 

From the definition of the power spectral density 
(PSD)r* 

l~oTw12 
PSD[for(t)]%SF(~)= lim T . 

T+rn 
(9) 

Use of the definition (5) for the Dirac delta function imme- 
diately gives 

S&w)=27r 5 ]&J2s(w-nw,). (10) 
n=-m 

Equation (10) indicates that the available signal power at the 
outputs of the LIA, either the IP or Q channel, is distributed 
throughout the discrete spectrum of the fundamental and the 
harmonics of the reference angular frequency CIJ,. 

Assuming a single first-order RC low-pass filter section 
of transfer function’l’14 

1 
H(w)= 

1 + iO7~C’ 

keeps the treatment quite general, as various higher order 
filter gain roll-offs can be implemented by simple single fil- 
ter section cascades using buffer amplifiers for isolation.” 
Here rRC=RC (R: resistance, C: capacitance of the filter). 
The impulse response of the filter is given by the inverse 
Fourier transform of Eq. (11) 

for= - 7:, oTfiwl I 

= lim k 
T-W 

]oT.fi(i)diz i /oTo.f~(i)di=.f~dTo)- 

(14) 

h(t) =‘$c ewi”RCu(t), 
R 

02) 

where u(t) is the unit step function. The filter output fOT(t) 
is the result of the convolution’” 

foTw = J)!t- mbwf; 

e -t/TRC i 

= - ey7Rcdc. (13) 
rRC I 

Jtsj 

According to Eq. (13) fOT(t) is the time average of the in- 
termediate fi(t) stage computed over the time interval 
7RC%T0 assuming the LIA filter time constant to be very 
long compared to To (the usual experimental situation). 
Since fi(t) contains a dc component and harmonics of wo, 
this average can be simply taken over the period To. Opera- 
tionally, since fi(t) is subject to the aperiodic truncation of 
Eq. (7) 

One arrives at the form of Eq. (14) by expanding the expo- 
nentials in Eq. (13) on the basis of t4 rnc and redefining the 
long time interval T to coincide with the long time constant 
rRc of the filter. If the condition t4rRc is not valid, fOT(t) 
must be used from Eq. (13) and the LIA output remains time 
dependent, an easy to verify, yet not very useful experimen- 
tal fact.’ At this point it should be remembered that fi(t) is 
the output of the IP or Q mixer stage. Therefore, it consists 
of the product of the input transient wave form f(t) and the 
reference wave form eR(t;coO). Depending on the type of 
LIA used, two reference, wave forms can be considered. In 
digital instruments the reference is a pure sine wave synthe- 
sized digitally. In analog instruments a square wave refer- 
ence signal is used (Fig. 2). 

1. Digital LIA signal 

Digital LIAs were inspired from early instrumentation 
using digital synchronous detection by means of a single 
reversible scaler developed for single-photon detectionlg; its 
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FIG. 2. Reference wave forms for LIA: (a) digital, and (b) analog instru- 
ment. Both phases were assumed 0” at t= 0. 
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PIG. 3. (a) Functional block diagram of the digital lock-in detection technique (Ref. 22). (b) Principal waveforms in (a) for the case of square-wave 
modulation (optical choppers etc.); (1) Voltage-controlled oscillator (VCO) output; (2) Switch driving the binary wave form synchronized to the reference 
signal; (3) Gate-opening binary wave form, also synchronized to the reference signal; (4) Equivalent weighting wave form of the PSD; and (5) PSD output. 

extension to analog signals by using a voltage-to-frequency 
converter was devised for various applications.20*21 Later on, 
a pioneering digital LIA was reported by Cova et al.“* The 
main purpose of the novel LIA was to overcome many prac- 
tical limitations of the analog LJAs of the day and pointed 
out the basic advantages of digital demodulation, primarily 
the more efticient cutoff of the low-frequency noise compo- 
nents even with a square-wave reference function. Of par- 
ticular concern was the measurement of low-frequency sig- 
nals, the rejection of unwanted dc and low-frequency 
components, and the overall enhancement of the SNR espe- 
cially in the presence of source intensity drifts. Figure 3 
shows the block diagram and principal wave forms of the 
digital LIA introduced by Cova et al”” A major advantage of 
that instrument of direct relevance to the present analysis 
was its ability to exhibit perfect gated integration through 
counting performed by positive or negative scalers preceding 
the digital processor (Fig. 3) and following a gated precision 
voltage-controlled oscillator (.VCO) acting as a linear 
voltage-to-frequency converter. As a result, the digital PSD 
(gate plus switch) exhibited an equivalent weighting wave 
form with a very accurately nulled average value. The use of 
the gate allowed the LIA to be very versatile, operating with 
high accuracy in a variety of cases and with different weight- 
ing wave forms, not restricted to the conventional analog 
LIA square waves having 50% duty cycle. Besides the 
square wave tIltering/reference wave form at the fundamen- 
tal modulation frequency fR, practically any other filtering 
type could be well-approximated by synthesizing suitable, 

