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Abstract. The effect of nonlinear carrier recombination on the photothermal
modulated optical reflectance (PMOR) signal of a crystalline semiconductor has
been theoretically modelled. The PMOR signal consists of both thermal and Drude
(free-carrier) components, and nonlinear recombination influences it through its
direct effect on the modulated carrier density, and its indirect effect on the
modulated sample temperature. Quadratic recombination was shown to lead to a
sublinear intensity dependence of the photocurrent amplitude at elevated optical
excitation intensities; cubic recombination leads to a supralinear intensity
dependence of the PMOR amplitude accompanied by a progressive phase lag
dependence on pump laser-beam intensity. The effect of nonlinear carrier and
heat-flux gradients was also considered and found to be negligible with PMOR
detection.

1. Introduction

Photothermal modulated optical reflectance (PMOR) is a
technique which probes the modulation of a sample’s
optical reflectance when the sample is excited with an
intensity-modulated laser beam [1–3]. When the excitation
intensity is high (> 104 W cm−2), and when the probe
wavelength is distant from any critical points in the density
of states, it is normally assumed that the reflectance is
modulated through a combined thermal and Drude (free-
carrier) mechanism [1–3]. Therefore, in order to model the
PMOR signal in a crystalline material, it is necessary to
obtain expressions for the modulated sample temperature,
1T , and the modulated free-carrier density,1N . The
theoretical PMOR signal can be expressed as the modulated
reflectance,1R

1R = ∂R

∂T
1T + ∂R

∂N
1N (1)

where∂R/∂T is the temperature reflectance coefficient and
∂R/∂N is the Drude reflectance coefficient.

1N is obtained by solving the carrier diffusion equation
and1T is obtained by solving the heat diffusion equation.
When linear diffusion equations are employed,1N and1T

can be calculated quite readily, in both the one-dimensional
limit and for the case where the exciting beam has a
Gaussian profile with radial symmetry. In reality, the
carrier and heat diffusion equations often have a significant

degree of nonlinear character, especially when the pump
power is large. In this work the effect of nonlinear carrier
recombination upon1N and1T will be considered in the
one-dimensional limit.

Forget et al [4] have already examined the effect of
Auger recombination upon the PMOR signal, but their
analysis was only approximate. For instance, instead of
solving for N1 and N2, the d.c. and fundamental a.c.
components of the photocarrier density, they only examined
the time-independent form of the carrier transport equation.
Also, they employed certain approximations, such as the
assumption of surface-localized excitation, which are not
valid under all conditions. Chenget al [5] also included
Auger recombination in their model of the nonlinear
piezoelectric photoacoustic effect for semiconductors with
an applied d.c. electric field, but they only solved the
carrier transport equation in the ‘subsurface approximation’
limit. For this approximation, the carrier transport equation
was linearized by making the assumption that only the
surface value of the carrier diffusion length is significant
in determining the surface value of the modulated carrier
density; thus, the problem was reduced to solving a pair
of linear differential equations and a pair of nonlinear
algebraic equations. The subsurface approximation appears
to be useful for finding the surface value of the carrier
density, but it is quite limiting when one is calculating the
recombination heating term in the heat diffusion equation;
in order to derive the recombination heating term one
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must accurately know the modulated carrier density over
at least one thermal diffusion length, which can be quite
large at lower modulation frequencies. In the present
case, a rigorous, generalized multiharmonic analysis is
performed and the results are tested using numerical finite
difference methods. The insights thus gained on the various
nonlinearities in the PMOR signal can be used to elucidate
the quantitative analysis of experimental PMOR data.

2. The Drude or free-carrier component of ∆R

2.1. Special case: optical excitation of transparent
semiconductors

In order to characterize the effect of nonlinear recombina-
tion upon the modulated carrier density, the following form
of the carrier diffusion equation will be examined:

∂N

∂t
= D

∂2N

∂x2
− g1(N − N0) − g2(N − N0)

2

−g3(N − N0)
3 + S(x)(1 + eiωt ). (2)

Here,N represents either the free-electron density(n), or
the hole density(p), and N0 is the equilibrium carrier
density. Also,D is the average carrier diffusion coefficient
for electrons and holes; this average value represents
an attempt to account for the Dember effect [6], and
is used in place of the more complicated ambipolar
relation [7]. g1 is the monomolecular (linear) carrier
recombination coefficient, and is the inverse of the linear
carrier lifetime, τ . g2 is the bimolecular (quadratic)
carrier recombination coefficient, and is usually associated
with band-to-band radiative recombination.g3 is the
Auger (cubic) carrier recombination coefficient. The
three recombination modes considered above have been
examined in detail by Blakemore [8]. In truth, it is
not always possible to have separate terms for the three
recombination effects represented in equation (2), but this
approximation is valid for the high-level optical injection
conditions which are present with the use of tightly focused
laser excitation [9]. In equation (2),S(x) is the volume
number density of carriers generated per unit time, and
f (t) = 1 + eiωt is the temporal modulation function of the
excitation beam.

Another approximation related to equation (2) is that
the temperature gradients induced in the sample have no
influence upon carrier transport. The validity of this
assumption is not readily obvious; therefore, the appendix
examines the issue and confirms this hypothesis.