pulse-width modulated square waves at higher frequencies. 
For instance,22 filtering at fR could be obtained by subdivid- 
ing the gating time in shorter intervals and by opening the 
gate (Fig. 3) only for a fraction of each interval modulated 
by the fundamental sinusoidal component of the reference. 
As a result, this operating mode became very useful in syn- 
thesizing accurate narrow-band filtering free from unwanted 
harmonic bands, even at low frequencies, as shown below. 
Furthermore, the digital LPF can have practically unlimited 
mtegration time rat and it is free from internal noise sources 
to which analog filters are susceptible. Greater SNR can thus 
be obtained. 

In terms of the generalized signal processing analysis of 
the digital LIA, Fig. 1 remains the preferred instructional 
alternative. Equation (14) may be written 

fiyQ'(~~) = i- 
I 

To 

To o 
f(5)&eQ'(5;qM5, 

for either the IP or Q  signal channel, where 

eE( t; wo) = cost coot), W-3 

cRQ( t; coo) = sin( oat) . Mb) 

The repetitive input transient f( t) may be expanded in a real 
Fourier series 
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fw=;u,+C 1 a, cos(nwot)+b, sin(noot)], . 
n=l 

(174 .., 
with the well-known Fourier coefficients” 

a,( c&J).= z I oTof(t)cos(nmot)dt, 

and 

b,(oo)= z 
I 

:f([)sin(no,t)dt. 

The orthogonality property of the basis functions 
{cos(nwot)} . and {sin(n~~t)) yields upon combination of 
Eqs. (15)-(17) 

fgQ’(oo)=; [pi;;]. (18) 

Equation (18) represents the demodulated (dc) output com- 
ponents of the IP and Q channels, respectively. It should be 
noticed that, although these are dc-level signals, the wave- 
form constituents f(t) used in the integrations (15) carry a 
w0 dependence owing to the repetitive nature of the wave 
form with period To. This cutoff parameter renders f( To) the 
extreme value of f(t) in the time evolution of the wave form 
and is central in the location of the extremum in the diagnos- 
tic technique of the LIA rate window.116*24*25 Identification of 
the coefficients a r/2, b1/2 with the n = 0 components of the 
complex Fourier expansion, Eq. (3), gives for the PSD of the 
output signal 

(i9a) 

Wb) 
Equation (19) may be used to calculate the average output 
spectral powerus 

P= lim I T/2 
f*(t)dt= & 1; SF(w;wo)do. c-33) 

T--J -T/2 m 

Therefore, 

WI. (21) 

It is important to note that the signal output from a digital 
lock-m amplifier contains no harmonic components, pre- 
cisely due to the purely sinusoidal reference.17 This is an 
advantage, because it eliminates’ noise contributions from 
harmonic responses, compared to analog LIAs.” 

2. Analog L/A. signal 

The generalized schematic of Fig. 1 is valid for analog 
LIAs as well.14 Here assume t$e reference wave form shown 
in Fig. 2(b). Equation (15) now gives 
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f~T(~o)=~~oTo’2f(~)(+l)di+~~o,2f(i)(-~)d5 
0 

= j-oTo’2f(5W~- j-‘4,fW 
0 

G9 

In terms of the Fourier components of f(t) a straightforward 
calculation shows that 

(23) 

where the indicated W, dependence of the output dc-level 
signal appears for the reason discussed earlier regarding the 
digital LIA output, Eq. (18). Similarly, 

f:TT(C,)= - j-oTo’4f(5W5+ j+;o;(i)di- j-3;o,4f(iWi, 

which yields 
(24) 

* 
f;T(wo)= - g 5 --A-- n=l h-1 

a2n-1(~0). - (25) 

It can be seen that the well-known fact of the existence of all 
odd harmonics of the reference frequency results in an ap- 
parent improvement in signal output of the analog LIA com- 
pared to the single-component digital counterpart.. Using 
Eqs. (10) and (20) one can obtain the average output spectral 
power for the analog LIA 

2 

WI, (264 

and similarly 
2‘ 

WI. (26b) 

A comparison with Pd( w,), Eq. (21) shows that the apparent 
signal advantage of the analog LIA consists of coherent con- 
tributions of higher harmonics, which are nevertheless elimi- 
nated from the output in practice due to odd harmonic filter- 
ing (see Sec. IVA 2). The signal-to-noise ratio actually 
decreases, because all odd harmonics present in Eq. (26) 
contribute to the noise, as will be seen in Sec. III. 

Ill. LOCK-IN AMPLIFIER OUTPUT NOISE 

The most commonly encountered noise in instrumenta- 
tion systems is the so-called Gaussian noise. This type of 
noise is characterized by zero mean and a Gaussian probabil- 
ity density function. Considering a LIA input noise signal 
n(t) with 

2 
ower spectral density S(w), we may conveniently 

represenr n(t) as the limit of a sum of sinusoids of fre- 
quency Af apart over its frequency spectrum, when Af--+O. 
Therefore, 

m- 
n(t)= lim C Cl COS(W~~+ 01); uj=jAw, (27) 

A~J-O~=-~ 
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FIG. 4. Definition of the equivalent noise bandwidth” (ENEW) of LIA. i 

where the Fourier coefficient C, is to be determined. Upon 
passage through the LIA filter of transfer function H(w), the 
mean-square vahre of the output noise is 

m=&- I m Si(“)lH(o)12d@, --io 
where Si( w) is the power spectral density of the intermediate 
stage noise; ni(t), in Fig. 1. In fact, the modulation signal 
e,(t;mu) makes the intermediate noise ni(t> not stationary, 
even with a stationary input noise n(t). Nevertheless, the 
output noise no(t) is stationary owing to the presence of the 
LPF. This filter allows only the low-frequency components 
of Si(w) to contribute to the output noise within its equiva- 
lent noise bandwidth AWN (see below). The LPF averages 
over several modulation periods consistently with its rnc~and 
outputs a stationary no(t), i.e., with a mean-square value 
independent of t .  For each Fourier component of n(t) in Eq. 
(27), a treatment similar to that of the periodic output signal 

fo(t), Eqs. (3)-(10) gives for the input noise PSD the .dis- 
cretized power spectrum 

S(o)=27r lim i 
Ao-+Oj=-, I I 

~'~S(W+Wj)+S(W-Wj)]. 

(29) 
Figure 1 shows that the instrumental noise is ultimately di- 
vided into IP and Q channels, so that past the mixing (mul- 
tiplying) stage 

d’P’Q)(t)=n(t)e t LRQ)(t;wo). 

Therefore, 

(304 

ni(t)=Vi(t)COS Wot+?Zi(t) Sin ~Ot=fZfP(t)+?ZQ(t)~ Wb) 

It cart be shown from properties of the Fourier transforma- 
tion that the in-phase and quadrature power spectral densities 
Of ai( S”(O) and S?(O), upon use of both ni(t)cos coo(t) 

and ni(t)Sin mot, are given by” 

sy(~)=s~(w)=~ [S(o+wo>+S(w-wo)]. (31) 

This result represents the expected intermediate noise com- 
ponent. shift by 00 with pure sinusoidal modulation eR 
(t; we). Now using Eq. (29) in (31) and inserting the result in 
Eq. (28) yields 
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+S(W+WO-Wj)+S(W-WO+Wj) 

+ S(k)-ClJo-Oj)]dC.O 

= & Atmo.-+ C~[IH(-WO-Oj)12 

--+I- m 

fIH(-wO+Wj)12+IH(WO-Wj)12 

+ lHCwO+ wj)l”l- (32) 
For narrow-band filters, such as the LIA filter with the trans- 
fer function Eq. (11) we may assume 

H(-WOiWj)=H*(WOTWj)~ (33) 

where starred quantities imply complex conjugation, This 
property can be readily proven for the H( wo) in Eq. (!l) and 
helps simplify Eq. (32) 

(34) 
Henceforth, it is convenient to define the equivalent noise 
bandwidth (ENBW) Ao,= 27rAfnr as in Fig. 4. The ENBW 
is an ideal bandpass filter of constant *gain H(w,) which 
delivers the same root-mean-square value of the noise signal 
power as the actual LIA output: 

A”N=IH(:o)l~ s omlH(ovdo. (35a) 

where 

H(wo) = 
1; ~o-(AW~/2)<Wo<Wo+(hW,/2) 
0; otherwise 

(35b) 
The LIA output noise power is 

ES,=ni(t)Atij [WI. (36) 

Upon replacement of all the individual noise frequency 
bands Awj= jAw by suitable ENBWs, so that from Eq. 
(35a), one may write: 
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IH(w~)lZA~j=~omlH(w)12~~. (37) 

One obtains for the output noise power from Eqs. (34), (36), 
and (37) 

p$ 
I “c2bhi w,-w)~2+IH(wo+w)12]dW. 