In most PMOR experiments the free carriers are
generated by a sinusoidal source. Thus, in equation (2)
the carrier density can be expressed as

N(x, t) = N0 +
∞∑

m=1

Nm(x)eiω(m−1)t . (3)

When equation (3) is substituted into equation (2) it is found
that each harmonic(eiωmt ) is associated with a separate
nonlinear differential equation: the differential equation for
the d.c. component ofN(x) is found by collecting terms
which have no time dependence:

D
d2N1

dx2
− g1N1 − g2N

2
1 − g3N

3
1 = −S(x). (4)

The first-harmonic componentN2 is found by equating
coefficients of the eiωt factor:

D
d2N2

dx2
− iωN2 − g1N2 − 2g2N1N2 − 3g3N

2
1N2 = −S(x)

(5)
where it should be apparent thatN2 is dependent on
the d.c. componentN1. In general, the determination of
the first-harmonic component is quite complex because
two nonlinear differential equations must be solved.
Equations (4) and (5) can be easily examined in order to
identify approximate trends, which later can be compared
with exact numerical solutions.

With regard to equation (4), this equation can be
approximated as linear under ‘low’ excitation conditions,
N1 � g1/g2 and N1 � (g1/g3)

1/2; in this case,N1 is
small, and theg1N1 recombination term is dominant. The
linear limit of equation (4) is

D
d2N1

dx2
− g1N1 = −S(x). (6)

In order to obtain a simple approximate but analytic solution
for comparative purposes,S(x) in equation (6) will be
considered to be a slowly varying function ofx; this would
occur if the optical absorption coefficient in the sample is
small. In this case, diffusion effects are not significant and
equation (6) can be solved analytically

N1(x) = S(x)

g1
(7)

where surface recombination has been neglected. Although
ignoring diffusion effects is not very realistic in many
cases, equation (7) illustrates a generally applicable result:
N1(x) is linearly proportional to the pump intensity when
recombination is linear.

Under ‘moderate’ excitation conditions,g1/g2 �
N1 � g2/g3 and g2 > (g1g3)

1/2, the g2N
2
1 recombination

term in equation (4) may become dominant, and the relevant
differential equation to be solved is nonlinear:

D
d2N1

dx2
− g2N

2
1 = −S(x). (8)

If diffusion effects are again ignored, an approximate
analytical solution for equation (8) is possible:

N1(x) =
(

S(x)

g2

)1/2

. (9)

Thus, N1(x) should be approximately proportional to
the square root of the pump intensity when quadratic
(bimolecular) recombination is dominant, and diffusion is
negligible.

Finally, under ‘high’ excitation conditions,N1 � g2/g3

and N1 � (g1/g3)
1/2, the g3N

3
1 recombination term is

expected to dominate, resulting in the following form of
equation (4):

D
d2N1

dx2
− g3N

3
1 = −S(x). (10)
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Again ignoring diffusion effects

N1(x) =
(

S(x)

g3

)1/3

. (11)

Equation (11) illustrates thatN1(x) should be approxi-
mately proportional to the cube root of the pump inten-
sity when cubic or Auger recombination is dominant, and
diffusion is minor.

It is also possible to examine the behaviour ofN2(x),
the first-harmonic component ofN(x), under similar
conditions. Before any exact solutions forN2(x) are
examined, it should be noted that under low excitation
conditions, equation (5) reduces to

D
d2N2

dx2
− iωN2 − g1N2 = −S(x) (12)

where linear recombination is assumed to dominate. This
type of linear diffusion equation is often used in PMOR
modelling because its 3D analogue can be solved routinely
with a moderate amount of computer power. Various
approximate solutions of equation (5) will be examined
in order to generate a set of criteria which can be used
to establish whether equation (12) is valid under given
experimental conditions. In what follows, carrier diffusion
will be ignored, which is strictly true with optical excitation
of transparent semiconductors, usually in the subbandgap
region. Then, the value forN1 is given by equation (7);
substituting this solution into equation (5) yields

−iωN2 − g1N2 − 2g2

g1
S(x)N2 − 3g3

g2
1

S(x)2N2 = −S(x).

(13)
Thus,N2(x) can be easily obtained

N2(x) = S(x)

g1 + iω + (2g2/g1)S(x) + (3g3/g
2
1)S(x)2

. (14)

If S(x) is in the low pump-intensity range, S(x) � g2
1/2g2

andS(x) � (g3
1/3g3)

1/2, then it can be shown quite readily
that equation (14) reduces to

N2(x) = S(x)

g1 + iω
. (15)

Therefore, N2(x) is linearly proportional to the pump
intensity when recombination is linear.

At moderate pump-intensity levels, the value forN1(x)

may be given by equation (9); substituting this solution into
equation (5) yields

N2(x) = S(x)

g1 + iω + 2g
1/2
2 S(x)1/2 + (3g3/g2)S(x)

. (16)

If S(x) is in the ‘moderate’ range,g2
1/4g2 � S(x) �

4g3
2/9g2

3 and g2 > (3g1g3/4)1/2, then equation (16)
simplifies to

N2(x) = 1

2

(
S(x)

g2

)1/2

(17)

which indicates that the first harmonic of the free-carrier
density should be proportional to the square root of

the pump intensity when bimolecular recombination is
dominant.

Finally, at thehighest pump-intensity levels, the value
for N1(x) is given by equation (11); substituting this
solution into equation (5) yields

N2(x) = S(x)

g1 + iω + (2g2/g
1/3
3 )S(x)1/3 + 3g

1/3
3 S(x)2/3

.

(18)
In the ‘high’ excitation range,S(x) � (g3

1/27g3)
1/2 and

S(x) � 8g3
2/27g2

3, the dominant term in the denominator
of equation (18) is the Auger term, so equation (18) can be
approximated by

N2(x) = 1

3

(
S(x)

g3

)1/3

(19)

which indicates thatN2(x) should be proportional to the
cube root of the excitation intensity when carrier diffusion
is negligible.

From the preceding analysis of the carrier diffusion
equation, one important conclusion can be made. If
a PMOR signal is composed mainly of a free-carrier
component, then the validity of using equation (12) instead
of equation (5) to model the effect can be tested by
examining the linearity of the PMOR signal: if it has
a noticeable sublinear intensity dependence, nonlinear
recombination effects may be important, and a more
complicated diffusion equation than equation (12) must be
solved.

2.2. General case: exact finite-difference treatment

Unfortunately, the above treatment is only valid in the
special case when carrier diffusion is negligible, which
is only true when the optical absorption lengthLα is
greater than the carrier diffusion lengthLD. In most
PMOR experiments the sample is excited with strongly
absorbed light for which the optical absorption coefficient
α (or 1/Lα) is greater than 106 m−1, or Lα is less than
1 µm. SinceLD in crystalline silicon is on the order of
100µm, clearlyLα is usually much smaller thanLD under
conditions of super-bandgap optical excitation. To study the
effects of carrier diffusion on the solution of equations (4)
and (5), these equations can be rigorously solved for typical
experimental situations using a finite difference technique.

For the finite difference solution, the sample of
thicknessL was divided inton layers, each of thickness
1x = L/n. Assuming linear optical absorption, the
number of carriers generated in layeri was

G(i) = I {exp[−α1x(i − 1)] − exp(−α1xi)} (20)

whereI (in m−2 s−1) is the flux of super-bandgap photons
entering the sample. Considering the conservation of carrier
density for each layer in the sample, finite difference
equations were obtained for the d.c. carrier densityN1 (one
equation for each layer in the sample). With regard to the
finite difference equations for the first-harmonic component
N2, the solution forN2 is real whenω � 1/τ , that is, at low
modulation frequencies. Since this limit is experimentally
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common and theoretically convenient, it will be considered
here. In this case the finite difference equations forN2

are similar to those forN1. The strategy for obtaining a
numerical solution for{N1(i)} and {N2(i)} is to assume
starting values for these quantities such as the analytical
solution in the absence of nonlinear recombination, and
then to iteratively obtain improved values for{N1(i)} and
{N2(i)} until the solution converges. In the present case,
the rate of solution convergence depends upon the value of
1x, or upon the number of layersn. For instance, when the
sample thickness was assumed to equal 0.8LD andn was set
to 50, up to 12 000 iterations were required for the solution
to converge. Convergence was assumed to occur when the
fractional change of{N1(i)} and{N2(i)} was less than 10−6

between successive iterations. Whenn was increased to
500, convergence was orders of magnitude slower. Overall,
for the simulations to be presented in this work, the sample
thickness was always 0.8LD, andn ranged from 50 to 200.
For these standard values ofL andn, the value of1x was
about 3×10−6 m; thus, optical absorption profiles were not
resolvable for absorption coefficients above 3×105 m−1 (or
1/1x).

2.3. Numerical simulations

In order to examine the effect of carrier diffusion on the
intensity dependence of the free-carrier density, a number
of simulations were carried out for silicon. Since the Drude
component of the PMOR signal is sensitive to the surface
value of the free-carrier density,N1(1) and N2(1) were
determined as a function ofI , under two conditions of
opacity:

(i) Moderately high optical absorption coefficient,α =
104 m−1; thus,Lα ≈ LD and carrier diffusion is essentially
suppressed. Two nonlinear special cases were considered:
(a) linear and quadratic recombination present and (b) linear
and cubic recombination present.

(ii) High optical absorption coefficient,α = 106 m−1;
thus, Lα � LD and carrier diffusion is significant. The
same two special cases were examined as in (i).

Only two recombination modes were examined at
a time, so that the transition from linear to nonlinear
behaviour could be clearly observed. This avoids the
situation where both quadratic and cubic recombination
are significant over the same range of pump intensity. By
judiciously choosing values ofg1, g2 andg3 it is possible
to have ranges of intensity where only one recombination
channel is dominant at a time, but in general, this is not the
case.

One common experimental method for monitoring non-
equilibrium free carriers in a semiconductor is to measure
the sample photoconductivity using a transverse geometry
[10]. If the applied electric field is uniform as a function
of depth in the sample, then the photocurrent (PC) is
proportional to the number of photocarriers integrated over
the thickness of the sample. Thus, in addition to calculating
N1(l) andN2(l) as outlined for the above simulations, the
summed quantities∑

N1 ≡
n∑

i=1

N1(i) (21a)

and ∑
N2 ≡

n∑
i=1

N2(i) (21b)

were also determined, as an approximation to the average
photocarrier density integrated over the sample thickness.
This makes possible a comparison between the intensity
behaviour of the Drude component of the PMOR signal
and the transverse photoconductivity. In all cases the
carrier diffusion coefficient was 3× 10−3 m2 s−1 and
the linear carrier lifetime was 10−5 s. The simulation
diffusion coefficient is typical of high-quality silicon [11],
and the value for the lifetime is about a factor of 10
below the maximum measured for silicon [11], and is
typical of values obtained for silicon using the modulated
photocurrent method [12]. Also, surface recombination
velocities were set equal to zero, and the pump photon
energy was 2.4 eV. In addition,g2 = 2 × 10−19 m3 s−1,
which ensures that quadratic recombination has a range
of domination below the intensity range where cubic
recombination dominates. According to Schroder [9], the
value ofg2 for silicon and germanium at room temperature
is about a factor of 10 lower than the value used in
the present simulations. This does not alter the general
characteristics of the simulations, but it does mean that
higher pump powers are probably required to see nonlinear
effects due to quadratic recombination in real Si or Ge. In
fact, for Si and Ge it does not appear that there is any
range in excitation power where quadratic recombination
dominates over both linear and Auger recombination. The
value ofg3 was set [4] equal to 4× 10−43 m6 s−1.