0 

cm 

The discrete Fourier coefficients Cj have also been replaced 
by continuous variables C(W). In order to calculate P, , the 
instrumental noise is further assumed to be white, i.e., with 
uniform PSD over the entire frequency range. Denote the 
PSD as 

S(w) = ; iwmj, (39) 

where the factor l/2 is usually shown to indicate that half the 
power is associated with positive frequencies and half with 
negative frequencies. This model of noise has a physical ba- 
sis on the thermal (or Johnson) noise of electronic circuitsas 

N=kT,. (40) 

k is Boltzmann’s constant and T, is the equivalent noise 
temperature. This type of noise renders C(W) independent of 
frequency in Eq. (38), which yields 

p& ( ~)I(wo-Wjj”dw+ ~JH(oo+ wjlido) . 
(41) 

Upon replacing the S(W) in Eq. (29) by N/2 and taking 
the limit Au-+0 by replacing the summation by an integra- 
tion over w, letting Cj = C (constant), gives 

C2==$ 
Finally, the IP or Q channel output noise power of the LIA 
becomes 

iw 

IV. PHOTOTHERMAL SNRs 

A. Harmonic thermal-wave (FD) mode 

For simplicity we shall consider a semi-infinite solid ge- 
ometry as shown in Fig. 5. For harmonically modulated in- 
cident intensity [frequency domain (FD) mode] 

Q(t)=% [l+COS(W~t)], 

a simple heat conduction calculation with boundary condi- 
tions of temperature and heat flux continuity29 gives for the 
thermal-wave field in the solid 

T,(G) = 
Qo 

%~A 1+ b,,) 

e--o;n+iogt 

<- --_I_ 
+-.. 
4 w <p--..-- 
+-.-- 

---- b____ ..--- 

+-=J 0 --co 

FIG. 5. One-dimensional, semi-infinite photothermal geometry. (s): solid, 
(g): gas, Q(t): time-dependent incident photothermal intensity. 

Here, k, is the solid thermal conductivity; b,, is the ratio of 
the thermal effusivities of gas and solid, bgs=eg/es ; and 
c+~ = (1 + i) Jo,/2cr, where a, is the solid thermal difftr- 
sivity. Let us assume an experimental situation which is ca- 
pable of monitoring the surface temperature oscillation of the 
solid directly, such as infrared photothermal radiometry2Y30 

T,(W) = =f(t), 

where 

(464 

(46b) 

and Ki is an instrumental constant dependent on detection 
geometry. Ki does not change upon changing the input ther- 
mal modulation wave form of the system. In Eq. (46a) 
T,(O,t) may be identified as the input signal f(t) to the LIA. 

1. Digital LIA SNR 
Computation of the fundamental Fourier coefficients of 

the FD surface temperature expression, Eq. (46a), via Eqs. 
[(17b) and (17c)] and insertion into the expression for the 
average output spectral power Eq. (21) with the average out- 
put noise power P,, , Eq. (43), yields 

ali@o)=bli~o)= - & 
Therefore, for both IP and Q channels 

(48) 

The output power SNR in this mode decreases inversely pro- 
portional to the radiation intensity modulation frequency, a 
well-known experimental fact. 

2. Analog L/A SNR 
In this case calculation of u2n- t and b2n-1 from Eqs. 

(17b) and (17~) shows that only the iz= 1 term survives, so 
that 

f$QY yo)= ; ( !;$‘,,) 2 (49) 
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withal = b1 = A/&, as in Eq. (47). The results described 
in Eq. (49) are consistent with signal output considerations in 
the instrumental DLTS studies by Day et ~1.~~ and Aure? 
using the LIA rate window. If the instrumental noise consists 
of white Gaussian noise, the effect of the odd-harmonic re- 
sponse described by Eq. (26) is to increase the output noise 
power. Equation (38) must be modified13 to include the noise 
power centered at @=(2/c-l)wa; k= 1, 2, 3,... 

&=i E Irn 
k=l O 

C,2(W )[IH(W ,-(1))12+IH(WR+0)12]dW. 
Cm 

The Fourier decomposition of the LIA square reference wave 
form, Eqs. (22) and (25), yields the following expression 
instead of Eq. (42) 

(51) 

Therefore, for equal ENBWs at each odd harmonic 
(2k- I)oo, a procedure similar to that which leads to Eq. 
(43) gives the total output noise power in both IP and Q 
channels of the analog LIA 

AiwN tw)- (52) 

Finally, Eqs. (26a) and (52) lead to 

1 
1 * (53) 

CT=‘=, (2k- l)Z 

Given that 

jL c2ktl)2= ;=I.,,, (54) 

it is seen that the 23% additional output noise power over the 
SNRy(wu) actually worsens the analog LIA SNR, in agree- 
ment with Meade’s analysis (Ref. 11, Sec. 3.4). To overcome 
this setback, some manufacturers of analog lock-in amplifi- 
ers suggest the use of a separate bandpass tilter located be- 
fore the mixer/low-pass stage, centered on a particular unde- 
sirable input signal frequency, in order to remove the 
harmonic responses and thus the additional noise output.1’*14 
Practically, the SNR improvement by use of front-end filters 
is insignificant, but the LIA dynamic reserve may be im- 
proved significantly. Figure 6 shows a comparison between 
digital and analog LIA photothermal FD data exhibiting the 
expected relative SNR(o,) quality trends described in this 
section. The improvement in the amplitude SNR of the digi- 
tal LIA is marginal, [Fig. 6(a)]. On the other hand, the im- 
provement in phase SNR is substantial [Fig. 6(b)]. 