Figure 1(a) showsN1(1) andN2(1) versus the absorbed
optical intensityI (in W m−2), when α = 104 m−1 and
both linear and quadratic recombination are present. At
the lowest intensities, the data are linear, andN1(1) =
N2(1); in fact, linear behaviour was observed for all of
the simulations at the lowest powers, and it indicates the
dominance of the linear recombination mechanism. Then,
as the intensity is increased,N2(1) < N1(1), andN1(1) →
I 0.56 and N2(1) → I 0.53. Note that this behaviour is
very close to that predicted by equations (9) and (17), as
expected.

Figure 1(b) shows
∑

N1 and
∑

N2 versusI , when
α = 104 m−1 and both linear and quadratic recombination
are present. At the lowest intensities the data are linear,
and

∑
N1 = ∑

N2. Then, as the intensity is increased,∑
N2 <

∑
N1, and

∑
N1 → I 0.53 and

∑
N2 → I 0.50.

Therefore, figures 1(a) and 1(b) indicate that when carrier
diffusion is not significant, the surface carrier density
and the integrated carrier density show a similar power
dependence on the excitation intensity, at least when linear
and quadratic recombination are present.

Figure 2(a) displaysN1(1) and N2(1) versusI , when
α = 106 m−1 and both linear and quadratic recombination
are present. As the intensity is increased,N1(1) → I 0.66

and N2(1) → I 0.65. This trend toward the two-thirds
power-law behaviour was found to be a general result
when the excitation is strongly localized at the surface,
and quadratic recombination is dominant. In addition,
figure 2(b) shows

∑
N1 and

∑
N2 versus I . At the

higher intensities,
∑

N1 → I 0.46 and
∑

N2 → I 0.39. This
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Figure 1. Theoretical simulation of carrier density (m−3)
versus absorbed optical flux (W m−2) when both linear and
quadratic recombination are present. The absorption
coefficient is α = 104 m−1. (a) N1 (�), N2 (◦); (b)

∑
N1 (�),∑

N2 (◦). The slopes of the linear sections are represented
by the quantity S . See text for other simulation parameters.

Figure 2. Theoretical simulation of carrier density (m−3)
versus absorbed optical flux (W m−2) when both linear and
quadratic recombination are present. The absorption
coefficient is α = 106 m−1. (a) N1 (�), N2 (◦); (b)

∑
N1 (�),∑

N2 (◦). The slopes of the linear sections are represented
by the quantity S . See text for other simulation parameters.

result indicates that when carrier diffusion is significant,
the surface carrier density and the integrated carrier density
show a weaker dependence on the excitation intensity
than when diffusion is neglected, at least when quadratic
recombination is dominant. This is consistent with diffusive
loss of carriers across the collection pathway.

In considering the situation where linear and cubic
(Auger) recombination are present, figure 3(a) displays

Figure 3. Theoretical simulation of carrier density (m−3)
versus absorbed optical flux (W m−2) when both linear and
Auger recombination are present. The absorption
coefficient is α = 104 m−1. (a) N1 (�), N2 (◦); (b)

∑
N1 (�),∑

N2 (◦). The slopes of the linear sections are represented
by the quantity S . See text for other simulation parameters.

N1(1) and N2(1) versus I , when α = 104 m−1. As
the intensity is increased,N1(1) → I 0.37 and N2(1) →
I 0.33. These trends are consistent with the (limiting)
equations (11) and (19), as expected. Furthermore, in
figure 3(b),

∑
N1 → I 0.34 and

∑
N2 → I 0.32. Therefore,

similar results to figures 1(a) and 1(b) are confirmed: when
carrier diffusion is not significant, the surface carrier density
and the integrated carrier density show a similar power
dependence on the excitation intensity.

Figure 4(a) displaysN1(1) and N2(1) versusI , when
α = 106 m−1 and both linear and cubic recombination
are present. At the higher intensities,N1(1) →
I 0.49 and N2(1) → I 0.48. This square-root power-
law behaviour was found to be a general result when
the excitation is strongly localized at the surface, and
cubic recombination is dominant. Forgetet al [4] have
previously predicted a square-root dependence by obtaining
an approximate analytical solution to the carrier diffusion
equation (equation (5)) for a surface-localized source. The∑

N1 and
∑

N2 versus I trends in figure 4(b) as the
intensity is increased are

∑
N1 → I 0.24 and

∑
N2 →

I 0.06. This result shows that when carrier diffusion is
significant, the integrated carrier density exhibits a much
weaker dependence on the excitation intensity than less
opaque semiconductors, when nonlinear recombination is
dominant. This is expected from the enhanced role of
diffusion as a carrier-loss mechanism across the dark region
behind the near-surface photoexcited volume.

3. The thermal component of ∆R

3.1. Theoretical and numerical

In order to determine the effect of nonlinear carrier
recombination upon the modulated sample temperature, the
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Figure 4. Theoretical simulation of carrier density (m−3)
versus absorbed optical flux (W m−2) when both linear and
Auger recombination are present. The absorption
coefficient is α = 106 m−1. (a) N1 (�), N2 (◦); (b)

∑
N1 (�),∑

N2 (◦). The slopes of the linear sections are represented
by the quantity S . See text for other simulation parameters.

following form of the heat diffusion equation was examined
[13]:

∂T

∂t
= βs

∂2T

∂x2
+ Egβs

ks

[g1(N − ND) + g2(N − N0)
2

+g3(N − N0)
3]+ (hν − Eg)βsα

ks

exp(−αx)(1 + eiωt )

(22)

where T is the sample temperature,βs is the sample
thermal diffusivity,Eg is the energy gap,ks is the sample
thermal conductivity,hν is the pump photon energy and
α is the pump absorption coefficient. Two separate
heating effects are included on the right-hand side of
equation (22): the first term, which contains the free-
carrier densityN , represents the heat liberated when the
photocarriers recombine non-radiatively. In the case of Si
and Ge, the non-radiative quantum efficiency is assumed
to be 1; this is not necessarily so for other, direct-gap
semiconductors. Nevertheless, the photothermal modulated
optical reflectance technique is only sensitive to the non-
radiative component of carrier plasma and lattice de-
excitation: in the case of radiative decay, a factor equal
to the non-radiative quantum yield(≤ 1) would have to
multiply each term in equation (22). The second term on the
right-hand-side, which is proportional tohν−Eg, represents
the heat released to the sample when the hot photocarriers
are thermalized immediately after they are generated by the
pump photons. Here, again, the non-radiative efficiency
was assumed to be unity, or the term can be multiplied by
the appropriate non-radiative quantum yield factor.

In the appendix, potential nonlinear gradient-originating
heating terms are discussed. Since such terms are highly
nonlinear, and are strongly coupled to the carrier diffusion
equation, their consideration is crucial in determining the

validity of the decoupling of carrier and thermal transport
equations which is assumed in anad hoc manner by
most authors. The results of the appendix indicate that
temperature-gradient and Thomson-effect nonlinearities are
not central to PMOR studies using moderate optical
pump fluences, such as in the present work. Therefore,
substituting

T (x, t) = T1(x) + T2(x)eiωt (23)

and
N(x, t) = N0 + N1(x) + N2(x)eiωt (24)

into equation (22) yields the following equation forT2, the
first-harmonic component ofT (x, t):

d2T2

dx2
− i

ω

βs

T2 = −Eg

ks

(g1N2 + 2g2N1N2 + 3g3N
2
1N2)

− (hν − Eg)Iα

ks

exp(−αx). (25)

Since the recombination heating term in equation (25)
is nonlinear, this equation cannot be solved exactly
by analytical means; instead, an approximate analytical
solution was obtained as follows. First,N1(x) and N2(x)

were obtained by the finite difference approach discussed in
section 2. Then, these quantities were used to numerically
obtain the recombination heating term on the right-hand
side of equation (25), and this numerical solution was
then fitted to a fourth-order polynomial function which
was used to represent the recombination heating term in
equation (25). The resulting equation to be solved was

a1 + a2x + a3x
2 + a4x

3 + a5x
4 + E(x)

= − Eg

ks

(g1N2 + 2g2N1N2 + 3g3N
2
1N2) (26)

where

d2T2

dx2
− i

ω

βs

T2 = (a1 + a2x + a3x
2 + a4x

3 + a5x
4)

− (hν − Eg)Iα

ks

exp(−αx) (27)

and E(x) is the deviation between the fourth-order
polynomial and the exact numerical function. In fact,
when there was a sharp gradient in the carrier density near
the sample surface, it was found that it was better to fit
two separate polynomial functions to the recombination
heating term, one near the sample surface and one for
the remainder of the sample bulk. This two-curve fit
was far superior to the fit which was obtained when only
one polynomial function was employed over the whole
sample depth. The only disadvantage to using the two-piece
polynomial function is that the calculational complexity
of the problem is increased, since two extra boundary
conditions are required.

With regard to boundary conditions, it was assumed
that both the front and back surfaces of the sample were
carrier recombination sites:[

dT2

dx

]
x=0

= −s1Eg

ks

N2(1) (28)

[
dT2

dx

]
x=L

= s2Eg

ks

N2(n) (29)
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wheres1 ands2 are the surface recombination velocities at
x = 0 andx = L respectively. In addition, when the two-
curve polynomial fit was employed, both the temperature
and its first derivative were required to be continuous at
x = Lp. With regard to choosing the value forLp by trial
and error it was found that good results were obtained when
Lp = L/4, whereL is the sample thickness.

The effect of nonlinear recombination on the intensity
dependence of the modulated sample temperature was
tested by performing a number of numerical simulations.
The electronic simulation parameters were identical to those
used in section 2 with the Drude component of the PMOR
signal, and they represent typical values for silicon [11]:
D = 3 × 10−3 m2 s−1, g1 = 105 s−1, Eg = 1.1 eV and
hν = 2.4 eV. With respect to the surface recombination
velocity, it was found that varying this parameter did not
alter the overall intensity dependence for a given sample.
The thermal properties were those typical of silicon [11]:
βs = 9.2 × 10−5 m2 s−1 andks = 148 W m−1 K−1.

The first simulations were carried out with the following
experimental parameters: linear and quadratic (or linear and
cubic) recombination present,α = 104 or 106 m−1, and
modulation frequencyf = 1 kHz. Under these conditions
it was found that the temperature modulation amplitude
was a linear function of the pump intensity. This result
was somewhat surprising, sinceN2 showed strong sublinear
behaviour over the same range of intensity. There are,
however, two reasons for which nonlinear recombination
does not affect the linearity ofT2(0) for silicon at 1 kHz.
First, a considerable portion of the sample heating, namely
the carrier thermalization component, does not depend
on the effects of nonlinear recombination. Second, the
thermal diffusion length,LT = (2β/ω)1/2, at 1 kHz is
larger than the carrier diffusion length at all pump powers;
therefore, the temperature modulation was only weakly
dependent on the distribution of the recombination heating.
Figure 5 shows a theoretical plot of the phase lag ofT2(0)

versus the pump intensity when both linear and quadratic
recombination are present(g1 = 2 × 10−19 m3 s−1), at
1 kHz; in this case, the variation of the phase lag with
intensity is a clear indication that carrier recombination has
become strongly nonlinear. As the intensity is increased,
the effective carrier diffusion length is decreased, and more
of the recombination heating occurs close to the surface
where the carriers are generated; this leads to a decrease in
the phase lag of the modulated surface heating. Figure 5
also indicates that when the absorption length is of the order
of the carrier diffusion length (i.e.α = 104 m−1), which
yields relatively weak carrier diffusion, the phase lag of
T2(0) is less sensitive to nonlinear recombination than when
the optical absorption length is much shorter.