B. Rate-window (RVV) photothermal mode 

For an absolute and useful comparison of SNRs, the 
identical instrumental and sample configuration to that of 
Sec. IVA above is considered. In this mode, however, a 
time-gated optical pulse is incident on the sample surface of 

04 

-30.5 

-34.7 

-47.3 

-51&i 

(b) 

In (Frequency (Hz)) 

7 0.104 0.191 ’ -O-+452 0.278 
l /Frequency (Hz)‘~ 

FIG. 6. Frequency-domain infrared photothermal radiometric scans of a 
semi-infinite solid using commercial digital and analog LIAs. (a) Ampli- 
tudes and (b) phases. (---) analog LIA; (-) digital LIA. 

Fig. 5. The pulse is repetitive with period To=2r/wo. The 
modulated incident intensity can be described by a rectangu- 
lar pulse: 

oct<rp 

rp<t<TO’ (55) 

A simple heat conduction calculation in the Laplace space 
with the same boundary conditions as the harmonic thermal- 
wave problem of Sec. IV A and initial condition T,(O,x) = 0 
gives the TD counterpart of Eq. (46) 

6; 
r,(o,t)=;;;AX G-G, 

i 

OGt=Gr 
’ 7 TpesTO (56) 

A is given in Eq. (46b). In view of the earlier comparison 
between digital and analog LIAs, we shall confine our atten- 
tion to the former instrument, so as to avoid formalistic com- 
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plications due to the presence of odd harmonics in the latter. 
Calculation of the fundamental Fourier coefficients of the 
function f(t) = T,( 0, t) gives (see Appendix) 

404 
altwo)= yg-j?- 

i, 
d”J; cos(oot)dt+ I”(& 6) 

TP 

x cos( o,t)dt 

i 

=-$y-[SW-s( &2--morp)) 

xcos(worp)-c ( JG) sin(WOrp) 

+ j/G sin(~orp)cos(oorJ]. (57) 

Also 

4%4 
b1(,0)= $372- 

U 
or’ J; sin( w,t)dt 

+ I ‘O( J;- G)sin( w,t)dt 
TP 1 

= -& [ C(2kC( ~~)cos~~oTp~ 

+,i -JG) sin(WOrp) 

+ d= sin2(worp)]. (58) 

‘Ikvo rate-window photothermal modes are possible: pulse 
repetition period To scan with fixed rp ; and pulse duration 
rp scan with fixed To. In both scans extremes of the photo- 
thermal signal occur.“’ SNR comparisons with the FD mode 
are most easily made by considering the rp/To ratio in the 
rate-window method which yields a SNR equal to that of the 
FD method. If oor,,92rr, i.e., for rpe To, the following 
approximations may be made 

s( &G4 =st21, 

c( &LA4 =ct21, 

cos( warp)= 1; sin(worp)=OOrp. 

Therefore, Eq. (57) becomes for rpeTo 

(59) 

(60) 

(60 

lul(wo)l= F (warp). (62) 

Since the instrumental configuration remains identical to the 
FD LIA method, the IP and Q channel output noise power P,, 
remains the same and is given by Eq. (43). Inserting3* C(2) 
-0.488 in Eq. (62) one obtains 

sNR$v,IP(~~)= ( 4[2-~(2)1)2( IAL$z)2) $, 
(634 

(63b) 

Equation (63) indicates that the output SNR fro’m a rate- 
window photothermal experiment with fixed pulse duration 
and scanned repetition period or vice-versa is higher than the 
respective FD scan SNR, Eq. (48) when 

3.706(warp)2>1*r,>8.267X 10e2Te, (64) 

i.e., the in-phase rate-window method outperforms the con- 
ventional FD mode if the pulse duration is greater than 
8.27% of the repetition period. The SNR advantage of the 
rate-window method over the FD method at common o. in- 
creases with increasing modulation frequency [Eq. (63)]. 
This fact suggests that the rate-window approach should be 
favored in situations where fast photothermal detection is 
required, such as with responses of thin, thermally conduct- 
ing layers. A similar calculation to the IP case may be carried 
out for the Q-channel of the LIA, giving from Eq. (60) in the 
limit wo7,+2rr 

SNR~wpQ(coo)=( y)‘( IA~~~‘2) -&, (65a) 

(65b) 

The condition for the SNR advantage of the Q-channel rate- 
window scan over the FD method at the same frequency here 
is more stringent than the IP condition, yet easy to achieve 
experimentally 

0.191(w0rp)2~1=+rp~0.364To. (66) 