Another simulation was carried out using the
parameters listed above, but the modulation frequency
was raised to 10 kHz, so the thermal diffusion length
was somewhat less than both the sample thickness and
the carrier diffusion length. Also, it was assumed that
only linear and Auger recombination were present(g3 =
4 × 10−43 m6 s−1). Figure 6(a) indicates that as the
intensity is raised,T2(0) makes a transition from linearity
to a weak supralinear power law(I 1.06). A second feature

Figure 5. Theoretical simulation of the phase lag of T2(0)
versus the absorbed optical flux (W m−2) for c-Si (see text
for material parameters). Both linear and quadratic
recombination are present, and f = 1 kHz. The absorption
coefficient is either (�) 104 or (◦) 106 m−1.

of figure 6(a) is that it also shows the intensity dependence
of T2(0) under the assumption thatEg = 2.4 eV, so
there is no thermalization heating and all of the sample
heating is due to recombination. As the intensity is
increased, the effective carrier lifetime decreases, where
the effective lifetime under Auger recombination is based
on equation (5): τAuger = g3N

2
1 . Eventually very little

carrier diffusion occurs because the Auger lifetime is
too short, and the recombination heating becomes very
similar in spatial distribution to thermalization heating;
thus,T2(0) becomes identical to that obtained whenEg =
1.1 eV, which is the actual situation for Si. In this
limit, the increasingly surface-localized character of the
non-radiative recombination becomes responsible for the
observed supralinear power law.

Figure 6(b) shows the phase lag data corresponding to
the amplitude data of figure 6(a). It gives further evidence
that when Auger recombination is significant, the phase
lag becomes smaller as the pump intensity is increased,
because the heat generation distribution is moved closer to
the sample surface. It should be emphasized that the phase
changes are due to the lifetime-sensitive recombination
heating effect.

The above simulations forT2(0) clearly indicate
that even under the strongest nonlinear recombination
conditions, the modulated surface temperature is only a
weak supralinear function of the pump intensity, for one-
dimensional diffusion. In addition, it can be stated that
the supralinear effects are increased when the modulation
frequency is increased, due to the decrease in the thermal
diffusion length.

It can be mathematically shown that when carrier
diffusion effects are weak, the recombination heating
effect does not induce a significant nonlinearity in the
dependence ofT2(0) on I . From equation (25), the
quadratic recombination heating term is proportional to
S2 ≡ 2g2N1N2. When quadratic recombination is
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Figure 6. Theoretical simulation of (a) the amplitude and
(b) phase lag of T2(0) versus the absorbed optical flux (W
m−2), for c-Si (see text for material parameters). Both
linear and Auger recombination are present, f = 10 kHz
and α = 106 m−1. The pump photon energy is 2.4 eV, and
the energy gap is (◦) 1.1 eV or (�) 2.4 eV. The slope of
the linear section of the 1.1 eV curve is represented by the
quantity S .

dominant, and under weak carrier diffusion conditions,
N1 = (S(x)/g2)

1/2 (equation (9)) andN2 = (S(x)/g2)
1/2/2

(equation (17)). Thus,S2 = S(x), which is a linear function
of the pump intensity. Likewise, the Auger recombination
heating term is proportional toS3 ≡ 3g3N

2
1/N2. When

Auger recombination is dominant, in the zero carrier
diffusion limit, N1 = (S(x)/g3)

1/3 (equation (11)), and
N2 = (S(x)/g3)

1/3/3 (equation (19)). Thus,S3 = S(x).
These analytical results indicate that even in the presence
of strong nonlinear recombination, the modulated surface
temperature should be a linear function of the pump

intensity when carrier diffusion is weak, which occurs
when the optical absorption length is longer than the
carrier diffusion length. In order to isolate effects due
to nonlinear recombination, carrier transport was assumed
to be independent of the sample temperature; in fact, the
present treatment can be readily altered to include the effect
of sample temperature upon carrier transport [14].

4. Conclusions

The behaviour of the thermal/Drude PMOR effect has been
modelled for the situation where carrier recombination is
both linear and quadratic or cubic in the carrier density.
The one-dimensional nonlinear carrier diffusion equation
was solved using a finite-difference technique. The finite
difference solution for1N is quite rigorous, and its only
limitation is that one cannot resolve optical absorption when
the absorption depth is less than1x, the thickness of the
discretized layers in the sample.

Using the same finite-difference approach, it was
found that when nonlinear recombination dominates over
linear recombination, the fundamental-frequency modulated
carrier density at the surface,N2(1), has a sublinear
dependence on the excitation intensityI (N2 ∝ I ε, ε <

1). The exponentε was found to depend on several
factors: on the nature of the recombination mechanism
(quadratic or cubic) and on the importance, or not, of carrier
diffusion. For example, when the optical absorption depth
is greater than the carrier diffusion length, carrier diffusion
is relatively weak and a larger value ofε is obtained than
when the optical absorption length is much less than the
carrier diffusion length, consistent with a diffusive carrier-
loss mechanism.