Figure 7 shows comparisons between infrared photothermal 
radiometric rate-window scans of To, quadrature channels, 
using digital and analog LIAs. The same semi-infinite Zr 
sample used in Fig. 6 was employed here. In Fig. 7(a) the 
strength of the signal was deliberately lowered by decreasing 
the intensity of the incident laser radiation. The improvement 
in the digital LIA SNR over the analog instrument is appar- 
ent. Figure 8 shows FD and rate-window infrared radiomet- 
ric scans of a thin metallic strip. The data scatter of the FD 
phase curve [Fig. 8(a)] is more severe than that of the 
quadrature rate-window curve [Fig. 8(b)] especially in the 
low-to-middle frequency range. No theoretical curve was 
possible to fit to the data to calculate the thermal diffusivity 
from the FD experiment. On the other hand, both high- 
frequency (low To) and low-frequency (high To) regions of 
the rate-window scan exhibit acceptable SNR and theoretical 
curves were able to be fitted to the data for a range of ther- 
mal diffusivities. In turn, those values were used to draw 
theoretical fits through the experimental FD data. The mini- 
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(a) 

Period (ms) 

Period (ms) 

FIG. 7. Infrared photothermal radiometric response of a semi-infinite Zr 
sample. R W  quadrature scan. (a) Low signal level corresponding to low 
incident laser irradiance; (b) high signal level corresponding to high incident 
irradiance. (---) analog LIA; (-) digital LIA. Pulse duration rp = 2 ms. LIA 
tilter t ime constants 7ac=1 s. 

mum ratio of the (fixed) rP to (SCaMed) To was. (73 p/274 
wj=O.266, and the maximum ratio was 1. Therefore, condi- 
tion (66) was satisfied for To<203 w, although some de- 
viation from the theory is expected due to the finite-thickness 
sample geometry. As a result, the rate-window SNR at 75 @  
(rp/To= 1) is much greater than the corresponding FD SNR 
at 13.5 kHz, i.e., 116.5 & on the abscissa of Fig. 8(a). 

In the foregoing experimental examples, the SNRs of 
both FD and rate-window modes decrease substantially with 
increasing frequency, owing to their 00’ dependence. If the 
pulse repetition period is fixed (i.e,, o. is fixed) and’ rP is 
scanned, then the relative in-phase SNR becomes 

. .i :‘. . , . 
.. * - :*’ : ,;5;,;e;,2;-, .- 1  

. ,.3,x 10-5 &-’ 
---- 1.03x10-5m%-’ 

: 
. Experiment 

25 85 145 205 265 

(a) [Frequency(?zz)l’” - 

5 . 

. * 
. 

74 114 154 194 . 234 274 

FIG. 8. (a) Experimental FD photothermal infrared radiometric phase data 
(filled circles) from a 25.4-pm thick metal foil, normalized to a semi-infinite 
reference sample, and the corresponding theoretical curves with thermal 
diffusivities 1.15X1O-5 (solid), 1.31X 10m5 (dots), and 1.03X10-’ (dashes) 
mz  s-r. (b) Experimental Q-channel data (filled circles) from a rate-window 
Ta scan with r,=73 +s. The theoretical curves corresponding to the fore- 
going thermal diffusivities were drawn on this scan first and then used in (a). 

=3.706(wo~J2, (67)' 
*  

I . assummg w. rP 4 1, and 

4[~(2)+s(&)i 
P= 

2=1 81 
m- 

. > 033) 

for rP= To/2 (rate window with 50% duty cycle). Similar 
SNR advantages are enjoyed by the LIA Q channel as well. 

The advantage of the pulse-duration-scanned rate win- 
dow over FD photothermal measurements lies not only on 
the high SNR due to the rate-window process itself as shown 
in Eqs. (67) and (68), but also in comparison with the 
To-scanned rate window. This is so, because To scanning is 
equivalent to increasing the modulation frequency, which 
compromises the photothermal SNR. To illustrate this impor- 
tant difference between the two rate-window scanning 
modes, consider the ratio of their SNRs from Eq. (63b) under 
the condition rPeTo I 
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-0.025 

2 s -0.075 

3 
L2p -0.125 

-0.175 

-0.225 
0 29 58 87 116 145 

FIG. 9. Experimental Q-channel data (filled circles) from a rate-window T* 
scan of the 25.4-pm-thick metal foil of Fii. 8. The theoretical cmves cor- 
respond to thermal diffusivities of 1.15X10V5 (solid), 1~3lXlO-~ (data), and 
1.O3X1O-5 (dashes) m’ s-l. 

SNR$w”‘P Or Qj( rp , w,*) 
pS5 

SNRf;W’P( r,* , oo) 

(6% 

In Eq. (69) starred quantities denote fixed parameters; uns- 
tarred quantities denote scanned parameters. It can be seen 
that for the rp-scanned rate window, the ratio rplTt in- 
creases with increasing rp . Similarly, for the To-scanned rate 
window the ratio r;/TO increases with decreasing To. As- 
suming equal rates of increase, we obtain 

p=T;/To. (70) 

Note, that always pal, the equality sign holding when both 
scans commence with the same rp and To. Then p quickly 
increases as rp increases (in constant T,* mode) or as To 
decreases (in constant ri mode). Figure 9 shows the dra- 
matic SNR enhancement in the Q-channel rp-scanned mode 
and should be compared to Fig. 8(b) which represents the 
To-scanned mode. 

C. Pulsed and time-averaged photothermal (TD) mode 

Pulsed photothermal (time-domain, TD) experiments are 
in widespread use owing to the ease of interpretation of the 
data and the ability to excite and monitor fast and ultrafast 
photothermal phenomena using pulsed lasers. The rate- 
window mode is principally a transient signal detection 
method using synchronous demodulation, therefore, the 
question of the SNR of the time-averaged pulsed photother- 
ma1 method arises when direct comparison of the two mea- 
surement techniques is to be made. In this case the transient 
repetitive output signal fo(tj may be considered to be the 
result of averaging a continuous random variable time- 
fseEendent function. The mean value of the function fo(t) 

afo(~>l=fo(~> = Jw fo(Mfo ;w.fo * -co (71) 

If ml represents the number of times the function fo(t) takes 
on the value foi and n is the total number of times the tran- 
sient experiment is repeated, then formally p(fo ;t) is the 
limit as n--+a of the ratio mi/n; physically p(fo;t) is a 
probability density. The variance of fo(t) at any instant, t, is 
given by 

- - 
Mt)= df;(t)-[fo(t)12* (7’4 

In a pulsed photothermal experiment the co-added repetitive 
pulses are not narrow-band filtered, since they are not trans- 
mitted through a LIA. Assuming stationary Gaussian white 
noise dominating all other types of noise, with PSD given by 
Eq. (39), the mean-square value of the noise signal can be 
expressed as in Eq. (28), which takes on the particularly 
simple form 

(73) 

H(w) denotes the transfer function of the dominant 
frequency-limiting mechanism of the experiment, which acts 
as a distributed bandpass filter. The probability density func- 
tion of band-limited Gaussian white noise is known to bels 

where B is the effective bandwidth 

(74) 

Here, W is the entire bandwidth of the experimental fre- 
quency spectrum. For repetitive pulsed photothermal tran- 
sients with repetition period TO, the bandwidth is 
~w~<wo=2dTo, which yields 

The output signal is mixed with white Gaussian noise of zero 
mean value 

ro(t) =fo(t) +no(t), (77) 

where, according to Eqs. (71) and (74) 

(78) 

Presently, let fo( t) be given by the photothermal response of 
a semi-infinite solid to a rectangular pulse a(t). This re- 
sponse is described by Eq. (,56). Given that ro(t) is consid- 
ered a random function over an ensemble with Gaussian 
probability density, that probability density may be described 
using Eq. (74) with no=ro-f. 

After infinite time averaging of the repetitive transient sig- 
nals, the mean value of the resulting TD signal will be 

r- 
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FIG. 10. Backscattered infrared photothermal radiometric TD signal from a 
diamond sample averaged over N=SOOO samples. Pulse duration rp=O.l 
ms. Laser power Q,=0.34 W  (a); Q,=25 m W  (b). 