The thermal component of the PMOR signal was
also investigated by determining the modulated sample
temperature in the presence of nonlinear recombination.
The recombination heating term in the heat diffusion
equation was represented by a two-curve fourth-degree
polynomial function, allowing the one-dimensional heat
diffusion equation to be solved analytically. The solution
of the heat diffusion equation was not given explicitly, but
it can be obtained in a straightforward manner. Simulations
of the modulated surface temperatureT2(0) indicated that
even in the presence of strong nonlinear recombination,
T2(0) should only have a weak supralinear dependence
on the excitation power. On the other hand, the phase
lag appears to be much more sensitive to the presence of
nonlinear recombination. It is possible to stay within the
linear recombination regime by utilizing a low excitation
power, but even so, diagnostic tests must be carefully
performed in order to confirm that linear recombination is
indeed dominant.
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Appendix: Nonlinear gradient-originating effects
on the decoupling of the carrier and heat
diffusion equations

The various effects which may potentially contribute to
the nonlinear intensity dependence of the PMOR signal,
besides nonlinear carrier recombination, can be obtained
by examining the equations normally used to model the
modulated temperature and carrier density. In general,
four coupled partial differential equations must be solved
simultaneously to determine the modulated temperature and
carrier density: the electron and hole diffusion equations,
the Poisson equation, and the heat diffusion equation
[14, 15].

The 1D hole diffusion equation is

∂p

∂t
= −(p − p0)

τ
+ S(x, t) − ∇ · Jh

e
(A.1)

where p is the hole density,p0 is the equilibrium hole
density, S(x, t) is the generation term andJh is the
hole current density. Likewise, the 1D electron diffusion
equation is

∂n

∂t
= −(n − n0)

τ
+ S(x, t) + ∇ · Je

e
(A.2)

where n is the electron density,n0 is the equilibrium
electron density andJe is the electron current density.

The current densities are given by

Jh = eµhpξ − eDh

∂p

∂x
− rhp

∂T

∂x
(A.3)

and

Je = eµenξ + eDe

∂n

∂x
− ren

∂T

∂x
(A.4)

whereξ is the electric field andrh andre are [14]:

rh = µh

(
eQh + ∂Eg

∂T

)
(A.5)

and

re = µe

(
eQe − ∂Eg

∂T

)
(A.6)

whereQh is the hole thermopower andQe is the electron
thermopower.

Finally, the Poisson equation is

∂ξ

∂x
= p(x) − n(x)

εε0
. (A.7)

The following assumptions were made in order to
obtain equations (A.1), (A.2) and (A.7):

(i) No carrier trapping occurs, so the electrons and holes
have the same lifetimeτ .

(ii) Electrons and holes are generated at the same
rate S(x, t), which is reasonable for band-to-band optical
excitation.

(iii) In equation (A.7), trapped immobile charges were
neglected.

In order to estimate the relative importance of the
various terms which comprise∇·Jh in equation (A.1) and
∇·Je in equation (A.2), the following carrier/heat diffusion
problem will be modelled. A semiconductor is illuminated
with a modulated, strongly absorbed, uniform beam of light.
There are no externally applied electric fields and no built-in
electric field at the surface;De = Dh = D, so no Dember
field is created. The carrier lifetime is constant. Finally, the
carriers are assumed to be generated via a localized surface
source, and the sample heating also occurs via a localized
surface source.

Since the pump beam is modulated at an angular
frequencyω, let

p(x) = p0 + p1(x) + p2(x)eiωt (A.8)

n(x) = n0 + n1(x) + n2(x)eiωt (A.9)

and
T (x, t) = T1(x) + T2(x)eiωt . (A.10)

Under these assumptions, it is possible to evaluate the
∇ · J terms of equations (A.1) and (A.2). Employing
equations (A.3) and (A.4) it can be shown that when the
field ξ is zero

∇ · Jh = −eD
∂2p

∂x2
− rh

∂p

∂x

∂T

∂x
− rhp

∂2T

∂x2
(A.11)

and

∇ · Je = eD
∂2n

∂x2
− re

∂n

∂x

∂T

∂x
− ren

∂2T

∂x2
. (A.12)

If equations (A.9) and (A.10) are substituted into (A.12),
the first harmonic component can be isolated:

(∇ · Je)ω = eD
∂2n2

∂x2
− re

∂n1

∂x

∂T2

∂x

−re

∂n2

∂x

∂T1

∂x
− re(n0 + n1)

∂2T2

∂x2
− ren2

∂2T1

∂x2
. (A.13)

Equation (A.13) contains two distinct components, one
of which is independent of temperature gradients (termed
D1) and one related to temperature gradients (termed
D2). Using the standard solution to the 1D excess carrier
diffusion equation [7]

∂2n2

∂x2
−

(
1

Dτ
+ iω

D

)
n2 = 0 (A.14)

for n2 in equation (A.9) under oscillatory surface
photocarrier generation

n2(x) = I0

2
(τ/D)1/2 exp[−x/(Dτ)1/2] (A.15)

it is possible to write an explicit relation forD1 at x = 0:

D1(x = 0) = e
I0

2

1

(Dτ)1/2
. (A.16)

Similarly, using the 1D heat diffusion equation under
oscillatory surface heat generation of intensityI0

∂2T2

∂x2
−

(
iω

β

)
T2 = 0 (A.17)
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with the solution

T2(x) = hνI0(1 − i)

4k

(
2β

ω

)1/2

exp[−(1 + i)(ω/2β)1/2x]

(A.18)
it is possible to write an explicit relation forD2 at x = 0,
by use of equations (A.13), (A.16) and (A.18):

D2(x = 0) = −rehνI 2
0

2k

×
{

1

D
+

[
n0

I0
+ 1

2

( τ

D

)1/2
]

1 + i

2

(
2ω

β

)1/2
}

(A.19)

whereI0 is the photon flux impinging on the surface of the
semiconductor. In order to compareD1 and D2, various
material and experimental parameters must be known. For
highly focused laser beams (radius∼ a few µm), typical
values ofI0 for Ge and Si are approximately 1027 s−1 m−2.
The values ofre for Ge and Si can be obtained from the
literature [11]. Finally, the values forn0 and p0 can be
calculated from knowledge of the resistivity and mobility.

For typical low-resistivity Si and Ge, at a frequency of
100 Hz, it is found thatD2 > D1; this means that near the
sample surface, the temperature-gradient effect can be more
important than the density-gradient effect in determining
the transport of carriers in the sample. This result may
complicate the analysis because, when the temperature-
gradient effect is included in the carrier diffusion equation,
the two equations become strongly coupled. Furthermore,
the temperature-gradient effect contributes to the nonlinear
intensity dependence of the photocarrier density.

In the PMOR case with superbandgap optical
excitation, it is believed that nonlinear recombination plays
a more prominent role in influencing the photocarrier
density than carrier diffusion effects related to temperature
gradients, and this seems to be borne out by the PC
data [12]. When the PMOR signal is dominated by
the temperature modulation component, neglecting the
temperature-gradient effect in the carrier diffusion equation
may not be as significant a problem. In experiments
where the pump photon energy is much larger than
the bandgap, only a fraction of the sample heating is
influenced by the carrier diffusion behaviour. A method
for attenuating the temperature-gradient phenomenon is to
lower the pump intensity, since the temperature gradient
effect grows quadratically with intensity. A second method
for minimizing the temperature gradient effect is to decrease
the absorption coefficient of the pump beam, since a weakly
absorbed beam generates a weak temperature gradient.

There is another gradient-originating thermoelectric
heat source in semiconductors, which is usually neglected,
namely the Thomson effect. It arises with the evolution of
heat as an electrical current traverses a temperature gradient
in a material [16]. In order to estimate the significance
of the Thomson effect in PMOR studies, expressions can
be written for the various heat sources in a photoexcited
semiconductor.

The first heat sourceis due to thermalization of hot
electrons and hot holes. From equation (28), this heat
source is

F1(x, t) = βs

ks

(hν − Eg)αe−αx I0

2
(1 + eiωt ). (A.20)

At the sample surface, the first-harmonic component ofF1

is

F1,ω(x = 0) = βs

ks

(hν − Eg)α
I0

2
. (A.21)

The second heat sourceis due to band-to-band carrier
recombination. Assuming a constant carrier lifetimeτ ,
from equation (22) this heat source can be written as

F2(x, t) = βs

ks

Eg

N(x, t) − N0

τ
. (A.22)

Substituting equation (A.9) into (A.22) yields

F2(x, t) = βs

ks

Eg

n1(x) + n2(x)eiωt

τ
. (A.23)

At the sample surface, the first-harmonic component ofF2

is

F2,ω(x = 0) = βs

ks

Eg

I0

2

1

(Dτ)1/2
. (A.24)

Finally, the third heat source(the Thomson heat) can
be written as [16]

F3(x, t) = βs

ks

〈T 〉∂T

∂x

(
dQe

dT
Je + dQh

dT
Jh

)
(A.25)

where the first term in the round brackets is associated with
the electron current, and the second term is associated with
the hole current.〈T 〉 denotes the average temperature of
the sample. In a semiconductor with no externally applied
fields, at open circuit, the total current densityJe + Jh is
approximately zero at all times, due to the Dember effect
[8]. Therefore,Jh ≈ −Je, and equation (A.25) can be
written as

F3(x, t) = βs

ks

〈T 〉
(

dQe

dT
− dQh

dT

)
∂T

∂x
Je. (A.26)

For simplicity, the following definition can be used:

f3 ≡ βs

ks

〈T 〉
(

dQe

dT
− dQh

dT

)
. (A.27)

Thus

F3(x, t) = f3
∂T

∂x
Je. (A.28)

Substituting equation (A.4) into (A.28), withξ = 0, yields

F3(x, t) = f3
∂T

∂x

(
eD

∂n

∂x
− ren

∂T

∂x

)
. (A.29)

Overall, using the carrier [7] and heat [4] flux boundary
conditions atx = 0, the first harmonic of equation (A.29)
can be shown to be

F3,ω(x = 0) = f3
hν

2k
I 2

0

{
e − re

hν

2k

[
3

2
I0

( τ

D

)1/2
+ 2n0

]}
.

(A.30)
When typical experimental parameters for Ge and

Si are used to estimate the values of the three heating
sources discussed above, it is found that the largest heating
effect is due to hot-carrier thermalization, equation (A.21),
as expected. Somewhat surprisingly, the Thomson
component, equation (A.30), is found to be only two orders
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of magnitude less than the thermalization component. The
recombination source, equation (A.24), is about five orders
of magnitude less than the thermalization effect. Therefore,
it is unlikely that the Thomson effect is very important in
PMOR detection, since the present simulations indicate that
it is much smaller than the carrier thermalization effect.
Since the Thomson effect grows as∂T /∂x increases, it can
be experimentally attenuated by decreasing the absorption
coefficient of the pump beam.
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