c_i m  

ro(d =  
~~~ I 

~oP(~o;fow~o=fo(~)~ (80) 
--m 

where Eq. (79) was used for the calculation. 
The system output noise will result in a variance which 

determines the SNR. This variance is given by Eq. (72) upon 
replacing f. by r,, 

5i 
.g soo- m  
z p  600  - 

g  wo' 
3  1  
c 200  
5  
3  

i 
"/ 

8% . . . . . 
. 
. 
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FIG. 11. Analog LIA p-channel infrared photothermal radiometric rate- 
window signals from the diamond of Fig. 10. l imo scans were performed 
with ~,=0.1 ms  and QO= 25 m W  (black dots) and 5 m W  (squares). 

(j-2= m  
I (1 

m  

i 

2 

‘0 --m 
r$p(r&)dr+ rop(ro ;fo>dro 

--m 

=[NB+f&)]-&t)=NB. (81) 

From Eqs. (80) and (81) we conclude (see also Ref. 11, Ap- 
pendix 2) 

ro20 f&j TYo,tj SNRm(t)= -= -= S 
no(t) a,.; NB * 

(82) 

Over the entire repetition cycle, the output power SNR is 
given by Eq. (1) as follows 

Now, calculation of the integral in the numerator using Eq. 
(56) and Ref. 32, entries 2.261 and 2.262.3 gives 

(84) 
This SNR increases with increasing rP , as expected since the 
total energy imparted into the sample increases. For a direct 
comparison with the rate-window SNR. Eq. (63), consider 
the case of a  short laser pulse, such that rP+ To. Using the 
approximations 

(Ti- rpTOj1/2=T0 

and 

$ln( e+dF)=$ln(2$)== 

(86) 
and keeping in mind Eq. (76), we obtain 

(A= IA12). 

(87) 
Finally, using Eqs. (63b) and (87) the relative SNR for short 
optical pulses rpdTo becomes 

63) 

This ratio is normally much greater than one, due to the 
extremely narrow ENBWs afforded by LIAs (typically 
Afh,-0.01 Hz at fo=wo/2rr= 10 kHz).17 This advantage 
of rate-window detection over the co-added transient method 
is demonstrated experimentally in Figs. 10 and 11. Figure 10 
shows a photothermal infrared radiometric transient mea- 
sured from a diamond sample using a finite duration laser 
pulse (rP= 0.1 ms) and two levels of incident irradiance. 
The low incident laser power is only 25 m W  [Fig. 10(b)]. 
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Several thousand repetitive signal transients were co-added. 
Figure 11 shows the LIA rate-window scans measured with 
the same rp and the incident laser power of Fig. 10(b), as 
well as an even lower power of only 5 mW. No transient 
signal could be registered in the transient scope in this latter 
case, even after the co-addition and averaging of several 
thousand pulses. Comparison of Figs. 10(b) and 11 clearly 
indicates the superior SNR of the LIA rate-window method. 
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APPENDIX: CALCULATION OF. FUNDAMENTAL 
FOURlER COEFFICIENTS FOR THE PHOTOTHERMAL 
LIA RESPONSE OF A SEMI-INFINITE SOLID TO A 
TIME-GATED RECTANGULAR OPTICAL PULSE 

If the pulse duration is rp and the pulse repetition period 
is To = 2r/wo, Eq. (56) gives the transient response T,(O,t) 
of a semi-infinite solid surface. The output spectral power of 
the LIA filter is proportional to 1 a r 1 2 and I b r12 for the IP and 
Q channels, respectively, where 

($;;) = : ~oTo~s(o,tj( ;;$;;;)dt. (Al) 
Now, we may write, using Eq. (57) 

4wd 
uli~o)= -p27 

i, 
oTo 6 cos( w&it 

- . . I T;G cos(o,tjdt). 
Integration by parts yields 

Z1(wo)= f” 96 cos(wotjdt= - & 1,2” y dx, 
0 

or, using the auxiliary Fresnel integrals (Ref. 31, entries 7.3.3 
and 7.3.4) 

(A3i) 

(A3b) / 
which may also be written in terms of the basic Fresnel in- 
tegrals (Ref. 31, entries 7.3.7 and 7.3.8), 

(A44 
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we obtain for I1 

(A4b) 

Z1(wo)= - J g$ s2ma. 
0 

Also defining 

12( 644 = 
I 

Ty G cos( o&t, (A@ 

changing the integration variable to i = t- rp , and expand- 
ing the resulting cos[ oo(y + rp)] .gives 

,12(wo j = - J 3 &~&=z+Js(oo~p) 
0 

where 

(A7) 

Idwok o 
I 

To-Tp& sin(o()y)dy. 

Integration by parts of I,( oo)_ yields 

1 
13(w0) = - ~0 fi cos(~Orp) 

* 

+ gp2GGq. 
J 0 

w 

Inserting the results of Eqs. (A5), (A7), and (A9) into Eq. 
(A2) gives 

%(oo) 

= - .-& s2(J27T)-s2(~~)cos(wo7p) 
0 [ 

-C2(J27r-worp)sin(uorp) * 

+ a “‘JK sin(worJcos(oarrJ]. 
0 

Finally, using the Fresnel integrals proper via Eqs. (A4j, we 
obtain Eq. (59). Similarly, 

4wd 
h(wo)= ‘-$qT 

- I T)q- sm(o,tjdt). (All) 

Integration by parts yields 

l&wo)= 
J‘ 

oro$ sin(o,t)dt= 

Also: 

W2) 

6413) 

Similar treatment to the integral 12(oo) gives . 
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Mao)= li +J c2~~)cos(wo7p) 
0 

+m4&d~o~p), 

where 

lg(wo)== I,“-“& cos(woy)tfy. 

6414) 

6415) 

Integration by parts yields 

Inserting Eqs. (A12)-(A16) into Eq. (All) gives 

hi@o)= 

+S2( J2~r- oo7-p)sin(wo7p) 

f- [ zj1’2JK sin’(o,7)]:- 6417) 

Use of the Fresnel integrals, Eqs. (A4), finally yields Eq. 
(60). For computational purposes the Taylor series expan- 
sions may be used for small values of the argument (Ref. 31, 
entries 7.3.11 and 7.3.13) 

C(x)= 5 (-1)” 
w2)2” 

n=o (2n)!(4n+l) X4n+1 w3) 

and 

X4n+3 (Al!3 

Asymptotically, 

6(x)--s(x)-; as x-km. WO) 
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